
A BOOTSTRAP ALGEBRAIC MULTILEVEL METHOD FOR
MARKOV CHAINS

MATTHIAS BOLTEN† , ACHI BRANDT‡ , JAMES BRANNICK§ , ANDREAS FROMMER† ,

KARSTEN KAHL† , AND IRA LIVSHITS¶

Abstract. This work concerns the development of an algebraic multilevel method for computing
state vectors of Markov chains. We present an efficient bootstrap algebraic multigrid method for this
task. In our proposed approach, we employ a multilevel eigensolver, with interpolation built using
ideas based on compatible relaxation, algebraic distances, and least squares fitting of test vectors.
Our adaptive variational strategy for computation of the state vector of a given Markov chain is
then a combination of this multilevel eigensolver and an associated additive multilevel preconditioned
correction process. We show that the bootstrap algebraic multigrid eigensolver by itself can efficiently
compute accurate approximations to the steady state vector. An additional benefit of the bootstrap
approach is that it yields an accurate interpolation operator for many other eigenmodes. This in turn
allows for the use of the resulting multigrid hierarchy as a preconditioner to accelerate the GMRES
iteration for computing an additive correction equation for the approximation to the steady state
vector. Unlike other existing multilevel methods for Markov chains, our method does not employ
any special processing of the coarse-level systems to ensure that stochastic properties of the fine-level
system are maintained there. The proposed approach is applied to a range of test problems, involving
non-symmetric M-matrices arising from stochastic matrices, showing promising results.
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1. Introduction. We consider the task of computing a non-zero vector x such
that

Ax = 1x, (1.1)

where A denotes the transition matrix of a given irreducible Markov process and x is
the associated steady state vector (s.s.v.), an eigenvector of A with eigenvalue equal to
one. Since A is irreducible, x is unique up to scalar factors. The approach considered
in this paper is to approximate x iteratively using an adaptively constructed algebraic
multilevel eigensolver (MLE) for the matrix

B = I −A.

In addition, the multilevel hierarchy thus obtained is used in an algebraic multigrid
method (AMG) acting as a preconditioner for the GMRES iteration, which is used to
approximately solve the error equation

Be = −Bx̃,

where x̃ is the approximation from the MLE and x = x̃+ e.
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Our multilevel eigensolver relies on the bootstrap framework, a fully adaptive
algebraic multigrid scheme proposed in [3]. Here, the term ‘bootstrap’ is meant to
indicate that this adaptive scheme is a self-sustaining, iteratively improving process.

For solving complex-valued linear systems, this BAMG (bootstrap AMG) frame-
work was efficiently put into action in [5]. In the present paper, we develop a variant
of BAMG specifically tailored to compute x in (1.1). Although we are not (yet) in a
position to give a full rigorous mathematical analysis of the method, we demonstrate
the efficiency of the BAMG approach for a series of Markov chain test problems.

This paper is organized as follows: Section 2 contains a review of basic material
on Markov chain systems as well as a discussion of various other multilevel approaches
for computing steady state vectors of Markov chains. Section 3 contains a general
description of the bootstrap AMG ideas along with full algorithmic descriptions of
the realizations that we use in this paper. This includes the “compatible relaxation”
techniques used to determine coarse-grid variables as a subset of the fine grid variables
and an adaptive procedure to determine interpolation operators based on least squares
fits of certain test vectors. In section 4, this BAMG setup process is specified in all
its details for the case of Markov chain problems considered here. We develop a
multilevel eigensolver setup which aims at obtaining a multigrid hierarchy in which
the eigenvectors corresponding to small eigenvalues are well represented. This is done
adaptively and recursively by using relaxation to expose such eigenvectors, at each
level of the hierarchy and by building least squares based interpolation operators that
well interpolate these approximate eigenvectors. We view this multilevel eigensolver
setup as the main contribution of this paper together with the idea of combining
it with AMG preconditioned GMRES for the error equation to cheaply compute an
additive correction to the approximation to the steady state vector once an efficient
multigrid hierarchy has been established. This additive correction process is also
discussed in section 4. Numerical experiments for larger Markov chain problems are
presented in section 5 and concluding remarks are given in section 6.

2. Review of Basic Material and Previous Multilevel Approaches. The
transition matrix A ∈ Rn×n of a Markov process contains as its entries aij the tran-
sition probabilities from state i to state j, aij ≥ 0 for all i, j. Matrix A is column
stochastic, i.e., A∗1 = 1, with 1 being the vector of all ones and A∗ denoting the
adjoint of A in the euclidean inner product on Rn. It is always possible to eliminate
self-transitions (see, e.g. [30]), so we assume aii = 0 for all i from now on. The steady
state vector x satisfies

Ax = x,

with x 6= 0, 0 ≤ xi, i = 1, . . . , n. By the Perron-Frobenius theorem (cf. [1, p. 27], e.g.)
such a vector x always exists.

A general square matrix A ∈ Rn×n induces a directed graph D(A) = (Ω, E) with
vertices Ω = {1, . . . , n} and directed edges E = {(i, j) ∈ V 2 : i 6= j and aij 6= 0}.
Two vertices i and j in D(A) are said to be strongly connected if there exist directed
paths in D(A) from i to j and from j to i. Since this is an equivalence relation on the
vertices, it induces a partitioning of V into the strong components of D(A). If D(A)
has exactly one strong component, the matrix A is called irreducible; otherwise it is
called reducible which is precisely the case when there exists a permutation matrix P
such that

P∗AP =

(
A11 0
A12 A22

)
,
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where A11 and A22 are square submatrices.

If A is irreducible – which we assume throughout – the Perron-Frobenius Theorem
guarantees that x has all positive values and is unique up to a scalar factor. From
this theorem it also follows that the spectral radius of A satisfies ρ(A) = 1, implying
that B = I − A is a singular M -matrix; recall that 0 ≤ aij ≤ 1. In addition, B is
irreducible, because of the irreducibility of A.

The idea of using multilevel approaches to compute the steady state vector of
an irreducible transition matrix dates back at least to work in [31] from 1961 and
[33] from 1975. Since then, a variety of methods have evolved which are usually
termed as aggregation/disaggregation (a/d) methods, since they build a hierarchy
of increasingly smaller Markov chains by grouping variables. A full review of the
complete literature on a/d methods would be far beyond the scope of this paper.
We therefore just mention the paper [13] which gives a thorough introduction into
the concept of aggregation in Markov chains with a discussion of multiplicative vs.
additive methods and the paper [20] which gives a survey on different a/d methods
together with a unifying approach which comprises many a/d methods published so
far. In terms of convergence analysis we point to [27] where a local convergence result
for a/d methods was given, and then further developed to a global convergence result
in [28].

Practical applications for communication networks are discussed in [23], where
several a/d methods as well as direct and iterative solvers were compared. Many large
Markov chains coming from real applications expose an inherent tensor structure.
This was pointed out in [10] where the a/d framework was adjusted so as to take
advantage of this tensor structure. Numerical results for larger problems, refined
cycling strategies and adaptivity in the choice of aggregating certain domains in the
tensor structure are presented in [11, 12].

Apart from the a/d methods, which certainly represent the prevailing multilevel
scheme for Markov chains, multilevel methods which are closer to the idea of al-
gebraic multigrid methods for solving linear systems have gained some attention in
recent years. One such approach is developed in [35] as a Schur complement based
algebraic multigrid method for singular M-matrices, combined with an accelerating
Krylov subspace method. Another recent development is the extension of the adap-
tive smoothed aggregation multigrid method from [9] to problems arising in Markov
chain modeling [14, 15, 16, 17].

The method we propose in the present paper tries to further develop algebraic
multigrid approaches for Markov chains. It can be loosely categorized as a variation of
classical algebraic multigrid in the following way. We choose the coarse-level variables
as a subset of the fine level variables. In this aspect, our approach is most closely
related to the recent work from [35]; we too employ the AMG-type method as a
preconditioner in GMRES. Our proposed new approach, however, differs from all
previous AMG-type solvers for Markov chains in several ways. Most importantly, we
build interpolation adaptively using a least squares approach, and we use the resulting
multilevel hierarchy in an AMG preconditioner for GMRES for the error equation.
This has the advantage that we do not have to recompute interpolation and thus
the entire coarse-level hierarchy at each step. In addition, in order to achieve high
accuracy for the state vector our approach does not use lumping—a manipulation used
in [14, 35] and other such approaches which aim to maintain the stochastic properties
of the transition matrix and state vectors on all coarse levels of the hierarchy.
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3. Bootstrap AMG. In this section, we provide a general review of the boot-
strap AMG framework [3, 6] together with some heuristic motivation of our choices
for the individual components of the BAMG multigrid algorithm.

The first key ingredient to any (algebraic) multigrid method is its relaxation or
smoothing iteration. For a given system matrix B ∈ Rn×n it is in general a stationary
iterative process, e.g., a splitting based iteration

Muν+1 = Nuν + b, where B = M −N, M non-singular, (3.1)

⇐⇒ uν+1 = uν +M−1(b−Buν), ν = 0, 1, . . .

with its iteration matrix E, usually termed error propagation matrix in the multigrid
context, given by

E = M−1N = I −M−1B.

Here, M is chosen such that after a few iterations the error eν w.r.t. a solution
of Bx = 0 is algebraically smooth, i.e., ‖Beν‖ � ‖eν‖. In this paper, unless stated
otherwise, ‖·‖ denotes the `2-norm. In many situations, an algebraically smooth error
can be achieved using point-wise Gauss-Seidel or (under-relaxed) Jacobi iterations1.
In our Markov chain setting we used ω-Jacobi relaxation with ω = 0.7 on all levels,
i.e., we took M = 1

ω diag(B), resulting in E = I−ω ·(diag(B))−1B and the smoothing
iteration

uν+1 = uν + ω diag(B)−1(b−Buν), ν = 0, 1, . . . .

The other key ingredient of a multigrid method is its coarse space, together with
a corresponding operator on that space and prolongation and restriction operators to
transfer between fine and coarse spaces.

In the bootstrap AMG process, coarse variables are selected as a subset of the fine
variables Ω = {1, . . . , n}. In multigrid terminology, Ω is termed the fine grid, moti-
vated by the fact that often the graph D(A) represents a structure with a geometrical
interpretation. Let |D(A)| denote the undirected graph obtained from D(A). Then,
if |D(A)| is a regular one- or two-dimensional grid, the standard way of obtaining the
coarse variables is full coarsening. This means that in the one-dimensional case we
take every other variable as a coarse variable, where in the two-dimensional case we
take every other variable in every other row.

A more general approach is the compatible relaxation (CR) coarsening scheme
[2]. The CR scheme can be either started from scratch, or, if geometric information
is given and a suitable candidate set of coarse variables is known, such a set can be
tested and improved by CR. Once the coarse variables are selected, the crucial point
is to construct an appropriate interpolation operator for which we will use the least
squares based approach from [5]. Finally, the operator on the coarse grid will be
defined via a Petrov-Galerkin condition.

3.1. Choosing the coarse variables: compatible relaxation. CR is a re-
laxation based coarsening process which can be viewed as a special case of a general
approach for constructing coarse-level representations of given fine-level systems, in-
cluding non-stationary, highly non-linear, and also non-deterministic systems [4]. The

1In case a diagonal entry bii of B happens to be zero for some row(s) i, Kaczmarz [22] or some
other distributive relaxation scheme can be applied to the ith equation.
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basic idea of CR is to use the given relaxation scheme (3.1), restricted to appropri-
ately defined subspaces, to measure the quality of the given coarse space and also to
iteratively improve it if needed. We proceed with a brief overview of CR and its use
in AMG coarsening. A detailed discussion, theory and comparisons between various
measures of the quality of coarse spaces and their relations to compatible relaxation
schemes are presented in [2, 7, 8, 18, 19, 25].

3.1.1. Classical AMG CR-based coarsening. We want to define the set of
coarse-level variables, C, as a subset of the set of fine-level variables, Ω. In this
case, one possible form of CR is given by F-relaxation for the homogeneous system
— relaxation applied only to the set of F variables, with F := Ω \ C. Given the
partitioning of Ω into F and C, we have

u =

(
uf
uc

)
, B =

(
Bff Bfc
Bcf Bcc

)
, and M =

(
Mff Mfc

Mcf Mcc

)
,

assuming the equations are permuted such that the unknowns in F come before those
in C. The F-relaxation of CR is then defined by

uν+1
f = uνf −M−1

ff Bffu
ν
f , ν = 0, 1, . . . . (3.2)

Note that this is a splitting-based iteration for the homogeneous system Bffuf = 0
with error propagation matrix

Ef = I −M−1
ff Bff .

If M is symmetric, the asymptotic convergence rate of CR

ρf = ρ(Ef ),

where ρ denotes the spectral radius, provides a measure of the quality of the coarse
space, that is, a measure of the ability of the set of coarse variables to represent error
not eliminated by the given fine-level relaxation. This measure can be approximated
using F-relaxation for the homogeneous system with a random initial guess u0. Since
limν→∞ ‖Eνf ‖1/ν = ρ(Ef ) for any norm ‖ · ‖, the measure

ρf (u0, ν) =
(
‖uνf‖/‖u0

f‖
)1/ν

(3.3)

estimates ρf . We note that in the actual compatible relaxation process it is only
necessary to work with uf instead of the “full” vector u, but for the sake of simplicity
in notation we refrain from using uf explicitly here and in Algorithm 1.

In choosing C, we use the CR-based coarsening algorithm developed in [8]. This
approach is described in Algorithm 1. In our numerical experiments for Markov
chains, we use weighted Jacobi F-relaxation, i.e., we take Mff = 1

ω diag(Bff ) with
ω = 0.7, set the CR tolerance θ = .8, the number of CR sweeps ν = 8, choose the
components of u0 to be uniformly distributed in the interval [1, 2], take ‖·‖ in (3.3) as
the maximum norm ‖ · ‖∞ and select C0 using the standard maximal independent set
algorithm (see [34]) based on the full undirected graph |D(A)| of the system matrix
B. For further information on CR we refer the reader to [8].
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Algorithm 1 compatible relaxation (Computes C using compatible relaxation)

Input: C0 {C0 = ∅ is allowed}
Output: C
Initialize C = C0
Initialize F = Ω \ C
while ρf (u0, ν) > θ do

Perform ν CR iterations (3.2) with components of u0 randomly generated

N = {i ∈ F :
|uνi |
|uν−1
i | > θ}

C = C ∪maximal independent set of N
F = Ω \ C

end while

3.2. Building bootstrap AMG interpolation. We now outline the least
squares approach for defining interpolation, see also [5]. Interpolation is a linear
operator which maps vectors from the coarser level `+ 1 to vectors on the finer level
`. For notational simplicity, instead of using an index `, we describe the generic sit-
uation where the fine level is the space Rn with fine variables from Ω = {1, . . . , n}
and the set of coarse variables is C ⊂ Ω with |C| = nc. So C might have been previ-
ously determined, for instance, by full coarsening and/or using compatible relaxation.
In the least squares approach, the interpolation operator P , a linear mapping from
Rnc to Rn, is built such that it approximates well a given (specifically chosen) set of
(potentially complex) test vectors T ⊂ Rn. Denoting by R ∈ Rnc×n the canonical
injection operator which maps every vector x ∈ Rn on its components from C we thus
aim at P (Rx) ≈ x for x ∈ T .

We define c, the caliber of interpolation, as the maximum number of coarse-level
variables used to interpolate to a single fine-level variable, or equivalently, the maxi-
mum number of non-zero entries in any row of P . The key ingredient of the BAMG
setup is to choose T such that it collectively represents those error components not
reduced by relaxation. (In Markov context, the test set also contains a representation
of the solution - the steady state vector.) We assume for now that such a set of test
vectors, T = {x(k)}rk=0 ⊂ Rn is known on the fine level. The rows of the prolongation
operator P are then obtained individually. For each variable i ∈ F , we first determine
a set of its neighboring coarse-level variables, N z

i , using the directed graph D(A)

N z
i = {j ∈ C : there is a path of length ≤ z in D(A) from i to j }. (3.4)

Note that for small values of z, the set N z
i can be regarded as a local graph neigh-

borhood of i. Typical values for z are 1 or 2. We then determine an appropriate
set of (coarse level) interpolatory variables Ji ⊆ N z

i with |Ji| ≤ c that fits well our
interpolation needs for point i ∈ F . For this purpose, we define the (weighted) local
least squares functional for the nonzero entries Pi = {pij : j ∈ Ji} of row i of P as

L(Pi;Ji) =

k∑
κ=0

ωk

x(k)
i −

∑
j∈Ji

pijX
(k)
j

2

/ ‖x(k)‖2, (3.5)

where each X(k) = Rx(k) is a coarse-level representative of x(k), and R is the injection
operator. Dividing by ‖x(k)‖2 makes the least squares functional independent of the
scaling of the vectors x(k). The weights ωk should be chosen according to the algebraic
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smoothness of x(k) to bias the least squares functional towards the smoothest vectors.
We do so by taking

ωk =

(
‖x(k)‖
‖Bxk)‖

)2

.

The task is then to find a set Ji of interpolating points for which the minimum
of L (as a function of Pi) is small, and to find the corresponding values pij of the
minimizer that yield the coefficients for the interpolation operator. To obtain such a
set Ji for which the minimum of L is small, we use a greedy strategy. A pseudo-code
of this strategy is given as Algorithm 2.

Algorithm 2 ls interpolation (Computes least squares based interpolation)

Input: U , c
Output: interpolation P
Set X(k) = Rx(k), x(k) ∈ U
for i ∈ F do

Take Ni = N z
i from (3.4) for some small value of z

Set Ji = ∅
repeat

Determine g∗ ∈ Ni s.t. min
Pi

L(Pi;Ji ∪ {g∗}) = min
g∈Ni

min
Pi

L(Pi;Ji ∪ {g})

Set Ni = Ni \ {g∗} and Ji = Ji ∪ {g∗}
until |Ji| ≥ c or Ni = ∅

end for

4. MLE setup and additive correction. Given the general description of
BAMG from the previous section, we now specify in detail its ingredients and its
implementation for Markov chains.

We are looking for a non-trivial solution x to Bx = 0, where B = I −A, A is an
irreducible column stochastic transition matrix so that B is a possibly non-symmetric
and singularM -matrix. Taking an appropriate start vector, we approximate x by com-
puting a multilevel eigensolver (MLE) using BAMG for the matrix B. The purpose
of the BAMG setup is actually twofold: In addition to improving the approximation
x̃ to the solution it also produces a multigrid hierarchy defining an AMG method for
B.

We use this AMG method as a preconditioner for the GMRES method to approx-
imately solve the error equation

Be = −Bx̃,

a singular, consistent linear system. With ẽ the approximate solution thus obtained,
the new approximation to the steady state vector is x̃+ ẽ.

The resulting overall method will then alternate between relatively expensive
MLE setup steps and relatively cheap additive correction steps using AMG precon-
ditioned GMRES. Actually, it will turn out that in many cases one obtains the state
vector to sufficient accuracy if one computes the MLE setup just once and then runs
a fairly small, ten say, number of AMG preconditioned GMRES iterations in the
additive correction.
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4.1. BAMG Setup Using a Multilevel Eigensolver. Algorithm 3 describes
the MLE (multilevel eigensolver) setup for BAMG for Markov chains. It combines
the multilevel eigensolver approach with the the least squares approach for obtaining
prolongation operators in BAMG: The multilevel eigensolver yields approximations
to eigenvectors corresponding to small eigenvalues of B which are used as test vectors
in the least squares interpolation. The parameter µ in Algorithm 3 determines the
type of the setup cycle: For µ = 1 we have a V -cycle, µ = 2 yields a W -cycle.

Algorithm 3 takes as input the parameters B`, T`,U` and V`. Then, to perform
the MLE setup the approach will – possibly repeatedly – be called from the finest level
(` = 0), where B0 = B, T0 = I. Here, the set of test vectors U0 = {uκ0}, κ = 1, . . . , ku is
chosen randomly for the first call; it is just re-used in any further call to the algorithm
at level 0. The set V0 represents approximations to the smallest eigenvectors obtained
so far. It is empty for the first call at level 0, but for any further call at this level it is
taken as the output from the previous call. The number kv of approximate eigenpairs

v
(κ)
` in V` is constant for all levels. It is determined by the number of exact eigenpairs

that we compute at the coarsest level (` = L).

Algorithm 3 BAMG mle (One cycle of the MLE setup for BAMG)

Input: B` (B0 = B), T` (T0 = I), U` = {u(κ)
` }, V` = {v(κ)

` }, Λ` = {λ(κ)
` };

Output: V` = {v(κ)
` }, Λ` = {λ(κ)

` }, approximations to the lowest eigenvectors and
eigenvalues;
if ` = L then

Compute VL = {v(κ)
L | BLv(κ)

L = λ
(κ)
L TLv

(κ)
L }

{the kv eigenpairs of pencil (BL, TL) with smallest modulus of λ
(κ)
L }

else
Relax B`u

(κ)
` = 0 for all u

(κ)
` ∈ U` {s1 iterative steps of (4.1)}

Relax (B` − λ(κ)
` T`)v

(κ)
` = 0 for all v

(κ)
` ∈ V` {s1 iterative steps of (4.1)}

for m = 1, . . . , µ do
P` = ls interpolation(U` ∪ V`, c)
Compute averaging Q` with sparsity(Q∗` ) = sparsity(P`)
B`+1 = Q`B`P`, T`+1 = Q`T`P`
U`+1 = {R`u(κ)

` | u(κ)
` ∈ U`}

V`+1 = {R`v(κ)
` | v(κ)

` ∈ V`}
V`+1 = BAMG mle(B`+1, T`+1,U`+1,V`+1)

V` = {P`v(κ)
`+1 | v

(κ)
`+1 ∈ V`+1)}

Relax (B` − λ(κ)
` T`)v

(κ)
` = 0 for all v

(κ)
` ∈ V` {s2 iterative steps of (4.1)}

Update λ
(κ)
` : (4.2)

end for
end if

To discuss the various features of Algorithm 3, let us focus on the case µ = 1, i.e.,
we have just one recursive call. The statements before the recursive call then represent
the fine-coarse process and those after the recursive call represent the coarse-to-fine
process. In the fine-to-coarse process, at each level we update the test set U` by
performing s steps of ω-Jacobi relaxation on the homogeneous system, i.e., for each
u(κ) = u(κ),0 from U` we iterate

u(κ),ν+1 = u(κ),ν + ω diag(B`)
−1B`u

(κ),ν , ν = 0, . . . , s1 − 1. (4.1)
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with ω = 0.7 and we update u(κ) := u(κ),s1 . The rationale behind this relaxation
is that it should damp those eigenvector components in u(κ) which belong to large
eigenvalues, i.e., we expect the set U` of the updated vectors to well approximate
the space belonging to the small eigenvalues of B`. Note that individually none of

these vectors will usually represent a single eigenvector. Relaxation for v
(κ)
` , although

technically the same follows a slightly different rationale. As explained in detail later
on, these vectors already represent the small eigenvectors of B, and are expected
to further improve with additional relaxation. After relaxation, U` and V` together
should thus well represent all eigenvectors corresponding to small eigenvalues.

With this set of updated test vectors U` ∪ V`, we then compute the set of coarse
variables and the interpolation operator P` using the least squares approach.

Note that we may encounter (complex conjugate) pairs of complex eigenvalues
and eigenvectors on the coarsest level L, so that the sets V` will contain complex
vectors. These are used as such in all steps of the algorithm except when we perform
the least squares interpolation where instead of a complex conjugate pair of vectors
in V` we actually use their real and imaginary parts. In doing so we guarantee that
all occurring operators P` and B` are real matrices.

The system matrix on level ` + 1 is obtained as a Petrov-Galerkin projection,
B`+1 = Q`B`P`, with the “restriction” Q` given by the averaging operator associated
with P`. The averaging operator leaves the values at coarse variables unchanged,
whereas for all other variables i it yields the value given by the arithmetic mean of
the values at all coarse variables from Ji. So Q` has exactly the same non-zero pattern
as PT` , and within each column the non-zero values are constant and add up to one,
i.e., 1TQ` = 1T . It follows that 1TB` = 0 for all levels `. We also determine the set
U`+1 of test vectors for level ` + 1 by standard restriction (injection), i.e., we map
every vector from U` onto its coarse components.

On the coarsest level, ` = L, we determine the kν smallest (in modulus) eigen-
values and corresponding eigenvectors of the matrix pencil (BL, TL) explicitly. Note
that the smallest eigenvalue, λ1 is 0, since BL is singular. In the coarse-to-fine pro-
cess, we now aim at obtaining accurate approximations to the smallest eigenpairs of
the pencils (B`, T`). A tentative set of eigenvectors is computed by prolongating the
set V`+1 to level `. This candidate set is then improved using relaxation (we again
take ω-Jacobi relaxation with ω = 0.7) motivated by the same rationale as for the
fine-coarse process, i.e., we expect to reduce contributions of eigenvectors belonging
to the larger eigenvalues. Note that an exact eigenvalue equation B`x − λ`T`x = 0
can be projected onto level `+ 1 in the Petrov-Galerkin sense by requiring x to be in
the range of P`, i.e., x = P`xc for some xc from the coarser level, and by requiring
the residual B`P`xc − λ`+1T`P`xc to be orthogonal to the range of the adjoint of Q`.
This results in the projected equation B`+1xc − λ`+1T`+1xc = 0 which is precisely
the eigenvalue problem considered on level `+ 1. So the prolongations of the vectors
from V`+1 can be regarded as approximations to eigenvectors at level `.

Once these approximations have been further improved via relaxation, the corre-
sponding eigenvalues are also updated during the coarse-to-fine process: Considering

v
(κ)
` ∈ V` a reasonable approximation to an eigenvector on level `, i.e,

B`v
(κ)
` ≈ λ(κ)

` T`v
(κ)
`
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Compute V , s.t., Bv = λTv, v ∈ V

Relax on Bu = 0, u ∈ U and (B − λT )v = 0, v ∈ V

Relax on Bu = 0, u ∈ U

Relax on (B − λT )v = 0, v ∈ V

Fig. 4.1: Bootstrap AMG setup W-cycle.

for an `th level eigenvalue λ
(κ)
` , a good eigenvalue approximation can be obtained by

λ̂(κ) =
〈B`v(κ)

` , v〉
〈T`v(κ)

` , v〉
(4.2)

for any vector v. We choose v = v
(κ)
` and thus calculate an approximation to an

eigenvalue using what would be a Rayleigh quotient for Hermitian matrices. The
approximate eigenpair (v(1), λ̂(1)) with the smallest eigenvalue λ̂(1) = 0 corresponds

to the zero eigenpair of the pencil (B`, T`) so that v
(1)
` represents the state vector at

level `. In particular, v
(1)
0 approximates the steady state vector of B.

We remark that the fine-coarse process of Algorithm 3 is similar to the “exact
interpolation scheme” (see, e.g., [26]).

Switching from µ = 1 to µ = 2 (or even more) allows the MLE setup to improve
the approximate eigenvectors from V` at all levels ` ≥ 1 and thus also to readjust
the prolongations P` at all intermediate levels ` before one setup cycle is completed.
Calling the algorithm several times from the finest level (` = 0) allows the setup to use
and also improve the eigenvector approximations V0 on the finest level and to update
the multigrid hierarchy accordingly. To reflect the cycling strategy in our notation,
let a V m(s1, s2) and Wm(s1, s2) setup denote one where we call the algorithm k times
from the finest level with µ = 1 and µ = 2, respectively, and where we use s1 relaxation
sweeps in the fine-coarse and s2 in the coarse-to-fine process. Figure 4.1 visualizes a
W -cycle. Other cycling strategies are possible, depending on whether at places which
are depicted by a square in the figure one decides to recompute the prolongation or
to advance to the next finer grid in the multigrid hierarchy.

4.2. AMG preconditioning of the error equation. Each MLE setup cycle
is quite costly due to the construction of the interpolation operators. Although we are
only interested in computing the steady state vector, the multigrid hierarchy we built
up is able to resolve a larger subspace. This leads to the idea of exploiting this richness
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of the given hierarchy as a preconditioner in methods to solve an additive correction
equation for the steady state vectors. This correction phase will be explained now.

With x̃ being the current approximation to the steady state vector, we are looking
for the error e = x − x̃ to the exact s.s.v. x. Since Bx = 0, the error is a solution of
the consistent singular system

Be = r with r = −Bx̃. (4.3)

In principle, we can use the GMRES method [29] to solve this equation iteratively.
Each iterative step of GMRES requires one multiplication with the matrix B. In
step k the iterate ek is obtained as the one for which ‖r −Bêk‖ is minimal for all êk

from the Krylov subspace span{r,Br, . . . , Bk−1r}. Results from [21, 36] show that
for a consistent singular system the GMRES method converges to a solution if the
nullspace and range of B have only the trivial intersection, N (B)∩R(B) = 0. This is
true for B = I−A with A the transition matrix of an irreducible Markov chain. Then
N (B) = 〈x〉 and R(B) = 〈(1, . . . , 1)T 〉⊥, and since x is positive it cannot belong to
〈(1, . . . , 1)T 〉⊥.

Convergence of the GMRES iteration is slow if B has several or many eigenvalues
clustered around 0. A remedy to this situation is to use a preconditioner P ∈ Cn×n
to solve the preconditioned system

(PB)e = Pr

instead of (4.3). The preconditioner should be chosen such that the spectrum of PB
is well separated from 0 and, ideally, clustered around 1. The geometric interpretation
given in [21] shows that this is also desirable in the (consistent) singular case, where,
of course, one eigenvalue will stay at 0.

We obtain P implicitly by using the AMG method based on the multigrid hier-
archy built up during the MLE setup and perform one V (s1, s2)-cycle for solving the
system Be = r. To be specific, let us define the error propagator E0 of the AMG
V (p1, p2)-cycle for the matrix B recursively by

E` = Ss2` · (I − P`E`+1Q`B`) · Ss1` , ` = 0, . . . , L− 1, (4.4)

where E`+1 denotes the error propagation operator on the next coarser level and
S` = (I −M−1

` B`) represents the error propagation operator for one smoothing step

at level `. This recursive definition terminates at the coarsest level with EL = B†L,
the Moore-Penrose inverse of the matrix on the coarsest level, since we compute the
minimal norm solution of the respective system at that level. Practically this is done
using the singular value decomposition of BL.

Recasting E0 in the form

E0 = I − PB,

one step of the V (s1, s2) cycle for Be = r is given as

e1 = (I − PB)e0 + Pr,

so starting with e0 = 0 corresponds to applying one multiplication with the (implicitly
defined) preconditioner P .

In the singular case the error propagation matrix E0 has one eigenvalue equal to
1. An efficient AMG method is characterized by the other eigenvalues being close
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Fig. 4.2: Spectra of original (left) and AMG preconditioned (right) matrix for the
tandem queueing network problem with N = 332.

to 0. Then, the non-zero eigenvalues of PB are clustered around 1, i.e. P is a good
preconditioner for B.

Figure 4.2 illustrates the effect of AMG preconditioning with one V (2, 2)-cycle.
It actually shows spectra for the matrices A = I − B and I − PB, so the ‘critical’
eigenvalues are those around 1. The left part gives the spectrum of the transition
matrix A arising from the tandem queueing network problem with N = 332, see
section 5. The right part shows the spectrum of the AMG preconditioned matrix
I−PB. We see that the AMG preconditioning drastically improves the separation of
the eigenvalue 1 from the rest of the spectrum which, upon preconditioning, is nicely
clustered around 0.

In order for GMRES to converge for the consistent singular preconditioned system
(PB)e = −PBx̃ we now need N (PB) ∩ R(PB) = 0. Unfortunately, this seems very
difficult to prove in our general context. We can expect P to be non-singular, so that
as in the non-preconditioned case N (PB) is spanned by the steady state vector. But
the vector of all ones cannot be guaranteed to be a left eigenvector of P , so that the
characterization of R(PB) does not carry over from the non-preconditioned case.

In our numerical experiments the AMG preconditioned GMRES iteration often
converged very rapidly. In these cases there was thus no need to alternate between
MLE setups and GMRES iterations; one MLE setup was enough. In some rare cases
where the GMRES convergence was slower, we applied our general approach alter-
nating between MLE setups and AMG preconditioned GMRES correction steps.

5. Numerical Results. In this section, we provide results obtained using the
bootstrap MLE/AMG method when applied to a series of Markov chains. Our nu-
merical experiments include results for a variety of Markov chains related to planar
graphs. We consider various realizations of our proposed approach and show that with
minor modifications it provides an effective algorithm for a wide range of Markov chain
models.

We first discuss some common parameters for our numerical tests. In the MLE
setup we always use ω-Jacobi as smoother with ω = 0.7. Unless stated otherwise,
we use ku = kv = 6 test vectors and perform s1 = s2 = 3 relaxation steps to
compute them in the MLE algorithm, Algorithm 3. The entries of the test vectors
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are always chosen randomly from the interval [1, 2]. The rationale behind this choice
is that positive entries are sensible because we want to approximate a steady state
vector and that we want to avoid that the ratios of the entries vary too much as
they would if we took them randomly from [0, 1]. The choice of the caliber c of
interpolation is problem dependent; it varies between 1 and 4. The coarsening is done
by full coarsening if the underlying graph has a 1d or 2d grid structure, otherwise it
is obtained with the CR coarsening from Algorithm 1 and its parameters chosen as
explained there. The first rows of all our tables always show results obtained when
the MLE is applied iteratively without the additive correction step. In these cases,
each single MLE iteration is performed as a V -cycle. Here, as everywhere else, the
iteration is stopped as soon as the approximation x̃ to the steady state vector satisfies

‖Bx̃‖/‖x̃‖ ≤ 10−8. (5.1)

For most of the examples we also show results where we perform just one MLE setup
– which can be a V , a V 2 or a W -cycle – followed by an additive correction step
using AMG preconditioned GMRES. In these cases we report the number of GMRES
iterations required to satisfy the stopping criterion. The AMG preconditioner used
was always a V (2, 2)-cycle. So, for example, if in a row labeled “W + AMG-GMRES”
we report k iterations, this means that we performed one W -cycle MLE setup yield-
ing an approximate s.s.v. x̃. We then started (V (2, 2)-cycle AMG) preconditioned
GMRES on the error equation Be = −Bx̃, and after the k-th GMRES iteration the
computed approximation to the error, ek, for the first time satisfied (5.1) for the
improved approximation x̃← x̃+ ek.

Only for the last two examples will it be necessary to alternate between MLE and
AMG-preconditioned GMRES phases.

For all MLE setups we also report the grid and operator complexities. The grid
complexity is the sum of the cardinality of the variable sets at all levels divided by
the cardinality of the level 0 variable set. A small grid complexity indicates that
the number of variables shrinks fast from one level to the next. For full coarsening
of a 1d grid, the grid complexity is about 2; for a 2d grid it is about 1.33. The
operator complexity is the sum of all nonzero entries of all operators B`, divided by
the number of non-zero entries of B = B0. The operator complexity is a measure of the
relative cost of one V -cycle. Usually, operator complexities below 2 are considered
acceptable, whereas the cost for a V -cycle becomes increasingly prohibitive if the
operator complexity grows beyond 2.

We begin our experiments with a very simple model taken from [14], namely the
one-dimensional network where the transition probability of the inner nodes is given
by 1/2 and the probability of boundary nodes is 1, see Figure 5.1. So the entries of
A = (aij) for a one-dimensional chain of length N are given as

aij =

{
1 for (i, j) = (1, 2) and (i, j) = (N,N − 1),
1
2 for 1 < i < N and j ∈ {i− 1, i+ 1}.

We mention here that although our initial tests are for 1d problems for which
direct methods can also be used, they provide a basis for gauging the performance
of our approach in that most of the existing literature on AMG methods applied to
Markov chain models considers these same test problems. Further, it is common when
developing iterative solvers to first test a given approach on simplified 1d problems
as this allows for a comprehensive analysis in terms of the asymptotic performance of
the solver.
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Fig. 5.1: Uniform network model on a one-dimensional grid.

N 65 129 257 513
MLE 5 5 5 5

V + AMG-GMRES 3 3 3 4
V 2 + AMG-GMRES 2 2 2 3
W + AMG-GMRES 2 2 2 3

Table 5.1: Results for the one-dimensional uniform chain of length N .

For the numerical tests we use 1d full coarsening at all levels, and we stop coars-
ening when the coarsest system size is 33. The caliber c for interpolation was set to
c = 2, and we took z = 1 in Algorithm 2, meaning that we interpolate from direct
neighbors only. The resulting operator and grid complexities are both bounded by
2 for all problem sizes. The results presented in Table 5.1 show that the number of
iterations does (almost) not depend on the problem size for both methods considered,
i.e., when just iterating the MLE and when using the hierarchy obtained from one
single MLE to continue with AMG preconditioned GMRES on the error equation.
Thus both methods exhibit the optimal scaling that one usually aims for in multigrid
methods. Note that the cost of the methods using GMRES is substantially smaller,
since we build up the multigrid hierarchy only once at the beginning, whereas we
construct it five times for the “pure” MLE method.

In the next test, which is motivated by another example from [14], we change the
central link within this example to ε = 10−4 in both directions, see Figure 5.2. The
coarse grids are chosen such that this weak link is located between two coarse grid
points on all levels; this is also reflected in the system sizes. The other parameters
are the same as in the previous example, and the grid and operator complexities are
again bounded by 2 for all sizes. The results are provided in Table 5.2. Again, we
observe that our approach yields an optimal method.

We now consider a uniform two-dimensional network (see [14]), which can be
viewed as the Markov chain analogue of the Laplace operator. It is defined on an
equidistant grid Ω of size N × N . We denote this grid in graph notation as GΩ =
(VΩ, EΩ). The entries of A are then given as

aij =

{ 1
dout(j)

, if (i, j) ∈ EΩ

0, otherwise,

where dout(j) is the number of outgoing edges of j ∈ Ω. Figure 5.3 illustrates the
two-dimensional uniform network.

In these tests, we use full-coarsening in 2d, i.e., we choose C to be every other grid
point in both spatial dimensions, coarsen until the size of the coarsest-level system
is 17 × 17, and define interpolation from immediate neighbors, i.e., we set z = 1
and c = 4 when computing interpolation in Algorithm 2. The grid and operator
complexities are always bounded by 1.4 and 1.8, respectively. The results of our
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Fig. 5.2: Weak link model on a one-dimensional grid.

N 66 130 258 514
MLE 5 5 5 5

V + AMG-GMRES 3 3 3 4
V 2 + AMG-GMRES 2 2 3 3
W + AMG-GMRES 2 2 3 3

Table 5.2: Multilevel results for the one-dimensional weak-link chain of length N .

experiments are given in Table 5.3. They show that the MLE approach and the
AMG-preconditioned GMRES approach with the more expensive setup (V 2 and W
cycle) are again effective and scalable for this problem. For the standard V -cycle the
computed AMG preconditioner is less efficient, and particularly so for the 2572 grid.
We interpret this loss in efficiency as coming from a poor choice of the initial random
test vectors used by the MLE setup. The effect of this randomness is attenuated if
we iterate in Algorithm 3, as we do with V 2 or W cycles.

The next Markov chain model to be considered is taken from [14, 15, 17]. It
describes a state space representation of a finite capacity tandem queueing network
with capacity N for each of the two queues with states (i, j), 1 ≤ i, j ≤ N . There is
a transition with probability λ from state (i, j) to state (i, j + 1), a transition from
(i, j + 1) to (i+ 1, j) with probability µ1 and from (i+ 1, j) to (i, j) with probability
µ2. The problem formulation is illustrated in Figure 5.4. We use the transition
probabilities λ = 11/31 and µ1 = µ2 = 10/31 so that we end up with the same
system matrix as the one considered in [14, 15, 17]. Note that this is a truncation of
the infinite model different from the one considered in [32], resulting in a matrix that
cannot be triangularized. The spectrum of the resulting transition matrix is complex;
Figure 4.2 contains a plot for N = 33.

For the MLE setup we took the same parameters as for the uniform 2d grid, and
we again used full coarsening down to a system of size 17× 17. The grid complexity
is bounded by 1.4, and the operator complexity by 1.6 for all sizes. The numeri-
cal results are given in Table 5.4, Again, we see that the MLE method converges
rapidly to the steady state vector and also yields a very efficient preconditioner for
our AMG-GMRES method. The number of iterations does not depend on the size of
the problem for “pure” MLE, whereas for the AMG-preconditioned GMRES method
we see some increase in the number of iterations for the largest grid size. For this
example we also illustrate how the MLE method approximates the eigenvectors of
B corresponding to small (in modulus) non-zero eigenvalues. Figure 5.5 shows the
eigenvectors corresponding to these eigenvalues. We plot the modulus of each entry
with the vectors arranged as a 2d mesh corresponding to the underlying 2d structure
of the Markov chain. Table 5.5 reports the accuracy of these approximate eigenvectors
upon convergence of the state vector.

To demonstrate the robustness of our approach we now turn to three more dif-
ficult test problems – a polling system model and two unstructured planar graph
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Fig. 5.3: Uniform network model on a two-dimensional grid.

N 332 652 1292 2572 5132

MLE 6 6 6 6 6
V + AMG-GMRES 6 6 6 11 7
V 2 + AMG-GMRES 4 4 4 4 4
W + AMG-GMRES 4 4 4 4 4

Table 5.3: Results for the two-dimensional uniform network model on an N ×N grid.
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Fig. 5.4: Tandem queueing network problem.

N 332 652 1292 2572 5132

MLE 6 6 6 6 6
V + AMG-GMRES 6 6 9 10 11
V 2 + AMG-GMRES 5 5 5 5 9
W + AMG-GMRES 5 5 5 5 10

Table 5.4: Results for the tandem queueing network model on an N ×N grid.
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Fig. 5.5: Approximations to the eigenvectors corresponding to the smallest 6 eigen-
values of the tandem queueing network problem on a 129× 129 grid.

i 1 2 3 4 5 6
‖vLi − vi‖2 1.02E−8 9.04E−3 2.68E−2 2.84E−2 1.42E−1 3.77E−1

Table 5.5: Accuracy of the eigenvectors corresponding to the smallest 6 eigenvalues
of the tandem queueing network problem on a 129× 129 grid.

problems. For these problems, the coarsening of the variables is difficult to determine
in a geometric sense and thus we apply the CR-based coarsening scheme discussed
earlier (see Algorithm 1) with θ = .7 to select the coarse variables. We stop the CR
coarsening when the coarse level system size is of the order of 100.

To begin, we consider the polling system model studied in [10, 11, 12]. In this
model, two servers serve customers from K finite capacity queues, which are visited
by the servers in a cyclic order. Each queue is assigned a capacity of 3, and customers
arrive according to a Poisson process with rate 1.5 and are distributed with queue
specific probabilities among the queues. If a server visits a nonempty queue, it serves
one customer and then moves to the next queue. A server arriving at an empty queue
immediately travels to the next queue. Service and traveling times are exponentially
distributed with rates 1 and 10, respectively; cf. [12].

The polling system can be modeled by a hierarchical Markovian model (HMM),
in terms of low-level models (LLMs) which are themselves components of a high-level
model (HLM). The states of the HLM are referred to as macrostates, and those of the
associated generator matrix, containing information on the interactions of the LLMs,
are referred to as microstates; the macrostates define a partition of the microstates.
We note that the HLM is characterized by a single matrix, in terms of Kronecker
products of multiple local matrices characterizing the interaction of a given LLM
with others (see [12] for additional details). This hierarchical structure can in turn
be exploited to develop efficient multilevel methods for these systems, as in [12].

Here, we consider applying our bootstrap approach to this polling system model
(Example 2 considered in [12]) with K = 5 queues, which yields a graph with 42,880
vertices. The Kronecker-based description of the polling system example gives rise to
a sparse system matrix containing dense subblocks, i.e., nearly complete subgraphs.
As such, a modification of our CR algorithm 1 is needed because it would otherwise
produce sets of coarse variables which are too large, resulting in unacceptable grid
complexities. The caliber of interpolation is chosen to be c = 1. This turned out to
be the best choice for these problems. It produces a sparser interpolation operator
and, hence, helps to control the growth in operator complexities that would result
from caliber-two or more interpolation. All other parameters of the algorithm are
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(ku = kv , s1 = s2) (1,1) (1,3) (1,4) (3,1) (2,2)

MLE > 50 35 41 > 50 35

V + AMG-GMRES 45∗ 21 17 38∗ 22
V 2 + AMG-GMRES 38∗ 16 13 36∗ 22
W + AMG-GMRES 36∗ 16 13 30∗ 19

(V + 5 AMG-GMRES) – alt 6 4 4 7 4

Table 5.6: Results for the polling system model with K = 5 finite capacity queues
and N = 42, 880 vertices. A ∗ marks runs, where another setup cycle was issued after
30 iterations of preconditioned GMRES.

set as before. The grid and operator complexities are then bounded by 1.7 and 2.5,
respectively.

For this example, we varied the number of test vectors and the number of relax-
ations in the MLE. We also tested a new alternating strategy where we repeat cycles
consisting of one MLE setup followed by five steps of AMG-preconditioned GMRES.
The results are reported in Table 5.6. In the last row, which gives the results for
the alternating strategy, the number reported refers to the number of cycles. So 4
iterations means 4 MLE setups and a total of 4 × 5 = 20 preconditioned GMRES
iterations.

We see that for the “pure” MLE approach (first row), applying more relaxation
to fewer test vectors dramatically improves the performance of the overall method,
whereas applying fewer relaxations to more test vectors is not as effective. This ob-
served behavior is perhaps expected since the MLE hierarchy needs only to approxi-
mate the single state vector well, not the entire lower end of the spectrum as typically
required of AMG correction schemes. Performing the MLE only once and then using
the AMG preconditioned GMRES on the error equation improves the performance
of the method significantly. Computing the steady state vector up to the prescribed
tolerance requires only a single MLE V (4, 4)-cycle followed by 17 iterations of AMG
preconditioned GMRES. Both the V 2- and W - setup cycles further reduce the number
of GMRES steps needed to reach the stopping tolerance. Here, the additional work
invested on coarse levels in the MLE V 2- and W -cycles produces a more accurate
initial guess and a better multigrid hierarchy for the AMG preconditioned GMRES
iteration. All these approaches show a similar behavior as “pure” MLE when the
number of test vectors and the relaxation steps are varied. The alternating strategy
works well for this problem and appears less sensitive to the choices of k and s.

We note that the multilevel approach developed for this system in [12], which
makes explicit use of the HMM structure in its coarsening process, requires 92 iter-
ations, each of which is similar to what we would call a V (1, 1) MLE setup in the
context of this paper. So, as far as the number of iterations is concerned, and with the
right choice of parameters, our approach gives methods which require quite less MLE
setups than in [12]. However, as opposed to [12], we do not exploit the Kronecker
structure in the matrix vector multiplications, so we expect the timings of our method
to be worse.

Our remaining numerical experiments are for random walks on two types of un-
structured planar graphs arising from Delaunay triangulations induced byN randomly
chosen vertices in [0, 1]× [0, 1], see [17]. In the first case, the transition probabilities
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(a) Random planar graph with N = 256 (b) Random planar graph with N = 1024

Fig. 5.6: Network resulting from Delaunay-triangulations of N random vertices in the
unit square.

in the network describing the random walk are defined as the inverse values of the
number of outgoing edges of each vertex, similar to the uniform network example. In
the second case, unstructured planar graphs with similarly weighted but (partly) uni-
directional edges are considered. Our construction follows the procedure suggested
in [17], i.e., we chose an unmarked random triangle, mark it as “deletable” and its
neighbors as “undeletable”. This process is repeated until all triangles are marked and
in each triangle marked as “deletable” a random edge is made uni-directional while
the two others remain bi-directional. This yields a non-symmetric and irreducible
transition matrix with complex spectrum [17]. In Figure 5.6, we show two examples
of the graphs of such networks, one with N = 256 and one with N = 1024 vertices.

In the MLE setup we take kv = ku = 6, the number of relaxations in the MLE
setup is s1 = s2 = 5 and the caliber of the interpolation is c = 1. The coarsening
is done via CR as given in Algorithm 1. Figure 5.7 depicts the multilevel coarsening
obtained using the CR-based approach. Here, the larger points are those that appear
on successively coarser grids. For all tests the grid and operator complexities were
both bounded by 1.4.

In Table 5.7, we report the number of iterations of the alternating scheme needed
to achieve our chosen stopping criteria for the two types of unstructured planar graph
models for different problem sizes. As before, in the alternating methods we perform
five iterations of AMG preconditioned GMRES for the additive correction process in
between two MLE setup steps. We report the number of a complete cycle, i.e., setup
plus up to 5 GMRES-iterations, here.

We note that for these problems the maximum number of outgoing edges from a
given grid point increases with increasing problem sizes, making it more difficult to
coarsen the problem algebraically via compatible relaxation. From this aspect it is
not clear whether we can safely interpret the systems for different sizes as instances of
the same problem. So aiming at iteration numbers to be independent of the system
size might be overambitious.

Nonetheless, our results show that our algebraic coarsening scheme is effective
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(a) Random planar graph, N = 256 (b) Random planar graph, N = 1024

Fig. 5.7: Coarsening of networks from Figure 5.6 using compatible relaxation.

N 1024 4096 16384 65536
# levels 3 (3) 5 (5) 7 (6) 8 (8)

MLE 26 (24) > 50 (> 50) > 50 (> 50) > 50 (> 50)

V + AMG-GMRES 10 (11) 13 (16) 19 (21) 21 (43∗)
V 2 + AMG-GMRES 9 (9) 12 (14) 19 (20) 27 (29)
W + AMG-GMRES 9 (9) 13 (15) 22 (21) 29 (30∗)

(V + 5 AMG-GMRES) – alt 2 (2) 3 (3) 3 (5) 4 (6)
(V 2 + 5 AMG-GMRES) – alt 2 (2) 3 (3) 3 (3) 5 (5)
(W + 5 AMG-GMRES) – alt 2 (2) 3 (3) 3 (4) 5 (6)

Table 5.7: Results for the non-symmetric (symmetric) unstructured planar graph
models. A ∗ marks runs, where another setup cycle was issued after 30 iterations of
preconditioned GMRES.

for these systems and produces efficient solvers. For all the variants we tested, the
number of iterations increases by a factor of 2 to 3 only when we increase the problem
size by a factor of 64. V cycle MLE setups seem to be sufficient for the bidirectional
case, whereas in the unidirectional case the V 2 setups performed best. Our results
demonstrate the efficiency of the methods based on MLE setups with additive correc-
tion via preconditioned GMRES in that plain (unsmoothed) aggregation-based linear
solvers, such as our approach with caliber-one interpolation, with W -cycles are known
not to scale for Poisson’s equation.

We finish this section with a qualitative comparison of our results with the alge-
braic multilevel method from [17, 15, 14]. We first note that the idea of re-using the
expensive setup to construct a preconditioner for a cheap Krylov subspace extraction
process is new to our approach. In [17], for the structured 2d problems, the num-
ber of iterations increases noticeably with the problem size, even for what is called
“optimized RAMA+ cycles”. The situation is similar for the unstructured planar
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graph problems, although for these problems the results of our bootstrap approach
show a mild dependence on the problem size. The approaches described in [15, 14]
have a similar scaling behavior than our method, but they tend to result in either
higher iteration counts or higher operator complexities. Wall clock time comparisons
between the various approaches are beyond the scope of this paper, since those will
highly depend on issues of implementation and the hardware used.

We note that there are notoriously difficult Markov chain problems where the
sizes of the entries of the steady state vector vary from order 1 to well below machine
accuracy. One example is the birth-death chain as described in [14]. Without giving
details, we just mention that the V + AMG-GMRES variant of our method worked
well up to large problem sizes in the sense that we reached the stopping criterion
(5.1) after a few iterations, independently of the problem size. For larger problem
sizes, however, the approximation to the steady state vector contained (tiny) negative
entries which is, of course, undesirable. In this sense our approach fails for problems
of this kind as do many other general purpose Markov chain methods.

6. Conclusions. The proposed bootstrap algebraic multilevel method produces
an effective multilevel eigensolver for the Markov chain test problems considered. We
have proposed and implemented two new ideas: First, the construction and use of a
bootstrap multilevel eigensolver which improves a given approximation to the steady
state vector and establishes a multigrid hierarchy. Second, the use of this multigrid
hierarchy in an AMG preconditioner for the GMRES iteration on the error equation,
thus producing an additive correction to such vector. Both ideas, separately or com-
bined can be incorporated into any given multilevel method used for solving Markov
chain problems or other problems targeting smooth eigenvectors. The accurate repre-
sentation of the near-kernel of the fine-level operator B on coarser levels that results
from our bootstrap AMG setup yields a very effective preconditioner to the GMRES
method. A benefit of the proposed method over other existing multilevel methods
for Markov chains is that we do not require any special processing of the coarse-level
systems to ensure that stochastic properties of the fine-level system are maintained
there. Note that in some situations maintaining stochasticity is perhaps preferable,
for example to avoid negative entries in the computed steady state vector.

Our numerical examples show that our approach is efficient for a variety of test
problems, often yielding optimal methods. At present, however, sometimes some
parameters of the approach have to be specifically tuned.

We mention that the developed approach is not restricted to Markov chain prob-
lems. The MLE can be applied to other eigenvalue problems [24] and the alternating
approach which uses both the MLE and the AMG preconditioned GMRES iterations
can be used as a general non-linear AMG solver for linear systems of equations. In
such a scheme, the basic idea is to solve the system for the given right hand side and
the homogeneous system simultaneously and then use the error resulting from solving
the latter to redefine the solver for the former whenever its performance degrades.
Such a scheme is actually ideal for Markov chains in that the aim is to solve the
homogenous system and hence computing the evolving error is actually equivalent to
computing the desired solution.
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