
ON OCTOPUS ARM AND MULTIGRID
TECHNIQUES FOR NONLINEAR
CONSTRAINED MINIMIZATION

DORIT RON∗, TAMAR FLASH† , AND ACHI BRANDT‡

Abstract. Our objective is to calculate a curve (configuration) in two dimensions that solves
an optimization problem of minimizing a generalized squared curvature functional subject to global
constrained. We allow the given rigidity coefficient to vary along the curve. The global constraints
include the length of the curve and its initial and ending positions and directions. We use a multigrid
approach to efficiently solve the resulting discretized system of non-linear equations. This approach is
in particular convenient for introducing the desired global constraints and solving the entire problem
in linear time complexity. Since our work is motivated by the idea of building a soft octopus-
like robotic arm, we then produce a dynamic sequence of such configurations depending on time
to resemble a complete movement of the octopus arm, for instance in a reaching movement. The
obtained sequence involves bend propagation as well as elongation of the arm as is typical to the
octopus. We suggest the use of our results as input to the robotic arm in order to enable its basic
movements. The numerical approach itself can be generalized to much more complex problems in
higher dimensions.

Key words. constrained optimization, multigrid, minimal squared curvature, octopus arm
extension, soft robotic arm

1. Introduction. For many years scientists and engineers have investigated con-
tinuum robots [21]. Compared with traditional rigid-body structures, continuum
robots with their large number of degrees of freedom are capable of flexible and highly
dexterous movements. An example in nature of a continuum structure are octopus
arms [23]. The octopus arm in particular has no internal or external skeleton and
its muscular structure is considered to be a ”muscular hydrostat” [18]. Its arms are
fully flexible, can bend in any direction and grasp objects. Therefore a continuum
arm design inspired by octopus (Octopus vulgaris) would be suitable for searching in
unsafe and narrow spaces [26] [25], and surgical applications [22].

The trajectory generation problem for mobile robots in general and for the robotic
arm inspired by octopus in particular, is of purely geometric nature and can be de-
fined as providing a set of time dependent configurations that are ”smooth” and meet
certain boundary conditions. The notion of ”smoothness” is an ambiguous one. Au-
thors have used different types of smoothness criteria in order to derive trajectories.
Kanayama et al. [17] used the square of curvature and the square of the deriva-
tive of curvature as cost functions. The configurations that minimize these criteria
are clothoids and cubic spirals. In fact, variations of the problem of minimizing the
squared curvature have a long history and various applications, see for example [20]
and [19]. Horn [15] addressed the problem of determining a smooth planar configu-
ration that started at (0, 0) in the vertical direction arrived at (1, 0) vertically and
minimized the integral of the squared curvature. He derived a differential equation
of the optimal configuration along with its properties and concluded that the optimal

∗Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot
76100, Israel dorit.ron@weizmann.ac.il
†Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot

76100, Israel tamar.flash@weizmann.ac.il
‡Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot

76100, Israel achi.brandt@weizmann.ac.il

1

mailto:dorit.ron@weizmann.ac.il
mailto:tamar.flash@weizmann.ac.il
mailto:achi.brandt@weizmann.ac.il

one is not a semi circle. Later, Kallay [16] solved the problem where the length of
the solution is also constrained. Bruckstein et al. [11] introduced a scale-invariant
measure to avoid solutions which are smoother just by being longer, and showed that
due to this measure circular arcs are optimal in large number of situations. They
proposed a numerical procedure for computing piecewise linear approximations of the
optimal configurations as a solution of discrete two-point boundary value problems.

In this paper we present a fast multilevel solver for the generalized problem of
minimizing the squared curvature of a curve, given its length and starting and ending
positions and directions. In addition, we allow the curve to have an arbitrary variable
rigidity coefficients, which can control the curvature function produced in the resulting
configuration, with smaller curvature wherever the coefficient is larger. This enables
solutions with variable curvature, i.e., configurations which are in agreement with the
observed typical octopus arm movement (composed of a sequence of time dependent
configurations). We show that the bending movement of the robotic arm prototype
in [29] actually minimizes the squared curvature with uniform rigidity coefficients,
while the octopus arm extension movement which usually includes bend propagation
can be described only when variable rigidity coefficients are employed. We achieved
good resemblance to the octopus arm movement.

The multilevel solver we introduce here is a linear time algorithm (in the number
of discrete unknowns). In fact it can produce a sequence of solutions much faster
than and in a resolution which is beyond one would actually need for the robotic
arm. However, we regard this solver as a stepping stone for treating more challenging
problems, for which the introduced technology is essential.

The paper is organized as follows. In Section 2 we introduce the optimization
problem to be solved. In Section 3 we present the basic multilevel techniques used for
the fast solver. In Section 4 we show the resemblance of our results to the bending
movement of the robotic arm and to the bend propagation of the octopus arm. Finally,
in Section 5 we outline various problem directions, including control and other inverse
problems, for which extensions of the multigrid solver developed here can apply.

2. The optimization problem. Our objective is to minimize the two dimen-
sional squared curvature of a curve with a given length L subject to boundary con-
ditions stating its starting and ending positions and directions. We will consider the
normalized problem where we choose the starting point to be (xstart, ystart) = (0, 0)
ending at (xend, yend) = (1, 0):

minimize E(a, u) = 1
2L

∫ 1

0
a(s)(u′(s))2ds,

given u(0) = ustart , u(1) = uend

subject to L
∫ 1

0
cosu(s) ds = 1 , L

∫ 1

0
sinu(s) ds = 0,

(2.1)

where s is the arclength along the curve divided by L, u(s) is the tangent of the curve
at s, (u′(s))2 is thus the squared curvature and a(s) is the rigidity coefficient. For
given larger values of a(s) the obtained solution is expected to be less curved at s.

We discretize L to have n − 1 segments of (usually) equal length h (see on the
bottom of Figure 3.1 a mesh with 12 segments) and use two Lagrange multipliers λ1
and λ2 to obtain the following discrete Lagrangian

L(h, a, u) = 1
2Lh

∑n−1
j=1 aj+1/2(uj+1 − uj)2+

λ1[Lh(1
2 cosu1 +

∑n−1
j=2 cosuj + 1

2 cosun)− 1]+

λ2Lh(1
2 sinu1 +

∑n−1
j=2 sinuj + 1

2 sinun),

(2.2)

2

where uj = u(sj), sj = (j − 1)h and aj+1/2 is the rigidity coefficient between uj and
uj+1.

The resulting system of non-linear equations obtained from ∂L(h, a, u)/∂ui = 0
and from ∂L(h, a, u)/∂λk = 0, for k = 1, 2 is

for i = 2, ..., n− 1 N1(h, a, u, i) ≡
(−ai+1/2ui+1 + (ai+1/2 + ai−1/2)ui − ai−1/2ui−1)/h)

− L2λ1 sinui + L2λ2 cosui = b1i
given u(0) = u1 = ustart , u(1) = un = uend

subject to N2(h, u) ≡
Lh(1

2 cosu1 +
∑n−1
j=2 cosuj + 1

2 cosun) = b2,

N3(h, u) ≡
Lh(1

2 sinu1 +
∑n−1
j=2 sinuj + 1

2 sinun) = b3,

(2.3)

where ai+1/2 = ai+1/2/h, b1i = b3 = 0 and b2 = 1.
An alternative way to derive the above is by variation of the differential min-

imization problem. Assume the minimum is obtained at some u(s) and look at a
perturbation ε(s) to it such that ε(0) = ε(1) = 0. We use Lagrange multipliers and
consider the following difference

E(a, u+ ε)− E(a, u) = 1
L

∫ 1

0
a(s)u′(s)ε′(s)ds− Lλ1

∫ 1

0
ε(s) sinu(s)ds

+ Lλ2
∫ 1

0
ε(s) cosu(s)ds+O(ε(s)2)

= − 1
L

∫ 1

0
[a(s)u′(s)]′ε(s)ds− Lλ1

∫ 1

0
ε(s) sinu(s)ds

+ Lλ2
∫ 1

0
ε(s) cosu(s)ds+O(ε(s)2),

(2.4)

where we have used integration by parts for the first term of the right hand side. Since
this difference has to be non-negative for any ε(s), we obtain the following differential
equation

− [a(s)u′(s)]′ − L2λ1 sinu+ L2λ2 cosu = 0, (2.5)

subject to the same conditions of (2.1). (2.3) is obtained by central discretization of
(2.5).

3. The multilevel solver. We use multigrid techniques [10], [2] and [24] to
efficiently solve (2.3), the resulting discretized system. We start by describing a
point-by-point minimization of (2.1), then choose a hierarchy of grids and define the
coarse-to-fine interpolation rule which is based on minimization consideration. The
calculation of the coarse grid equations and the fine-to-coarse transfer of residuals
follow. We use the Full-Approximation-Scheme (FAS) due to the non-linearity of the
system of equations, imposed by the non-linear global constraints, and employ the
Full-Multigrid (FMG) algorithm. In addition, we use continuation of the boundary
conditions to enable a stable solution for more curved configurations.

3.1. Relaxation. A point-by-point minimization of (2.1) is equivalent to solving
in turn the i’th equation of system (2.3) for ui. However, since each equation is
nonlinear function of ui, the relaxation of each ui should not waste work on solving
the relevant equation exactly . Rather, only an inexpensive substantial step toward
such a solution should be made. In particular, if ũi is the current value of ui, then its
value after relaxing the i’th equation is

ũi ← [ai+1/2ũi+1 + ai−1/2ũi−1 + (b1i + L2λ1 sin ũi − L2λ2 cos ũi)h]/(ai+1/2 + ai−1/2).
(3.1)

3

Note that the trigonometric terms of ũi are “non-principal terms” as they are multi-
plied by h and thus their contribution to the change in the residual can be neglected.

As is well known [9], following a small number of relaxation sweeps, the remaining
error e = u − ũ is smooth and therefore can be approximated by a “coarser” (or
“diluted”) system, i.e., a system with less variables.

3.2. Hierarchy of grids. In the classical case of “geometric multigrid”, where
the fine-level set of unknows u is defined on a well-structured grid, the coarse set U
is naturally defined in terms of coarsening that grid, for example by omitting from it
every other point, see the two bottom grids in Figure 3.1. All finer grids are uniform
such that the mesh of a finer grid is twice as smaller as the coarser one. To formulate
the relation between two adjacent levels of our multigrid solver, we use the convention
of describing the fine level by lower case letters such as h, ui and ai+1/2 and the coarse
grid by capitals: H, UI and AI+1/2. The relation between the fine and the coarse
mesh sizes is then H = 2h.

The needed finest mesh size depends on the prescribed boundary angles. If, for
instance, the absolute value of the initial angle exceeds Π/2, the curve has to turn
around to reach the other end, as can be seen at both ends of the black curve in
Figure 4.4. In particular, if L is close to 1, the angles at the “bent” end of the curve
has to change quickly within a small arc length. This would imply the use of smaller
h towards that end. The sharper the bent, the smaller the needed h [1]. In this work
we do not intend to solve all possible combinations of L and boundary angles, but we
rather assume that the bent cannot be too sharp, which is reasonable for both the
octopus and the robotic arm. Still, to enable more curvature at the beginning and
end of our solution (as is usually observed at the octopus arm) we choose an uneven
coarsest level as shown in Figure 3.1, where the mesh size is smaller near the end
points than the one in the middle. For this nonuniform mesh (2.3) takes the form

for i = 2, 3 N1(h, a, u, i) ≡
(−ai+1/2ui+1 + (ai+1/2 + ai−1/2)ui − ai−1/2ui−1)/(

hi+1/2+hi−1/2

2)
− L2λ1 sinui + L2λ2 cosui = b1i

given u(0) = u1 = ustart , u(1) = u4 = uend

subject to N2(h, u) ≡
L(cosu1

h3/2

2 + cosu2
h3/2+h5/2

2 + cosu3
h5/2+h7/2

2 + cosu4
h7/2

2) = b2,
N3(h, u) ≡
L(sinu1

h3/2

2 + sinu2
h3/2+h5/2

2 + sinu3
h5/2+h7/2

2 + sinu4
h7/2

2) = b3,
(2.3’)

where ai+1/2 = ai+1/2/hi+1/2 and hi+1/2 is the i’th mesh size, i = 1, 2, 3.

In an adaptive approach instead of choosing every other fine point to serve as
the coarse points, we may choose all (or most) fine points wherever a relatively large
difference between neighboring unknowns is detected. Similarly, less (than the usual
half) grid points are needed where the solution is smooth. For full efficiency of the
solver, all grids should actually be uneven, chosen according to the detected curvature
at each site. Then the choice of the coarse grid can be completely automated by using
the so called bootstrap algebraic multigrid (BAMG) [5]. But we do not attempt this
generality here.

3.3. Minimization based interpolation. The derivation of our specific inter-
polation from a pair of coarse grid points to possibly many inner fine points, as is for

4

u1

U1

U1 U4

U9

u13

h3 /2

H3 /2

H3 /2=H /2 H5 /2=2 H

ui

UI UI+1

ui +1 ui -1

ai-1 /2 ai+1 /2

AI+1 /2

ai+3 /2

Fig. 3.1. An example of three grids where the coarsest of them is non uniform with grid points
closer to the end points. Still the coarsening ratio is preserved: H = 2h and H = 2H.

example needed (in the middle of the grid) between the two coarse levels in Figure
3.1, is given in the Appendix.

For the common coarsening ratio 2, where the coarse grid points are chosen to
be at every other fine point (the two finest levels of Figure 3.1), the interpolation to
ui+1, which is between two coarse grid points, is

ui+1 ← ui+1 + (↑hH V)i+1 = ui+1 +
VIai+1/2 + VI+1ai+3/2

ai+1/2 + ai+3/2
, (3.2)

where V is the coarse correction to the fine grid function u. The interpolation to ui
is simply ui ← ui + VI . We use equation (3.2) for the interpolation except from the
coarsest level, where equation (A.5) is needed.

3.4. Coarsening. The derivation of the coarse grid equations given an explicit
coarse-to-fine interpolation operator is simply the equations for minimizing E(u+ ↑hH
V). Thus we calculate the coarse couplings AI+1/2 as well as the right hand side of
the coarse equations. Consider the generalized optimization problem

minimize E(a, b, u) =
1

2

∫
a(s)(u′(s))2ds−

∫
b(s)u(s)ds, (3.3)

and its discretization

minimize Eh(a, b, u) =
1

2

n−1∑
j=1

aj+1/2(uj+1 − uj)2

hj+1/2
−
n−1∑
j=1

bjuj
hj+1/2 + hj−1/2

2
.

(3.4)
On the finest grid bj = 0 for j = 1, ..., n− 1. The equivalent j’th equation is

− aj+1/2uj+1 + (aj+1/2 + aj−1/2)uj − aj−1uj−1/2 = bj
hj+1/2 + hj−1/2

2
, (3.5)

5

so the j’th residual can be defined as

resj = bj
hj+1/2 + hj−1/2

2
+ aj+1/2uj+1 − (aj+1/2 + aj−1/2)uj + aj−1/2uj−1. (3.6)

Given the set of fine and coarse mesh sizes, hi+1/2 and HI+1/2, see Figure 3.2, we
want to calculate the equation at the coarse grid point I. For a given current fine
approximation ũ, using (A.5) and according to Figure 3.2, we get

Eh(a, b, ũ+ ↑hH V) = 1
2{

∑i−1
j=l aj+1/2[ũj+1 + (

∑i−1
k=j+1 αkVI−1 +

∑j
k=l αkVI)/ali−

ũj − (
∑i−1
k=j αkVI−1 +

∑j−1
k=l αkVI)/ali]

2+∑n−1
j=i aj+1/2[ũj+1 + (

∑n−1
k=j+1 αkVI +

∑j
k=i αkVI+1)/ain−

ũj − (
∑n−1
k=j αkVI +

∑j−1
k=i αkVI+1)/ain]2}−∑i−1

j=l bjhj+1/2 [ũj + (
∑i−1
k=j αkVI−1 +

∑j−1
k=l αkVI)/ali]−∑n−1

j=i bjhj+1/2[ũj + (
∑n−1
k=j αkVI +

∑j−1
k=i αkVI+1)/ain],

(3.7)

where, ali =
∑i−1
k=l αk, ain =

∑n−1
k=i αk and αk = 1/ak+1/2. Analogously to the fine

grid equation (3.5), the resulting coarse grid equation at the coarse site I is

−AI+1/2VI+1 + (AI+1/2 +AI−1/2)VI −AI−1/2VI−1 = BI
HI+1/2 +HI−1/2

2
, (3.8)

where

AI+1/2 = (

n−1∑
k=i

αk)−1, (3.9’)

BI = 2

n−1∑
j=l+1

[(↑Hh)Ijresj]/(HI+1/2 +HI−1/2), (3.10’)

HI−1/2 =
∑i−1
k=l hk+1/2, HI+1/2 =

∑n−1
k=i hk+1/2 and the residual weighting coefficients

are

(↑Hh)Ij =

∑j−1
k=l αk l < j < i

1 j = i∑n−1
k=j αk i < j < n.

(3.11’)

Again, we only use this generalized form to deduce the equations of the coarsest
level. For the simpler uniform grids case, we get

AI+1/2 = (1/ai−1/2 + 1/ai+1/2)−1, (3.9)

BI =
1

H

i+1∑
j=i−1

[(↑Hh)Ijresj] (3.10)

and

(↑Hh)Ij =

 1/ai−1/2 j = i− 1
1 j = i
1/ai+1/2 j = i+ 1.

(3.11)

6

ai-1 /2 , hi-1 /2

UI -1

ulll
 un

 ui-1 ui

AI -1 /2 , HI -1 /2 AI +1 /2 , HI +1 /2
UI UI +1

Fig. 3.2. An example of corresponding sections of two grids. The coefficient AI+1/2 is calcu-
lated from all ai+1/2’s between i and n and the transfer of residuals from the fine level to the coarse
one at site I involves the residuals at all fine points between sites l+ 1 and n− 1 as is calculated in
(3.11’).

3.5. Full approximation scheme (FAS). Since the system of equations (2.3)
that we want to solve is nonlinear, due to its global constraints, we actually need
to use the Full Approximation Scheme (FAS), introduced in [2], which is called so

because it gives the coarse equations in terms of the full solution U = Ũ + V , not in
terms of the correction V alone [9], where Ũ is the current approximate fine solution
ũ transferred to the coarse level. Namely,

ŨI =

n−1∑
j=l+1

(↑Hh)Ij ũj , (3.12)

where l (n) is the fine index at the grid point I − 1 (I + 1), (↑Hh)Ij is given by (3.11’)
(or by (3.11)) and the boundary values are transferred directly.

Using for the linear part of the equations the operator suggested by equation
(3.8), and applying to it the standard FAS procedure, yields a coarse problem similar
to the fine one (2.3):

for I = 2, ..., N − 1 N1(H,A,U, I) = B1
I

given U(0) = U1 = ustart , U(1) = UN = uend

subject to N2(H,U) = B2, N3(H,U) = B3,
(3.13)

where AI+1/2 = AI+1/2/HI+1/2 is given by (3.9’) (or by (3.9)) and the coarse right
hand sides are

B1
I =

n−1∑
j=l+1

(↑Hh)Ij [b
1
i −N1(h, a, ũ, j)] +N1(H,A, Ũ , I). (3.14)

and

Bq = [bq −Nq(h, ũ)] +Nq(H, Ũ), (q = 2, 3). (3.15)

7

It is important to remember that it is the error e = u−U which is smoothed by
relaxation and thus approximated by the correction V = U − Ũ , so after obtaining
an approximate solution U to the coarse equation (3.13), the coarse-grid correction
to the fine level is

ũ← ũ+ ↑hH (U − Ũ) , (3.16)

where ↑hH is given by (A.5) (or by (3.2)). It is also important to use exactly the same

Ũ in (3.16) as in (3.14), (3.15) and as the first approximation in the process of solving
(3.13), so that the solver is stationary , meaning that if the exact solution has already
been obtained at the fine level (N1(h, a, ũ, i) = b1i) and hence (3.13) is immediately
at its solution, then (3.16) does not change ũ.

3.6. Multigrid cycle. Having constructed the coarse-level equations, they are
then (approximately) solved by a similar procedure: a small number of relaxation
sweeps followed by approximating the remaining error with a still coarser system.
The coarsest-level equations are finally solved by some direct method. This recursively
defines the multilevel cycle, which, for a work comparable to that of just few relaxation
sweeps over the finest level (the given system), would usually reduce the error to a
small fraction (far less than .5, typically) of its pre-cycle size. Such a cycle is called a
V-cycle due to its V shape as can be seen in the right of Figure 3.3.

In our solver the coarsest level includes five interior points (unknowns), the middle
grid in Figure 3.1. To solve (2.3) we use Newton-Raphson iterations. To obtain a
good first guess, we actually start with an even coarser grid which includes only two
interior points, the top grid in Figure 3.1. The corresponding two unknowns, u2 and
u3, can be calculated from the two (non linear) last conditions in (2.3’). Then the two
Lagrange multipliers are extracted from the remaining two (linear) equations. and
are kept unchanged on all fine levels and may be corrected only at the coarsest level.
Thus the two global constraints are actually being solved only on the coarsest level,
while on finer grids their residuals are being calculated and transferred to coarser and
coarser grids until the coarsest one is reached.

Full Multigrid (FMG) algorithm. The multigrid cycle described above can be
applied to any first approximation given on the finest grid. In a full multigrid (FMG)
algorithm, the first approximation is obtained by interpolation from a solution on the
next coarser grid, which has previously been calculated by a similar FMG algorithm.
A typical FMG algorithm, with one V -cycle per refinement, is shown in Figure 3.3.
This is the algorithm we use here. In particular, the FMG algorithm begins by solving
the coarsest level explicitly.

3.7. Continuation. It is easy to solve the problem for certain initial end angles
(ustart and uend) and much harder for others. We have thus used a continuation
approach to solve more difficult cases gradually, starting with easy-to-solve problems.
For example, consider a circular arc of length L > 1 which extends over a chord of
length 1, both resting on a central angle 2u, so that L = 2ru; see Figure 3.4. The
radius of the circle is r = 0.5/ sinu, so u satisfies u/ sinu = L (or approximately u ∼√

6(L− 1)/L when small). We can thus use such an arc as our initial solution, with
ustart = −uend = u. Having solved this problem we gradually change the boundary
angles to actually obtain a solution to any given problem. This is mostly done on
the coarsest grid (the one with five interior unknowns) by using a Newton-Raphson’s
iteration successively for a sequence of problems, the (approximate) solution of each

8

one serves as the initial guess for the next one, while the boundary angles are gradually
changed until the desired ones are met. For large ustart and/or −uend one has to do
this continuation on a finer level, using our multigrid cycle in each iteration.

interpolation (3.16)

 relaxation sweeps

calculating coarse

equations (3.13)

ν ν solve directly *

h0

h0/2

h0/4

2h=H

h

Largest grid

Smallest grid

Final discrete

 solution

Start solving

 here

. . .

*

1ν

1ν

1ν

2ν

2ν

2ν

Multigrid V-cycle

2ν

2ν

2ν

. . .

*

1ν

1ν

2ν

*

1ν

*

 the obtained final solution for the corresponding meshsize

interpolation of the solution

Fig. 3.3. An FMG-cycle: starting from a direct solution of the coarsest level (on the left),
interpolate to a finer level, apply a V-cycle there and switch to a still finer level, etc. A V-cycle
V (ν1, ν2) (on the right): starting from the finest level, perform ν1 relaxation sweeps, then transfer
to the next coarser level and so on until the coarsest level. Solve the coarsest level exactly, then
interpolate to a finer grid followed by ν2 relaxation. This is repeated until the finest level is reached.

4. Results.

4.1. The efficiency of the cycle. The efficiency of a multigrid cycle is often
measured by calculating residuals. We calculate here the residual of the system of
equations in (2.3), i.e.,

Res1 ≡

√√√√ n∑
i

(b1i −N1(h, a, u, i))2 , (4.1)

and the residuals of the two constraints:

Res2 ≡ |b2 −N2(h, u)| , Res3 ≡ |b3 −N3(h, u)|. (4.2)

We use the FMG (with one V-cycle per each level) to obtain the solution on the finest
level followed by additional V-cycles only on that level. As can be seen in Table 4.1
the residuals are decreased by a factor of at least 10 per cycle which is the desired
textbook efficiency of multigrid.

9

u u

L=2ru

r

0.5

0.5=r sinu u

Fig. 3.4. An easy-to-solve problem: a circular arc of length L > 1 which extends over a chord
of length 1, both resting on a central angle 2u. The angle between the chord and the tangent (the
red line), which is also u, can be obtained by solving u/ sinu = L.

Cycle number Res1 Res2 Res3

1 0.491258 0.000833 0.002888
2 0.026529 -0.000043 0.000032
3 0.001547 -0.000006 0.000004
4 0.000093 0.000000 -0.000001

Table 4.1
The obtained residuals for the system of equations and for the two constraints are shown for

four V -cycle V (2, 1).

4.2. The resemblance to a robotic arm. Soft robotic arm inspired by the
octopus has been designed and tested for certain movements [29]. A two dimensional
reconstruction of a robotic arm prototype bending movement (obtained at its early
stage of development), using an appropriate algorithm [28], was carried out and used
to detect the robotic arm backbone from imaged video frames as is shown in Figure
4.1. We were able to imitate the initial and final configurations in this figure, see
Figure 4.2, and in fact the entire movement as shown in Figure 4.3. We may conclude
that every configuration within this robotic arm movement (at least roughly) actually
minimizes our mathematical model (2.3), i.e., minimizing the squared curvature given
the length of the robotic arm and the positions and angles of its end points for uniform
constant rigidity coefficients.

4.3. The resemblance to a single octopus arm configuration. Octopus
arm movements were video recorded while an octopus was kept in a large glass water
tank. For details on animals, experimental setup and recording sessions see [13] and
[27]. Zelman et al. [28] reconstructed the octopus arm movement and produced a
sequence of three dimensional curves varying in time. Each time instance is given as
a set of 100 3D points. Since it has been observed that most of the extension movement
of the octopus’s arm is basically planar [13], we projected the three dimensional data
into two dimensions by using a principal components reduction. Indeed, it turns out
that about 95% (and sometimes even more) of the curve is planar. In addition, we have

10

0 20 40 60 80 100 120 140 160 180 200
-250

-200

-150

-100

-50

0

Fig. 4.1. The robotic arm is performing a bend movement starting from the initial position
shown on the left. The right picture in obtained by reconstructing the backbone of the arm from
many imaged video frames taken while the bent was performed.

Fig. 4.2. Resemblance of the initial and the final configurations of the robotic arm movement
and the solution of minimizing the squared curvature with uniform rigidity coefficients.

normalized the starting point to (0, 0) and the ending point to (1, 0). The length and
the angles boundary conditions are easily measured. Solving the obtained problem in
(2.3) on a grid with 24 meshes and constant rigidity (ai ≡ 1 for i = 1, ..., 24) results
with an evenly curved solution shown on the left of Figure4.4. If, however, we want to
obtain a better agreement to the octopus arm, we need to introduce variable rigidity
coefficients to enable the variable rigidity exhibited by the octopus arm; see at the
right of Figure 4.4 for the choice of a1 : a5 = 0.5 , a6 : a8 = 0.1 , a21 : a22 = 0.1 , a23 :
a24 = 0.2.

11

Fig. 4.3. The movement obtained by minimizing the squared curvature problem of (2.3) with
uniform rigidity coefficients.

Fig. 4.4. An example of an octopus’s arm configuration, shown in black. The solution of (2.3)
discretized by 24 segments, in blue, includes the case were a ≡ 1 on the left and the case with
manually adjusted smaller coefficients at both ends on the right, with a1 : a5 = 0.5 , a6 : a8 =
0.1 , a9 : a20 = 1 , a21 : a22 = 0.1 , a23 : a24 = 0.2.

4.4. The produced extension movement. The actual movement of the oc-
topus arm can be described as a sequence of configurations of its backbone. See for
example the 3D extension movement in the left of Figure 4.5. In general, such a
movement is a superposition of bend propagation and arm elongation. To create a
similar movement we start from the initial configuration, the red contour in the right
of Figure 4.5, i.e., from its given locations and angles of end points. Then, the con-
sequent configurations are generated by gradual changes introduced into the initial
parameters until some conditions are met for the last configuration, see the left of
Figure 4.6. In addition, to achieve the bend propagation, we introduce a shift in the
rigidity coefficients which are responsible for the bend, i.e., those in blue which create

12

Fig. 4.5. Left: An example of 3D octopus extension movement of bend propagation and elon-
gation. Right: The 2D projection of that movement using principal component reduction.

Fig. 4.6. Left: An example of bend propagation and elongation produced by our optimization
model so as to resemble the 2D octopus movement in the right of figure (4.5). Right: The rigidity
coefficients we have used to obtain the bend propagation.

the step pattern in the right of Figure 4.6.

Sometimes it is observed that the octopus starts the extension movement with an
additional bend of its arm closer to its body, see the red line in Figure 4.7. In such a
case it is necessary to let this bend gradually disappear as the arm becomes straight.
We show here such an example which involves either only bend propagation, see the
left of Figure 4.8, and one which also allows elongation of the arm, the right of Figure
4.8. In both cases the used rigidity coefficients are given in Figure 4.9.

5. Future directions. The solution techniques described here can and should
serve more general problem situations (not necessarily relevant to the octopus arm,
but important in many other areas), such as:

• Using other governing functionals: e.g., instead of (u′(s))2 in (2.1), use
|u′(s)| (allowing unbounded curvature at some points, or generally |u(m)(s)|q,
or combination of such terms; etc.

• Use other kinds of boundary conditions.

13

Fig. 4.7. An example of a 3D movement of the octopus’s arm.

Fig. 4.8. Left: An example of an octopus-like movement of bend propagation generated by the
multigrid algorithm. Right: An example of an octopus-like movement of bend propagation combined
with elongation generated by the multigrid algorithm.

• Calculate arm curves in 3D space, instead of the current 2D model.
• Instead of a fixed length L, add stiffness coefficients (energy term associ-

ated with local stretching) to the governing functional (as those measured in
[14]).

• Dynamic arm: simulate an arm moving in time, u = u(s, t), guided by
a suitable minimization functional, such as

∫
E(a, u(s, t))dt and possibly by

some stiffness coefficients.
• The results presented here were manually designed, in particular the rigidity

coefficients were found by trial and error. An interesting question is to auto-

14

Fig. 4.9. The rigidity coefficients used in the multigrid algorithm to create an octopus-like
movement of bend propagation. The smaller coefficients (in blue and light blue step pattern) which
are responsible for the produced bend, are shifted at each consequent configuration.

matically solve the inverse problem in which the arm configuration, i.e., the
function u(s) is given for a few configurations (along with the length L and
the boundary conditions), from which the rigidity coefficient function a(s),
is derived. (Multigrid tools for very efficient solution of inverse problems are
described in [3], Section 4, [8] and in more details in [4] and [12].)

• Dynamic inverse problem: In the octopus case described in this paper,
the rigidity coefficients actually change in time. So in such cases the inverse
problem would be to calculate an unknown rigidity a(s, t) so as to yield solu-
tions u(s, t) that best fit a collection of dynamic arm observations, regularized
by adding to the governing functional terms such as∫ ∫

(α[
∂

∂t
a(s, t)]2 + β[

∂

∂s
a(s, t)]2) ds dt. (5.1)

• System optimization: Instead of calculating a(s, t) to best fit a set of
observations, seek a(s, t) for which the system would operate optimally, e.g.,
minimizing average execution times of a set of tasks. Such a formulation is
needed for example for the optimal design of robotic arms. (See again [3]
Sections 4 and 5 with more details in [4].)

• Stochastic formulation: Instead of minimizing energy E[a, u], assume a
probability distribution P is given, for example in the Bolzmann form

P [a, u] =
1

z
exp−βE[a,u] . (5.2)

For a given set of coefficients a, the task is the to calculate various average
properties of the set of probable arm configurations u. In other kinds of
problems (sometime falling under the name uncertainty quantification), the
rigidity coefficients are out given either, they just satisfy some probabilistic
relations, as in the Bolzmann from above. (Very efficient multiscale Markov

15

Chain Monte Carlo techniques for stochastic problems are described in [7]
and [6]; such techniques should be combined with the multigrid methods
for inverse problems to efficiently quantify uncertain diffusion and similar
problems.)

Acknowledgments. This work was supported in part by the European Com-
mission in the ICT-FET OCTOPUS Integrating Project, under contract no 231608.

REFERENCES

[1] D. Bai and A. Brandt. Local mesh refonement multilevel techniques. SIAM J. ScI. STAT.
COMPUT., 8(2):109–134, 1987.

[2] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Math. Comp.,
31(138):333–390, April 1977.

[3] A. Brandt. Multiscale scientific computation: Review 2001. In T. Barth, R. Haimes, and
T. Chan, editors, Multiscale and Multiresolution methods: Theory and Applications (Pro-
ceeding of the Yosemite Educational Symposium, October 2000), pages 1–96. Springer-
Verlag, 2001. http://www.wisdom.weizmann.ac.il/~achi/review00.pdf.

[4] A. Brandt. Multiscale methods of data assimilation and feedback optimal control. Technical
Report, 2006. http://www.wisdom.weizmann.ac.il/~achi/tr06-04.pdf.

[5] A. Brandt, J. Brannick, K. Kahl, and I. Livshits. Bootstrap amg. SIAM J. SCI. COMPUT.,
2011.

[6] A. Brandt and M. Galun. Optimal multigird algorithms for variable-coupling isotropic gaussian
models. Journal of Stat. Phys., 88:637–664, 1997.

[7] A. Brandt, M. Galun, and Ron D. Optimal multigird algorithms for calculating thermodynamic
limits. Journal of Stat. Phys., 74:313–348, 1994.

[8] A. Brandt and R. Gandlin. Multigrid for atmospheric data assimilation analysis. In T. Y.
Hou and E. Tadmor, editors, Hyperbolic Problems: Theory, Numercis, Applications, pages
369–376. Springer, 2003.

[9] A. Brandt and O. Livne. Multigrid Techniques: 1984 Guide with Application to Fluid Dynam-
ics, Revised Edition. Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2011.

[10] A. Brandt and D. Ron. Chapter 1 : Multigrid solvers and multilevel optimization strategies.
In J. Cong and J. R. Shinnerl, editors, Multilevel Optimization and VLSICAD. Kluwer,
2003.

[11] A. Bruckstein and A. N. Netravale. On minimal energy trajectories. In Journal of Comp.
Vision. Graphics and Image Processing, pages 283–296, 1990.

[12] R. Gandlin. Ph.D. Thesis. Multigrid solvers for Inverse Problems. PhD thesis, The Weizmann
Institute of Science, 2003.

[13] Y. Gutfreund, T. Flash, Y. Yarom, G. Fiorito, I. Segev, and B. Hochner. Organization of
octopus arm movements: a model system for studying the control of flexible arms. The
Journal of Neuroscience, 16(22):7297–7307, 1996.

[14] D. Held, Y. Yekutieli, and T. Flash. Characterizing the stiffness of a multi-segment flexible
arm during motion. In IEEE International Conference on Robotics and Automation, pages
3825–3832, 2012.

[15] B. K. Horn. The curve of least energy. ACM Trans. Math. Soft., 9:441–460, 1983.
[16] M. Kallay. Plane curves of minimal energy. ACM Transactions on Mathematical Software,

12:219–222, 1986.
[17] Y. Kanayama and B. Haltman. Smooth local path planning for autonomous vehicles. In Proc.

Intl. Conf. on Robotics and Automation, pages 1260–1264, Scottsdale, Arizona, 1989.
[18] W. M. Kier and K. K. Smith. Tongues, tentacles and trunks: the biomechanics movement in

muscular-hydrostats. Zoological J Linn Soc, 83:307–324, 1985.
[19] M. Moll and L. Kavraki. Path planning for minimal energy curves of constant length. In IEEE

International Conference on Robotics and Automation, pages 2826–2831, 2004.
[20] D. Mumford. Elastica and computer vision. In Chandrajit L. Bajaj, editor, Algebraic Geometry

and its Applications, pages 491–506. Springer-Verlag, 1994.

16

http://www.wisdom.weizmann.ac.il/~achi/review00.pdf
http://www.wisdom.weizmann.ac.il/~achi/tr06-04.pdf

[21] G. Robinson and J. B. C. Davies. Continuum robots - a state of the art. In Proc. IEEE Conf.
on Robotocs and Automation, pages 2849–2854, Detroit, Michigan, May 1999.

[22] N. Simaan, R. Taylor, and P. Flint. A dexterous system for laryngeal surgery. IEEE Conf.
Robotics and Automation, pages 351–357, 2004.

[23] G. Sumbre, Y. Gutfreund, G. Fiorito, and T. Flash B. Hochner. Control of octops arm extension
by a peripheral motor program. Science, 293:1845–1848, 2001.

[24] U. Trottenberg, C. W. Oosterlee, and A. Schuller. Multigrid. Academic Press, Inc., Orlando,
FL, USA, 2001.

[25] H. Tsukagoshi, A. Kitagawa, and M. Segawa. Active hose: an artificial elephant’s nose with
maneuverability for rescue operation. In Proc. IEEE/ICRA Intl. Conf. on Robotics and
Automation, pages 2454–2459, Seoul, Korea, May 2001.

[26] A. Wolf, H. B. Brown, R. Casciola, A. Costa, M. Schwerin, E. Shamas, and H. Choset. A
mobile hyper redundant mechanism for search and rescue tasks. In Proc. IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems, volume 3, pages 2889–2895, Taipei, Taiwan, May
2003.

[27] Y. Yekutieli, R. Mitelman, B. Hochner, and T. Flash. Analysis octopus movements using three
dimensional reconstruction. J Neurophysiol, 98:1775–1790, 2007.

[28] I. Zelman, M. Galun, A. Akselrod-Ballin, Y. Yekutieli, B. Hochner, and T. Flash. Nearly
automatic motion capture system for tracking octopus arm movements in 3d space. Journal
of Neuroscience Methods, 182:97–109, 2009.

[29] T. Zheng, D. T. Branson, R. Kang, M. Cianchetti, E. Guglielmino, M. Follador, G. A. Medrano-
Cerda, I. S. Godage, and D. G. Caldwell. Dynamic continuum arm model for use with
underwater robotic manipulators inspired by octopus vulgaris. In Proc. IEEE Conf. on
Robotocs and Automation (ICRA), pages 5289–5294, South Carolina, 2012.

Appendix A. Minimization based interpolation, the general case.
The general case considered here is the correction scheme interpolation to many

inner fine points as is, for example, needed (in the middle of the grid) between the two
coarse levels in Figure 3.1. We assume that switching to the coarse level occurred when
the relaxation became slow and thus the residuals small. Since the error solves the
residual equations, we may also assume that the right hand side of these equations
approximately vanishes, which is equivalent to minimizing a quadratic form. To
calculate the interpolation to a finer grid given a solution at a coarser level, we thus
look at the following functional

E(a, u) =
1

2

∫
a(s)(u′(s))2ds, (A.1)

and its discretization, as depicted for a segment of the entire domain in Figure A.1,

Eh(a, u) =
1

2

n−1∑
j=1

aj+1/2(uj+1 − uj)2, (A.2)

where aj+1/2 = aj+1/2/hj+1/2. The interpolation to the fine grid points can be
calculated for the general case of variable hj+1/2 and aj+1/2 for j = 1, ..., n− 1, based

on minimization considerations. In particular, ∂Eh(u)/∂uj = 0 yields

aj+1/2(uj+1 − uj) = aj−1/2(uj − uj−1) = µ. (A.3)

µ can be interpreted as a constant current flowing between the points 1 and n, while
1/ai is the resistance per unit length and thus hi+1/2/ai+1/2 = 1/ai+1/2 is the resis-
tance between the points i and i+ 1. Next, we may derive from (A.3) that

un − u1 = µ Σn−1j=1

1

aj
. (A.4)

17

Under the assumption that the transfer to the coarse level is by injection (i.e., where
UK and UM correspond to uk and um, respectively, see Figure A.1 and M = K + 1),
we may conclude that the interpolation coefficients from the two known coarser grid
variables are

ui ← (↑hH U)i = (UK Σn−1j=i

1

aj+1/2
+ UM Σi−1j=1

1

aj+1/2
) / Σn−1j=1

1

aj+1/2
, (A.5)

where ↑hH denotes the coarse-to-fine interpolation operator. (See (3.16) in section 3.5
for the interpolation of the correction we actually use within the FAS.)

ai+1 /2 , hi+1 /2

VK VM

uk um ui ui + 1

AK+1 /2 , HK+1 /2

si si+1

Fig. A.1. An example of a segment of a fine grid with variable grid meshes hi and variable
coefficients ai and its related coarse grid with only two points.

18

