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The flow is considered of an incompressible conducting viscous fluid in the inlet region of a straight
channel in the presence of a transverse magnetic field. The complete equations are solved numerically
without any approximating assumptions. Various characteristics of the flow and their dependence on
the physical parameters are deduced. Values of Reynolds number up to 500 are considered. Velocity
profiles near the inlet are found to have points of inflection. The distance to the terminal regime is
studied, and the results, in the limiting case of large Reynolds number, compared with those of other
workers. The boundary layer thickness is found to be proportional to z= (for a small range of x) where -
a = 1.2 at zero Reynolds number and decreases to 0.5 as the Reynolds number increases. The exact

pressure distribution is also obtained.

I. INTRODUCTION

HE central purpose of this work is to develop

methods for the numerical solution of the equa-
tions of magnetohydrodynamics. As a special case,
i.e., when the magnetic field is zero, we have dealt
also with the Navier-Stokes equations. The general
approach has been through specific problems, but
it will be seen that the methods are of more general
application.

We have confined our attention to two-dimensional
steady state flows of incompressible homogeneous
viscous liquids at finite values of R, R, the Reynolds
number and magnetic Reynolds number, respec-
tively. This paper deals with the flow in the inlet
region of a straight channel where the magnetic
field, if any, is transverse. We have also considered
certain modifications of the boundary, and the re-
sults of applying our methods to these modified
problems will be described elsewhere.

In Sec. II we present a detailed derivation of the
governing equations and boundary conditions. The
method of solution is described in Sec. IIT as also
some of the methods used for attaining the desired
accuracy. Some methods for checking the accuracy
are given in Sec. IV.

The numerical results obtained for a straight
channel are presented in Sec. V, and where possible,
we have compared our results with those obtained
by other workers.

II. FORMULATION OF PROBLEM
(a) The Differential Equations

Our starting point will be the steady-state mag-
netohydrodynamic equations (in rationalized mks
units),

u-Vu=—p'Vp+Vo+rVu+,'JxB, (2.1)
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J = o(E +uxB), (2.2)

V xB =], (2.3)

V xE = —dB/dl = 0, 2.4
divu = 0, (2.5)
divB = 0. (2.6)

In these equations p represents the fluid density,
v its kinematic viscosity, u its magnetic permeability,
and ¢ its electrical conductivity, all assumed con-
stant. Of the dependent variables, u represents the
fluid velocity, B the total magnetic induction, J
the electrical current density, E the electrostatic
force field, p the pressure, and ¢ the potential of any
external force field which may be present.

To simplify the subsequent notation we take
coordinate axes Ox,, 0x,, Ozs, with Oz; perpendicular
to the plane of our two-dimensional flow. In gen-
eral, we denote the components of any vector g
by (g1, ¢, g5). To be precise, our assumption of two-
dimensional steady-state flow is expressed by the
fact that none of the components of u, E, B, or J
depend on either x, or ¢. It follows then from (2.5),
(2.6) that we can find two scalar functions ¥(x,, z,),
B(x,, ;) such that

U, = 9P/ 0z, uy, = —ayY/dx,, @.7)

B, = 98/9x,, B, = —98/0z,.

We see in the usual way from (2.4) that
9E,/dz, = 0E,/ox, = 0, (2.8)

and so £, is a constant. Now take the curl of both
sides of (2.1), making use of (2.3), (2.7). The ;-
component yields

8¢, V*¢)/8(x,, x»)

= —v V'Y + (1/ew)[8(8, V*A)/3(z:, 2)].  (2.9)
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Again, we see from (2.2), (2.3) that

ol + [3(¥, B)/3(xy, x)]} = J5 = _#_1 V8.
(2.10)
The equations (2.9), (2.10) are to determine the

functions ¢, 8. The constant F; is determined by
the boundary conditions.

(b) Boundary Conditions

We define the channel by —a < 2, < a,2, > 0,
with the inlet at * = 0. The boundary conditions
are

U (&, a) = u,(x,, *£a) = 0 forz, > 0, (2.11)
u, (0, x,) = cohst [= U (say)], (2.12)
u,(0, x,) = 0, (2.13)

B.(0, z,) = 0, (2.14)

B,(x,, +a) = b (const). (2.15)

These express what is physically assumed about
the fluid velocity vector and normal components
of magnetic induction at the boundaries. In fact
our method of solution would work equally well for
more general boundary values of these quantities.

To make the problem determinate something must
be said about the conditions at infinity in the z,
direction. Briefly, we assume a stable and laminar
flow which becomes independent of z, as the latter
tends to -+ . It is well known that the flow will
then have the Hartmann pattern [see (2.25), (2.26)
below].

In the special case b = 0, i.e., no external magnetic
field, the equations simplify, in an obvious way,
and the Iimiting flow becomes parabolic.

(c) Dimensionless Variables

We write
' = x,/a, y = /a, 2z’ = x;/a,
w=u/U, v=u/U, ¢ =y¢/(al),
p’ = p/(pU?), B’ = B/b,, 8’ = B/(abo), (2.16)
where
by = a”'wp/0)},. E = E/(Uby), J= J/(Uby).

We now rewrite (2.9), (2.10) in the new variables,
dropping the primes which were just introduced.
The equations become

¢u v2‘l/z - \px vzll’u
= (2/R) V*¥+ (4/RR.)B, V8. — 8. V’8,), (2.17)
V8. — ¥.8, = By + (2/Ra) V8,  (2.18)
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where R = 2aU/v, R, = 2aucU, and the subscripts
z, y denote differentiation.

The boundary conditions, in the new variables,
are easily seen to be equivalent to

Y, 1) =1, Y —1)=—-1, (2.19)
Y.z, £1) = 0, (2.20)

v©0,y) = v, (2.21)

¥.0,y) =0, (2.22)

B0, y) = 0, (2.23)

B.(x, £1) = —M, (2.24)

where M = b/B, (the Hartmann number). The flow
pattern for large r becomes [provided E; = —M,
see (d) below].

Yo, y) = K[y cosh M — M~" sinh My], (2.25)
Bz, y) ~ 3KR,[M ™" cosh My — 1y’ sinh M] — Mz,
(2.26)
where
K = [cosh M — (sinh M/M)]™".
(d) Indeterminancy of E;

The above equations include the apparently un-
determined constant E;. However, in any practical
case, account must be taken of the mode of closure
of the electrical circuit. The description of the flow
as two-dimensional is essentially equivalent to con-
sidering walls at 2 = +£K, where K is very large.
These walls may be connected through some circuit
outside of the channel, or not. In the latter case
the net flow of current in the z direction is zero.
This, as is well known,' may be expressed in terms
of our dimensionless variables by the condition
E, = —M. In fact it is this case which forms the
subject of our computed solutions though there
would be no fundamental change required to adapt
the methods to other cases.

(e) The Hydrodynamic Problem

For future reference it will be convenient to

formulate explicitly the special case b = 0. The
equations then become
v, Vi, — ¥, V3, = 2R7' 'y,  (227)

with the same boundary conditions on ¢ as before,
viz., conditions (2.19)—(2.22) together with

W, y) = 3By — o). (2.28)

1 R. Hide and P. H. Roberts, in Advances in Applied Me-
chanics (Academic Press Inc., New York, 1962), pp. 216-320.
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III. METHODS OF SOLUTION
(a) Finite Difference Approximation

Equations (2.17), (2.18) were replaced directly
by the simplest central finite difference equations
and solved by a routine relaxation procedure, taking
account of the boundary conditions. We do not
go into details of the process here. The solution for
the hydrodynamic case (b = 0) has been described
in detail elsewhere,” and the general magnetohydro-
dynamic problem was simply an extension of this
without fundamental change.

We merely mention here that the system found
most satisfactory was point-by-point relaxation.
However, one modification of the simple system
was found to contribute greatly to the efficiency
of the procedure, namely, to allow the machine
to study the entire field and to confine the operation
of the relaxation procedure to those regions where
the greatest changes were required at each stage.
In particular, it was possible in the case of small
R, to devote most of the computing time to cor-
recting the fluid velocity fleld and, only occasionally,
after several such surveys, correcting the magnetic
field.

We found by trial and error that for the hydro-
dynamic problem (i.e., in the absence of a magnetic
field),

. = min [20(8 + hR@)™, 2] (3.1)

was approximately the critical coeflicient of relaxa-~
tion, where & is the mesh size and @ the maximum
velocity occurring in the field. The significance
of (3.1) is that the process diverges for w > w,.
This value of w, can be justified theoretically in
case the number of mesh points is large and on the
assumption that steps are taken to stabilize varia-
tions of ¥ in the neighborhood of the boundary.
We do not go into details of the argument here
except to indicate that the justification depends
on the approximate linearity of the equations when
¢ is near its true value and the consideration of
the matrix associated with the finite difference
equations [Ref. 2, p. 8, Eq. (2.1)].

When the number of mesh points is large, the
optimal value of w is very close to w,, and it is
therefore safe to work with a coefficient slightly
below the optimal. We found « = 0.9, to give
adequately rapid convergence without danger of
divergence. It should be noted that w, as defined
by (3.1) changes as the relaxation proceeds with
the change of .

2J. Gillis and A. Brandt, Air Force European Office of
Aerospace Research Scientific Report 63-73 (1964).
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In the presence of a magnetic field the determina-
tion of the optimal w was more complicated. For
small values of R, the same value w, was found
to be adequate. For larger R, » was again modified
by trial and error methods.

In this connection we would refer to an interest-
ing paper of Kawaguti,’ who studied flow in a
closed two-dimensional region. For larger values of
hRu he found that the relaxation procedure failed
to converge. This fits entirely with what we have
just said since the value of w required was consider-
ably less than unity while Kawaguti continued to
use w = l.

(b) First Approximate Solution

It is commonplace that in relaxation processes a
fortunate choice of first approximation can have a
great influence on the efficiency of the method. In
our problem this was found to be of decisive im-
portance. Since the equations concerned were non-
linear, we could not a assume that the procedure
would converge to the correct solution from any
start. Indeed the opposite turned out to be true,
and poor starting approximations did not lead to
convergence at all. Considerable thought had there-
fore to be devoted to the determination of a good
start. The general idea was always to proceed from
a previously solved problem and advance by stages
to the problem under discussion. At each stage we
made a small change either in the boundary values
or in one of the parameters and then solved the
equations by relaxation, taking as first approxima-
tion the solution of the previous stage.

This method was first applied to the hydrodynamic
equation (2.27) with the boundary conditions (2.19)—
(2.22) and (2.28). We denote by T, the problem of
solving the equation with these boundary conditions
except that (2.21) is replaced by

¥0,9) =y + 31 — oy — ¥,

and let us call the solution ¥.(x, ¥). When ¢.(z, y)
has been found, we can take it as the first approxi-
mation in the relaxation solution of T.,.. (say).
Now e = 0 corresponds to parabolic flow throughout
the region and so ¥,(x, ¥) is known. Starting from
this we advanced by intervals of Ae = 0.1 until
we had found y,(z, y), ie., the solution of the
problem. In fact it was not necessary at the inter-
mediate stages to carry the relaxation procedure
to final convergence.

The introduction of the magnetic field was
achieved in a similar way. Having solved the prob-

8 M. Kawaguti, J. Phys. Soc. Japan 16, 2307 (1961).
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lem with the appropriate R, for M = 0, we then
introduced a field e/ and again advanced ¢ by
stages to ¢ = 1.

It was also found possible to advance from the
solution for one value of B to that for another
value by similar stages.

(c) Accuracy of the Solution

A number of steps were taken to ensure an
adequate level of accuracy in our relaxation solu-
tion. The computations were first carried out on
a relatively coarse grid (b = +%). After convergence
the interval was halved and the relaxation procedure
restarted, taking as first approximation the result
of the previous convergence, with fourth-order inter-
polation at the new mesh points. After each re-
finement the relaxation was continued until the
fifth significant figure of ¥ was stabilized at all the
points of the lattice. This process was actually
executed three times so that the final solution was
for a square lattice with side h = 1/80.

As might have been expected refinement of the
lattice, at any stage, affected the solution only in
the neighborhood of the singularity on the wall
at the inlet. Indeed it was this which led us to
modify the program as mentioned in (a) above.

Another matter that had to be determined was
for what value z. of ¥ we could safely assume that
(2.25), (2.26) adequately represented the flow. We
did this by assuming successively increasing values
for z., until the flow pattern ceased to be significantly
affected by further increases.

As a check on the accuracy of our results, we
compared them with results obtained by other
methods. This will be described below in Sec. IV,
A more detailed account of the measures adopted
to safeguard accuracy is given in Ref, 2.

IV. COMPARISON WITH RESULTS OBTAINED
BY OTHER METHODS

Most of the results obtained by other workers
in this field relate to flow at high Reynolds number
and use boundary layer approximation.*™® As a
check on our accuracy, we carried out the com-
putations for some of the problems up to Reynolds
number, B = 500. The results for B = 500 could

( 4 J.) R. Bodoia and J. F. Osterle, Appl. Sci. Res. A10, 265
1961).
( 92 ?EJ).-L. Hwang and L-T. Fan, Appl. Sci. Res. B10, 329
1 .
¢ M. Roidt and R. D. Cess, J. Appl. Mech. 84, 171 (1962).
7 H. 8chlichting, Boundary Layer Theory (McGraw~Hill
Book Company, Inc., New York, 1960), 4th ed., pp. 169-171.
8 W. T, Snyder, private communication (1964).
% B. M, Sparrow, S. H. Lin, and T. 8. Lundgren, Phys.
Fluids 7, 338 (1964).
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Fia. 1. Centerline velocity for various values of Reynolds
number (no magnetic field). The results of Schlichting and
of Bodoia and Osterle for B — « are shown for comparison.

be compared with the boundary layer work [see
Fig. (1)]. In some cases it was convenient to ex-
trapolate from our results to B = « for more effec-
tive comparison with boundary layer results (see
Tables I, II).

Another check was obtained by linearizing the
equations and treating the flow as a perturbation
of the parabolic (or Hartmann) pattern, This was
of no interest for small values of = but could be
expected to represent the flow reasonably well for
large x. We sought to solve these linear equations
by functions of the form

¥, y) = ¥(, y) + }3 A.(y) e,

)

Bz, y) = B(=, y) + an(w e,

(4.1

Substituting this and using the boundary econditions,
B,(+1) = A (&1) = 4,(x1) = 0, we obtained
an eigenvalue equation for the «, with smallest
real part. This determined the asymptotic behavior
of the flow for large z. The predictions based on
this method could be compared with the relaxation
solution. A fuller account of the asymptotic be-

TasLe I. Comparative values obtained for excess
pressure drop for B — = (no magnetic field).

q Author
0.271 Kinetic-energy end-correction
0.300 Schiller
0.313 Schlichting
0.312 Hwang and Fan
0.314 Snyder
0.315 Roidt and Cess
0.326 Sparrow, Lin, and Lundgren
0.331 stimation from Table VII
0.338 Bodoia and Osterle
0.425 Han
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TasLg II. The point z,, where terminal régime is
97 9, established, i.e., u( ©, 0) — u(zy, 0) =
0.03 [u( , 0) — (0, 0)].
R M R, Xe Xo/R
0 0 1.26
0.5 0 1.26 2.52
5 0 1.38 0.276
20 0 2.26 0.113
50 0 4.85 0.0970
100 0 9.31 0.0931
200 0 18.23 0.0912
500 0 44 .8 0.0896
© 0 0.0884
(extrapolated)
20 0 2.26
20 1 0.0001 2.15
20 2 0.0001 1.90
20 5 0.0001 1.18
20 10 0.0001 0.78
20 30 0.0001 0.4
200 0 18.23
200 1 1 17.32
20 1 0.0001 2.151
20 1 0.1 2.149
20 1 1 2.131
20 1 10 2.001
20 1 50 1.890
20 1 @ 1.792

havior of the flow will be published in a subsequent
paper. Suffice it to say at this stage that the agree-
ment was satisfactory.

A further check was made possible by the analytic
solution of the hydrodynamic equations for the
case & = 0 (Stokes’ flow). This has already been
described in some detail (see Ref. 2, Chap. V).
The agreement was within the estimated accuracy
of our computation (four to five significant figures
for ¢ and its first partial derivatives). This check

1

' 1 T 7 !
w0 wbdz  wbe ;

' T ! T 7
208 08 wl0 a2 asld sl w8 xb0

Fig. 2. Development of velocity profiles: B = 20, M = 0.

I | 3 ' i I
%02 x04 %06 08 =10 x21.2 =14  xxi6 xB k120

F1c. 3. Development of velocity profiles: B = 500, M = 0.
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was particularly useful since that obtained from
comparison with boundary layer work covered only
the case of large R.

As an additional check we tried varying the finite
difference formulation using higher-order approxi-
mations. The effect on the ultimate solution was
very small indeed, equivalent, in fact, to one further
refinement of the lattice.

V. NUMERICAL RESULTS FOR STRAIGHT
CHANNEL

(a) Velocity Profile

For large values of = the velocity profile tends to
a limiting form which is parabolic in the absence
of a magnetic field but which, in the presence of a
magnetie field, is given by the Hartmann form

u = K(ecosh M — cosh My), (5.1)

where M is the Hartmann number and
K = (cosh M — M sinh M)™.

However, for small = the velocity profile is quite
different from this and is not even convex. We give
in Fig. 2 some velocity profiles for a few values
of z for the case B = 20, M = 0, and in Fig. 3
profiles for B = 500, M = 0.

The presence of a magnetic field does not affect
the picture in any fundamental way. In Fig. 4
we show the situation for R = 20, M = 10, R, =
107*. The characteristic shape for small z includes
a local minimum on the axis y = 0 and symmetrically
situated maxima on either side of it. The physical
explanation of this phenomenon is presumably that,
with the slowing down of the fluid at the walls,
the flow in the core must be accelerated. This effect
is first felt in the vicinity of the walls, and one has
to travel some distance downstream until the ac-
celeration effect reaches the axis.

For any given z, let Yuu [= ¥max(@)] be the value
of y for which u(z, y) has its maximal value, %..(say),
le.,

) I ' |
| 1 | i | |
x=0 x=02 x:04 x=06 x08 x=1.0

=10, By = 1074

Fig. 4. Develop;lnlent of velocity profiles: B = 20,
P —4
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Umaz(®) = Max u(z, ¥) = U[X, Ymax(T)].

The amplitude of the velocity profiles is defined by
Ar(2) = Upa(x) — u(0).

Let A(R) denote the greatest value of Ax(z) as z
varies and & the value of z at which Az(x) = A(R).
We show in Table III values of A, %, Yumu(Z) as
functions of R in the absence of a magnetic field.
Fuller details are given in Table IV.

The possible role of the point of inflection as a
source of instability should be emphasized. As in-
dicated above, the introduction of a magnetic field
does not lead to any qualitative change in the be-
havior of the velocity profile. Indeed the magnetic

TasLe III.  Amplitude of inflexion in velocity
profile [see Sec. V(a)].

R [I - z ymax(f)
50 0.143 0.24 0.77

100 0.158 0.21 0.83

200 0.166 0.16 0.89

500 0.168 - 0.10 0.94

TaBLE IV. Location and amplitude of maxima of

velocity profiles,

R x u(z, 0) Umax(Z) Ymax()
0 0.05 1.00494 1.07 0.92
0.10 1.0187 1.075 0.84
0.15 1.0397 1.080 0.75
0.20 1.0662 1.091 0.66
0.25 1.0967 1.1078 0.54
0.30 1.1296 1.1319 0.37
20 0.1 1.00553 1.105 0.86
0.2 1.0223 1.129 0.75
0.3 1.0494 1.149 0.65
0.4 1.0849 1.168 0.571
0.5 1.1258 1.1881 0.496
0.6 1.1693 1.2098 0.421
0.7 1.2125 1.2340 0.347
0.8 1.2535 1.2613 0.262
0.9 1.2911 1.2917 0.140
500 0.1 1.000770 1.169 0.94
0.2 1.00302 1.163 0.905
0.3 1.00659 1.156 0.879
0.4 1.0112 1.151 0.856
0.5 1.0166 1.148 0.836
1.0 1.0477 1.142 0.754
2.0 1.0998 1.151 0.64
3.0 1.135 1.168 0.55
4.0 1.162 1.189 0.48
6.0 1.211 1.223 0.37
8.0 1.252 1.256 0.26
10.0 1.2879 1.2882 0.13
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Fig. 5. Lines of magnetic force; R = 20, M = 1, various Rp.

lines of force also show similar behavior (see Fig.
5). ’

(b) Velocity along Axis

The value of the velocity on the axis y = 0 is a
useful parameter for characterizing various features
of the flow. The asymptotic behavior of this pa-
rameter for large = can be discussed analytically
(see Sec. 1V above), but here we present the in-
formation about this parameter obtained from the
relaxation solution of the complete equations. In Fig.
(1) we show the graphs of u as a function of x for
various values of R for the hydrodynamic case
(M = 0). To make clear the way in which the flow
pattern can depend on the magnetic field, we also
present Figs. 6 and 7. In the former we have taken
R = 20, M = 1 and show u(z, 0) as function of «
for various values of R,. In the latter we have fixed
R = 20, R, = 107* and show the set of graphs of
u(z, 0) for various values of M,

(c) Behavior for Small x, y

It is found from the relaxation solution that in
the immediate vicinity of x = y = 0, ¥ can be
represented very accurately by

Yy + 2y, (5.2)

where 7 is a constant. We tabulate below in Table
V wvalues of 5 corresponding to various values of
R, R., M.

We see from the table that, for large R, 5 varies
as R}, This is in accordance with boundary-layer
theory, since the displacement thickness is propor-
tional to R™*, and so therefore also the correction
to the potential flow.

However, the range of values of z for which our
simple representation (5.2) holds is practically in-
dependent of R and is of length about 0.3. In terms
of the variable z/R, which is the independent vari-
able in the similarity solution of the boundary
layer equations, this length tends to zero and u

Downloaded 24 Jul 2011 to 155.101.242.97. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



696

A. BRANDT AND J. GILLIS

Fia. 6. Centerline velocity in magnetohydrodynamic case. Solid curves are for R = 20, R =

The broken curve 1s for B = 20, B = 50, M =

in fact increases as 1 + (v/R)! in the vicinity of
= 0 (see Fig. 1).
A similar study has been made of the behavior
of the magnetic field for small z; y. It turns out

that the transverse component is closely approxi-
mated by

B, ~ M — 1R,

where 7 depends on R, M alone. Values of 7 as a
function of M, R, are given in Table VI.

(d) Pressure Drop

The pressure drop in the inlet region was com-
puted by direct numerical integration of the equa-
tions of motion. In the absence of a magnetic field
this is entirely straightforward It is understood

that, in the parabolic region, ap/ay 0, ap/ox =
—6/R. We have defined
o(y) = lim [p(0, y) — p(z, y) — (6z/R)],  (5.3)

Eand 3

i.e., the excess pressure drop due to departure from

1.50 i

104, and various values of M.

1 (cf. Fig. 7). The dotted curve is for B = 200 Ron=M =

parabolic flow in the inlet region. In Table VII
we show ¢(y) as a function of y, B for values of
R from 20 to 500. We have also calculated the result
of extrapolating to B = «. Boundary layer theory
requires ¢(y) to be independent of y and, indeed,
our extrapolated values for B — o show a good
approach to this situation. For comparison we have
listed (Table I) some values obtained by other
workers for large R. The situation for small R is
shown in Table VIII. It should be noted that ¢(y)
is essentially the pressure distribution needed at
the face £ = 0 to maintain the input flow as specified.
When the magnetic field differs from zero, the
situation becomes more complex. We see from (2.1)
that

Vi/e) —¢] =v Vu+ p ' JxB — (u-Viu; (5.4)

¢ is the potential of any external forces other than
the magnetic field. It cannot in the nature of things
be calculated apart from p, and we therefore drop
the term from (5.4) and regard p — p¢ as being
the pressure. (Actually, similar considerations apply

149 |-

Hartmann

F1c. 7. Centerline velocities for B = 20,

M = 1, and various R.. The curve marked
R, = « is for the caseM = 0.
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TasLg V. Coefficient in expansion of y for small TasrE VII. Excess pressure drop ¢(y) as a function of
z, yly = y + nadyl. y and R (no magnetic field).
R M Rm ] nR? R
Y
0 0 2.07
0.5 0 201 149 20 50 100 200 500 (c?l);ttr;lp)
5 0 1.43 3.20
20 0 0.538 2.41
50 0 0.288 2.04 0.0 0.1180 0.2273 0.2632 0.2875 0.3077 0.3243
100 0 0.189 1.89 0.1 0.1225 0.2298 0.2650 0.2887 0.3083 0.3244
200 0 0.126 1.78 0.2 0.1364 0.2373 0.2704 0.2922 0.3103 0.3252
500 0 0.077 1.72 0.3 0.1615 0.2517 0.2799 0.2983 0.3135 0.3260
o 0 1.70 0.4 0.2016 0.2716 0.2944 0.3079 0.3183 0.3266
(extrapolated) 0.5 0.2627 0.3033 0.3159 0.3211 0.3251 0.3284
20 0 0.538 0.6 0.3580 0.3507 0.3477 0.3420 0.3369 0.3327
20 1 0.0001 0.522 0.7 0.524 0.431 0.399 0.374 0.356 0.344
20 5 0.0001 0.48 0.8 0.88 0.563 0.493 0.43¢ 0.389 0.353
200 0 0.126 0.9 1918 1.010 0.737 0.589 0.474 0.381
200 1 1 0.12
20 1 0.0001 0.522
20 1 1 0.530
20 1 50 0.538

in the hydrodynamic case, and we have tacitly
assumed them.) A more serious difficulty, specific
to this case, arises from the fact that our relaxation
solutions for ¥, 8 does not give us all the informa-
tion required for the integration of the vector equa-
tion (5.4). The first two components of this set can
be written (in the dimensionless variables, and with
p — po replaced by p)

ap/aw = 2R_1(V2u + J2B3 —_ JaBz)

— [u(du/oz) + v(ou/oy)],  (5.5)
ap/dy = 2R™'(V* + J3B, — J,By)
— [w(ov/ox) + v(av/dy)]. (5.6)

To make the problem definite we assume that
the boundary conditions are such as to ensure that
Ji = J, = 0 throughout the field. Since none of
the variables depend on 2z it follows from (2.3)
that J, and J, will both vanish everywhere provided
that dB;/dx = dB;/dy = 0, ie., B; is constant.
We may remark that, in terms of our dimensionless
variables, Js = (—2/R.)V?®8 and is in fact deter-
minable from the relaxation solution.

TaBLE VI. Change in magnetic field in immediate
vicinity of inlet for small Ry, : B.

2 =

= Tilm.

R M T
20 0 0.000
20 1 0.041
20 2 0.079
20 5 0.157
20 10 0.214
200 1 0.014

We note that for large z, when the Hartmann
flow is fully established,

ap/dx ~ —(2KM/R)sinh M = P, (say), (5.7)
op/dy = (3/3y)[— (R.K*/2R)
.(sinh My — ysinh M.  (5.8)
If now we define
¢u(y) = lim [p(0, ) — p(z, 9) + Piz],  (5.9)

it can easily be seen that it goes over to ¢(y) in
the limit of small M. In Table IX we show gu(¥)
as function of y for B = 20, R, = 0.0001, and
various values of M; and also for a range of R,
with M = 1.

(e) Distance to Termal Regime
We define z., as the smallest value of z for which
[u(e, 0) — u(z, 0)] = 0.03[u(>, 0) — (0, 0)].
(5.10)

TasLE VIII. Excess pressure drop (times R) for small
Reynolds numbers (no magnetic field ).

R
Y

0 0.5 5 20
0.0 —4.86 —4.56 —-2.59 2.36
0.1 —4.74 ~4.45 —2.51 2.45
0.2 —4.38 —4.11 —2.24 2.73 |
0.3 —3.74 —3.50 -1.79 3.63
0.4 —2.74 —2.49 —1.12 4.03
0.5 —1.24 —1.16 ~0.06 5.25
0.6 1.04 1.07 1.83 7.16
0.7 4.75 4.76 5.28 10.48
0.8 12.1 12.1 12.4 17.36
0.9 33.9 33.9 33.9 38.36
0.95 77 rich 77 81
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TasLe IX. Excess pressure drop ¢(y) in inlet region for various R, Ry, M as function of y.
R ' 200 200 20 20 20 20 20 20 20
By 1 50 10 1 0.0001 0.0001 0.0001

M

Y

1 0 1 1 1 1 2 5 0
0 0.266 0.287 —0.23 0.028 0.090 0.091 0.029 —0.13 0.1180
0.1 0.268 0.289 -0.22 0.033 0.095 0.096 0.034 —0.13 0.1225
0.2 0.271 0.292 —0.20 0.049 0.108 0.111 0.049 —0.13 0.1364
0.3 0.278 0.298 —0.16 0.077 0.133 0.137 0.072 —0.11 0.1615
0.4 0.288 0.308 —-0.10 0.120 0.174 0.178 0.112 —-0.07 0.2016
0.5 0.301 0.321 —0.027 0.187 0.236 0.243 0.174 -0.01 0.2627
0.6 0.323 0.342 0.082 0.29 0.34 0.34 0.27 0.09 0.3580
0.7 0.356 0.374 0.26 0.48 0.52 0.52 0.44 0.26 0.524
0.8 0.414 0.434 0.66 0.86 0.90 0.91 0.8 0.6 0.868
0.9 0.581 0.590 1.7 2.1 2.1 2.1 2.0 1.8 1.918

We have described elsewhere’ the nature of the
dependence of z., on R in the absence of a magnetic
field. For the sake of completeness we include the
results below in Table II, along with those for
the magnetohydrodynamic problem, comparing them
in Table X, with results obtained for large R
by other workers. These results are also of im-
portance for checking the accuracy of the solution
because of their close relation with the coeflicient
a; featuring in (4.1).

It should be noted that for R, >> 1 the flow can
still vary considerably even for z greater than the
value of .. given by (5.10) (cf. Fig. 7).

(f) Growth of Boundary Layer

We define the boundary layer as the region near
the solid boundary in which u(z, ¥) < 0.9 u(z, 0). It
is clear, that for large z, the growth of this boundary
layer will be materially affected by the opposite
wall, but there is some interest in studying the rate
of growth for small and moderate z.

Denoting the thickness of the boundary layer
at either one of the walls by §(x), we plotted log é(x)

TasLE X, Distance to the point z, where terminal
régime is 979, established: result for large
R (M = 0), compared with results obtained
by other workers.

To/R Author

0.0800 Schlichting

0.0844 Hwang and Fan

0.0880 Bodoia and Osterle

0.0884 Extrapolation from Table IT
0.0908 Roidt and Cess

0.0965 Snyder

against log z and found that, for the initial values
of xz, the points lay on a straight line. The slope
of this line, A (say), depends on the physical pa-
rameters and we give below, in Table XI, values
of A as a function of R, for the hydrodynamic case
M = 0.

(g) The Magnetic Field

The development of the Hartmann magnetic field
in the inlet region has also been calculated. Defining

we present in Fig. 8 curves which show the develop-
ment of AB(x) and its dependence on the physical
parameters. In Fig. 5 we show typical lines of mag-
netic force for various cases.

We note incidentally that for a perfectly con-
ducting fluid (R, — «) the flow in the inlet region
(outside of the magnetic boundary layer) reverts
to the hydrodynamic pattern, while the magnetic
lines of force travel with the stream. In this con-
nection we draw attention to Fig. 7 and to the
broken curve in Fig. 6.

TasLe XI. Growth of boundary layer, proportional

to z«. Depencence of « on A.
R a
0 1.2
5 1.1

20 0.94

50 0.81

100 0.73

200 0.68

500 0.59

o 0.49

(extrapolated)
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Fic. 8. Development of z component of magnetic vector potential on centerline; A8 = $(z, 0) + Mz. Curves are for B = 20,

= 1, and various Rn.

We might mention that previous workers on this
problem have neglected the change induced in the
magnetic field by the flow. This is valid for B, < 1,
but certainly not otherwise.

VL. WANG AND LONGWELL’S SOLUTION

We are grateful to a referee who has drawn our
attention to an interesting paper by Wang and
Longwell." Using a notation slightly different from
ours, these authors have solved a case of the hydro-
dynamic problem (in our notation, the case M =
R = 140). The complete equations were solved
without any approximations, though the numerical
procedure differs from ours. They have reduced
the fourth-order differential equation to a pair of
second-order differential equations by introducing
the vorticity « and the additional equation

w= —Vy. (6.1)

The difficulty of locating z., was circumvented by
a change of coordinates

=1—-(104+cx)" (6.2)

in which ¢ is a positive constant. The actual finite
difference formulation is that applied by Allen and
Southwell® to a different problem and is rather
more sophisticated than ours. Although they worked
on a considerably coarser grid than that used in
this paper, their results are in substantial agreement
with ours. In particular, they too obtained, for small

10 7. L. Wang and P. A. Longwell, J. Am. Inst. Chem.
Engrs. 10, 323 (1964).

11 D, N. de G. Allen and R. V. Southwell, Quart. J. Mech.
Appl. Math. 8, 129 (1955).

The broken curve is for the case R = 200, Ry = M = 1.

values of z, velocity profiles very similar to those
shown in Figs. 2, 3.

Defining the inlet length L as the distance from
the entrance at which the center line velocity
achieves 989 of its asymptotic value, they find that,
in our notation,

L ~ 0.067 R. (6.3

Tables of velocity components obtained by us® sug-
gest that 0.07 might be a more accurate value.
Since dn/dx tends to zero with increasing z, a quite
small discrepancy in 5 will lead to a relatively large
change in . This may well be the source of the
discrepancy.

We should also mention that Wang and Longwell
dealt with another physical case, in addition to that
already mentioned, viz., that of a channel from z =
— . to , but with the same conditions as ours
imposed at = 4+ 0.

VII. CONCLUSION

We mention in conclusion that more complete
numerical results for the special case M = 0 have
been tabulated elsewhere (Ref. 2). All of the nu-
merical work reported here was executed on the
Control Data 1604A computing machine at the
Weizmann Institute of Science.
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