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1. INTRODUCTION

This is an intermediate report of an on-going research. Its purpose
is to examine the fundamental questions related to numerical stability and
fast multi-grid soiutions for boundary~value problems (BVPs) which are not
elliptic, or in which the elliptic principal part is small. We will refer
to the latter as singular perturbation problems. We are particularly in-
terested in genuine BVPs, i.e,, problems in which there is no one particu-
lar coordinate that can be singled out as the direction of evolution (time).
Many steady-state problems in fluid dynamics, and in other fields, are of
this type. Fast multigrid solvers are by now fairly developed for elliptic
BVPs, including elliptic systems arising in steady-state fluid dynamics
[14], [9]. They are far less developed and far less understood for BVPs

not dominated by ellipticity.

We will consider the non-elliptic and the singular perturbation cases
as one and the same. Namely, non-elliptic BVPs will be considered as limits
of elliptic BVPs. 1In all physical situations familiar to us there is a
natural, physical way of doing this. For example, the steady-state Euler
equations (inviscid flows) can be considered as a limit of the full (vis-
cous) compressible steady-state Navier-Stokes equations, with static dif-
fusion added to the continuity equation to gain full ellipticity (see [13]).
This limit is no artifice; only solutions which are obtainable as such
limits are physically valid. 1In this way we can often avoid dealing with
the time-dependent problem (except when the steady state really depends
on the initial conditions) and develop very fast multigrid solvers, sol-
ving the steady-state problem in computational work equivalent to just few

explicit time steps. We also avoid the need for dealing explicitly with



entropy conditions and their numerical enforcement. We can indeed re-
gard our multigrid algorithms (e.g., the FMG algorithm) as including a
continuation process in which we start with viscous solutions, and grad-
ually eliminate viscosity (see Sec. 4.4).

Artificial elliptic singular perturbations, mainly known as artifi-
cial viscbsityy have long been used in numerical solutions of non-elliptic
problems, either directly or in the form of up~stream differencing. They
are needed because locally, on the scale of the grid, characteristic direc-
tions cannot be approximated, unless they coincide with grid directions.
Here we prefer the explicit use of the physical artificial viscosity.

Its use is often less expensive then the use of upstream differencing;
especially in complicated systems (see [13]). Also, in multi-dimensional
problems, upstream differencing is rarely the most efficient discretiza-
tion to be used in multigrid relaxation, since it requires more compli-
cated and expensive relaxation schemes (owing to accidental alignments

of characteristic directions with grid directions). What really counts
is not the static properties of the discretization, but the dynamic pro-
cesses associated with it. We have found it advantageous to use artifi-
cial viscosity (anisotropic only in as much as’the alignment between grid
and characteristic lines is not accidental) in the relaxation process,
and then to employ straight central differencing, with no artificial terms,
in calculating the residuals to be transferred from finer grids to coarser
cnes. This "double discretization" scheme pfovides us with the accuracy
of the central differencing without its instability.

Fast multigrid solvers for non-elliptic and singular perturbation
fluid-dynamics BVPs were discussed before [3] [5] [17] {18] [25] [28] [30] [31]

[35] [38] . The present research is a continuation of [7] and [8], and



it studies more systematically and in more generality some of the basic
issues concerning multigrid processes for problems nbt dominated by ellip-
ticity. Starting with general concepts of stability and multigrid effi-
ciency on one hand, and with the examination of the simplest examples on
the other hand, we study the basic differences between treating such pro-
blems and the usual treatment of regular elliptic problems.

They differ in many details: The discretization methods are dif-
ferent, the role of relaxation is put in a new perspective, the need to
treat discontinuities introduces new considerations, new techniques of
residual transfer and of interpclation, new algorithms with more coarse-
grid corrections and less relaxation, etc. The local mode analysis, re-
gularly used to choose algorithms, predict their behavior and debug the
programs, has to be modified, too. We have found, through this systematic
study, a number of conceptual mistakes in our previous multigrid codes
for non-elliptic problems, even in those which gave vast improvements
over other approaches.

The insights gained, the methods developed, the rules realized, and
the know how accumulated so far, are summarized in this article ({(see the
table of content above). The study is not yet completed, various alter-
natives have not yet been compared, and the numerical experiments are still
running. A twin article is [13], which consists of a major fluid-dynamics
application, while here we present the material in terms of much simpler
examples.

It is assumed that the reader is familiar with basic multigrid ideas
and algorithms. Otherwise he is referred to other papers such as [5].

If he is interested in developing codes himself, he may like to consult

[10] or the more updated [12].
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Although we basically treat here boundary-value problems, much of

this work is also relevant for time-dependent problems. For example, in-

tegrating a time-dependent problem by a difference equation of the form

h

h
QE u{t+At) = Q0 u(t) over a long time interval, the operator Lh = Q?-—Q2

should be semi h-elliptic (see Sec. 3), lest the solution will eventually
develop strong numerical spatial oscillations. Fast multigrid solvers
can of course be used to solve the systems of equations arising from im-
plicit time steps [5], [15]. Sometimes these solvers need to use finer
grids only once in many time steps, making these implicit steps far

less expensive than the usual explicit ones (see Sec. 3.9 in [36]). The
multigrid adaptation structure (see again Sec. 3.9 in (36]) and coarse-
grid higher-order correction techniques (see Sec. 5.5 below) are also
very useful to evolution problems.

One case of singular perturbation problems covered by a separate
study [16] is that of problems with highly-oscillating selutions, as en-
countered in acoustics, electromagnetic wave théory, etc., which requires
a totally different multigrid approach.

The present work has benefited from numerical experiments performed
by C. BYbrgers, N. Dinar, M. Donovang and D, Sidilkover. Some more experi-

ments are reported by B¥rgers in {37].



2. MULTIGRID DOUBLE DISCRETIZATION

On any given grid participating in multigrid interactions, discrete
approximations to the continuous operator L are used in two different
processes: in the relaxation sweeps, and in calculating residuals to
be transferred to coarser grids. The two discretization schemes need not
be the same (Sec. 3.1l in [14]). The discretization LE employed in the
relaxation sweeps must be stable, but its accuracy may be lower than the
one we wish to generate. The discretization L? used in calculating the
transferred residuals determines the accuracy of our numerical selution,
but it need not be stable. This double discretization scheme is especially
useful in dealing with non-elliptic and singular perturbation problems,
where a certain conflict arises between stability (needed for high-frequen-
cies, hence treated at relaxation) and accuracy {(a low-frequency property,
hence treated mainly by coarse-grid corrections). Thus we can use the
most convenient (but sometimes unstable) central differencing for L?,
and add artificial viscosities (as described in Sec. 3} only to LE.
This will ensure stable solutions which still have the accuracy of the
central differencing.

Note that such a multigrid process will not converge to zero resi-
duals, since it usesg two conflicting difference schemes. The very point
is, indeed, that the solution produced is a better approximation to the
differential solution than can be produced by either scheme.

Double discretization schemes can of course similarly be applied to

boundary conditions; e.g., to Neumann conditions: Simple first-order

schemes can be used in relaxation, while second-order Neumann conditions



(which are sometimes complicated and may sometimes be unstable) can be
used to transfer boundary-condition residuals to coarser grids. (There
should of course be a clear separation between these residuals and interior-
eguation residuals.)

Two-grid double discretization schemes can also be useful in time-
dependent problems (see Sec. 5.5).

Whenever a double discretization scheme is used on the finest level,
it can also be used on coarser levels. This will give better coarse-grid
corrections, and hence faster algebraic convergence. (In non-elliptic
and singular-perturbation cases the algebraic convergence is most often

determined by the quality of the coarse-grid correction. See Sec. 5.1.)

2.1 FAS egquations

A point to notice is how to use this double scheme on coarser levels

together with the Full Approximation Scheme (FAS, described for example

in [S5], [7], [14], [9], and used to treat nonlinear problems or to con-
struct local refinements). One way to write these FAS equations is as

follows. Let

L o = . (=01 (2.1)

be the two discretized equations on the finest grid. That is, these are

the equations used at any point X where a finer-grid approximation

L? o does not (so far)} exist. Then at points x where a finer-grid

]

approximation Lh uh does exist (usually for h

1 H/2), the coarse~grid

equations (2.1) will use modified right-hand sides, defined by

H_ _H, H h
Fi-Li(Ihu)+,I

h h h
i (Fl-Iﬁ u), {2.2}

5w



H H s .
where Ih and iIh denote fine-to-coarse transfer operators, not necessarily

the same {see Sec. 6.4}). Egquation (2.1) with i=0 is used in relaxation on

grid H, while i =1 is used, as in the last term of (2.2), to calcu-

late residuals CFT = Lllfﬁ to be transferred to the. next coarser grid

(2H) . Otherwise FAS processing proceeds as usual (but see also Sec. 4.3).

H

This scheme seems to require the calculation of both F. and FH P

0 1

and pg;haps storing both. That, however, does not cost much more than

usual, since FH and FH normally differ only on coarser grids, not on

1l 0
H
the locally-finest. Even on coarser grids, the difference between Fl
H : i i i ; R :
and F0 in applications considered below is only in few terms (vis-

cosity terms), hence calculating PH from FT is inexpensive indeed.

0

H ; .
In many cases F1 is calculated anyway in th4 process of calculating

H . H_ _H
FO (provided OIh = lIh)‘

2.2 PRole of relaxation and algorithmic implications

The rcle of relaxation in multigrid processes is to smooth the error,
i.e., to reduce high-frequency error components wherever their amplitude
is large {large compared with the high-frequency errors produced when the
low-frequency errors are interpolated)}. The "error" in this statement is
usually thought of as the algebraic error, i.e., the difference Uh-uh
between ocur calculated solution uh and the exact discrete solution Uh.
In view of the double discretization scheme,.however, it becomes clear that
what relaxation should really do is to reduce the high-frequency differen-
Eig& error, i.e., the difference U-uh, where U 1is the solution to the
differential equations. In fact, this is the true role of relaxation even
when double discretization is not used, if what we want is to approximate

h
U, not U .
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Thus the important measure of efficiency of relaxation is not the al-

gebraic smoothing rate, but the differential smoothing rate, the rate of

reducing IIU--uh il. This is not usually recognized because the later rate
is not constant; it is not solely determined by the relaxation scheme, but
also depends on uh. When uh is closer to U than to Uh, the dif-
ferential smoothing rate can in fact be negative. The algebraic rate, on
the other hand, depends only on the relaxation scheme and can easily be
calculated. But it should be kept in mind that this calculated rate is
important only as long as the high-frequencies in U-—uh are large com—
pared with those in U-—Uh . Below this level the algebraic rate may mis-
lead (see end of Sec. 3.3 and Sec. 7.2).

This observation leads to another: The stability of LE is not im-
portant by itself. This is a static property, while what counts in the
final analysis is the overall dynamic process of relaxation. Good stgbility
measures (see Sec. 3) are only tools for obtaining efficient (differential)
smoothing rates, which are the only ultimately important measures. Such

rates are relatively easy to calculate, since they are local. Thus, to study

h

Lo

and associated relaxation schemes one can use local mode analysis (see
Sec. 5}, and it is enough to consider principal and sub-principal terms (see
Sec. 5.6).

One qualification, though. If p, the overall approximation order

obtained, is higher than the approximation order Py of Lh

0 {due to double

discretization), then the influence of relaxation on low-frequency components

may be significant. Suppose the relaxation has convergence order Toi that

is, every mode exp(i®+*x/h) has convergence factor u(8) per relaxation
r
sweep such that |[1 - u(@)l < ogiel O) - Each relaxation sweep then intro-
Potrg
duces a relative change 0(|8] ). to a higher-crder approximations. To

retain the approximation order p we must therefore have Xy tpPy3p. To
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avoid degrading even the coefficient in the p-order approximation, it is
even desired to have I, Py > P This is particularly important in non-
elliptic and singular perturbation problems, where some schemes may have
X, =0; e.g., (locally) downstream relaxation schemes with upstream differ-
encing for (locally) hyperbolic systems (or reduces systems).

There are three important algorithmic implications to this in case the

; 3 h
approximation order p used in L

1 does exceed, or even equals Xy *+Pg -

First, one should not perform relaxation sweeps after returning from the

coarse grid, only before it or in between two switches to the coarser grid.
Secondly, since the coarse-grid correction should improve the approximation
order, not just reduce the algebraic error by a fixed factor (Zp or so},

it is safer to use W cycles rather than V cycles (see Sec. 6.1). Thirdly,
since the correction we interpolate from the coarser grid is O(hpoy, and

we like it to have errors no larger than O(hp ). the interpolation order must

be at least p-~- Py preferably p - Py + L.

Other implications of the double discretization is the need to use
full weighting in transferring residuals to coarser grids (see Sec. 6.4),
and some advantages and disadvantages of red-black relaxation schemes (see
Sec. 6.3).

In case ;)>2p0 it is not enough to have an order-p0 solution on the

; ; h | ; ; ,
coarser grid. Hence, if L is used in relaxing on the ceoarser grid, a

0
double discretization scheme must be used there, too, otherwise the approxi-
mation order p will not be attained. To avoid degrading even the coefficient

of the order-p approximation, it may be desired to use cocarse-grid double

discretization even when p = Zpo. It is not needed when p< 2p, -

2.3 Fine-grid defect corrections are not useful,

Instead of raising the order Py of the relaxation operator Lg §
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an alternative approach seems to be the use of defect corrections on the
fine grid. We correct, that is, the right-hand side of the equation by
the functi Lh -, here L© 1 higher-order (ord > Pp)
e function L, uy=-Lyu,, wher o 1is a higher-order (order p, >p,
operator and u, is our last approximate solution, and then we relax on
the resulting equation with its low-order operator Lg + This would in-
P2+r0 Po+r0
troduce changes of(l81] ) instead of O(|8] '}  per relaxation
sweep. On closer examination, however, this idea is not useful: After
the defect correction, high-frequency errors are no longer suitably re-
duced by further relaxation sweeps —-- defeating the very purpose of re-

laxation. For example, if Lg is unstable, i.e., if there is a high-

h
frequency error v such that L

> v=0, then it is easy to see that,

after the defect correction, the error v shows no residuals and hance

it cannot be affected by relaxation.
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3. STABILITY MEASURES AND RELAXATION

The discrete operator Lg used in relaxation needs to be stable,
although it is not exactly the stability of this static operator which is
important, but rather the overall process of relaxation: What counts in
the final analysis is the overall efficiency with which the relaxation
sweeps reduce large high-frequency error components and avoid from ampli-
fying low-frequency ones (cf. Sec. 2.2) ., sStill, the first step in con-
structing good relaxation schemes is to have discrete operators with good

measures of stability.

The discretization of singular-perturbation BVPs is usually guided
by one-dimensional ideas which are sometimes useful in higher dimensions,
but are also misleading. These include exponential fitting methods
(extendable only to very special higher dimensional situations), the con-
cept of positive-type difference operators (which is often a useful guide,
but is generally neither necessary nor sufficient for stability, nor is it
always desirable), and up-stream differencing technigues. The latter are
usually very useful, but often they call for unnecessarily complicated
relaxation schemes (see Sec. 3.3), and they should he replaced by a more
precise rule near discontinuities (see Sec¢. 4.2). Moreover, none of the
above concepts gives general and precise rules for numerical stability
of BVPs. A general stability theory for purely elliptic singular pertur-
bation equations (where both the reduced equations and the singular per-

turbation are elliptic) has been advanced by L.S. Frank [20], [21], but



we are mostly interested in cases where the reduced problem is not ellip=
tic, which is the usual sgituation -in fluid dynamics and other applications.
Like Von-Neumann analysis (and its extensions by Kreiss and others)
for time~dependent problems, precise rules for stability are obtained by
mode analyses. It turns out however that, especially for singular-pertur-
bation problems, the distinction between stable and unstable discrete opera-
tors is not so important. More important is the measurxe of stability (at
a given meshsize): When the stability measure is low the scheme is still
formally stable, but its actual behavior can be intolerably bad.
A simple example, typical to more complicated systems in fluid dyna-

mics and other fields, is the d-dimensional diffusion-convection equation

d
LUZ -eAU + ) a, 22 = F(x), (3.1)
€ ; J9x, =
i=1 3
discretized by central differencing as
h S
—ea™® 4 ] &, 50 =P, (3.2)

5o 33

where Ah is the (2d+l)-point Laplacian and 5?Uh(39 = [Uh(gfbj)*Uh(ffhj)]/(Zhj),

Ej==hjgj, Ej being the unit vector, and hj the meshsize, in direction xj 5
For any €>0 (3.2) is still formally stable: 1In contrast to a common
folklore, no dramatic loss of stability occurs when the equation loses its
"positive-type", i.e., when & becomes just smaller than Eh==§max(hjlaj|).
But for 0 <eg << Eh the solution may show large (even if formally bounded)
numerical oscillations; its behavior is evidently deteriorated.

A general measure of numerical stability can be defined as the

minimal amplification ratio among all acceptable modes, where the amplifi-

cation ratio of a mode is defined as its differential amplification factor

divided by its discrete one. For low-frequency modes (large wavelengths



-13-

compared with meshsize) this ratio is kept close to 1 by consistency.

The stability measure can therefore be defined in terms of high-frequency
modes alone, where no direct reference to the differential operator is re-
guired other than the distinction between several different situations

concerning the alignment of grid lines with characteristic lines.

3.1 h-Ellipticity

One situation is the general, or indiscriminating grid, where no

particular relation can be assumed between grid directions and character-
istic directions. Numerical stability of the difference operator Lh
can then be required to be isotropic, and can therefore be measured by

its h-ellipticity measure

) = min (BP@1 /1M, (3.3)
prg|Blsm

h ; ;

where Eh(ﬁ) is the symbol of L (i.e., Lh exp(ifi-x/h} = Ehte)exp(lg-_:i/h)),
h .
8= (8,,.-..89, I8l = max Iejl, gg@_—fejxj/hj and |[L| is some
. L h h, _ ~h
measure of the size of the coefficients of L, e.g., |L'|= maxIL (8)].
In case Lh is a system of gq difference operators {(operating on g
: : ~h i g ~h

unknown grid functions) then L (8) is a gqxg matrix and |L (8)|
should be interpreted as a measure of its non-singqularity (e.g., its de-
terminant, or its smallest eigenvalue). The range |§] s m is the range
of frequencies @ for which the Fourier component exp(if+x/h) is visible
to a grid with meshsize h (i.e., any component outside this range coin-
cides on the grid with a lower component inside this range). The range
pm £ 18} € m# in (3.3) is the range of "high-frequency” components on grid

h; i.e., components visible to grid h but invisible to a coarser grid
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with meshsize h/p . In multigrid applications p=%. See more about
ellipticity and h-ellipticity in [14] and [8].

A non-elliptic differential operator L can be approximated by an
h-elliptic difference operator Lh {(i.e., such that Eh(Lh) is not small),
by adding an o(hp) elliptic perturbation to a higher-order (e.g., central)
approximation L? &
turbations, defined on a square grid (hj==h) as follows: Let L=1im LE,

>0
where LE is elliptic and where the only physically acceptable solutions

The simplest such perturbations are the physical per~-

to L are those obtainable as limits of solutions to Le . The h-elliptic
approximation Lh to L 1is obtained as a higher-order (e.g., central)
approximation - to Le(h) + where e(h) is just large enough to
yield a good h-ellipticity measure. For example, (3.2) is made h-elliptic
by taking

e (h) = max[e, Bhal , a = max la.|, (3.4)
1si<d

where O < f = 0(1). A generalization for rectangular grids is (3.7) below.
Such physical perturbations are the safest device tq ensure physicality
of solutions, i.e., to allow only physically acceptable discontinuities.
By magnifying the physical singular perturbation terms to h-ellipticity
we smear the width of these discontinuities to the scale h. We let the
physics play its full role on a magnified scale visible to our grid. 1In
the above example, if e is sufficiently small, then using -e(h} instead
of €(h) in (3.2) would still produce an h-elliptic operator. But only
preserving the correct sign ensures that the discrete boundary layers will
appear exactly at the same end of each characteristic curve as in the dif-
ferential solution.
The physical perturbationg can easily be written in conservation form.

It is in fact their natural form, since all the terms are derived from the
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physical conservation laws. Higher-order physical approximations (cf.
Sec. 2.4) can therefore also be written in conservative form (see Sec.
3.10.4 in [14]). Generally, these physical schemes are simple, direct
and inexpensive ﬁo implement, especially in complicated systems. For
compressible Navier-Stoke equations, for example, they are considerably
simpler than upstream differencing (See [13]).

The main advantage of h-elliptic operators in multigrid processing
is the simple and efficient relaxation schemes available with them, as

expressed in the following theorem.

THEOREM 3.1. Good (i.e., O(1)) h-ellipticity measure is a necessary

and sufficient condition for the existence of "purely local" (i.e.,

pointwise and direction-free) relaxation schemes with good (i.e., bounded

away from 1) smoothing factors.

The general proof (see [B]) uses a general-purpose relaxation scheme,
called simultaneous fully-distributed under relaxation, which is not usual-
ly the best one for any specific case. But in all specific examples of
h-elliptic operators which we have so far considered, including complicated
ones like full Navier-Stoke systems [13], the best relaxation schemes are
also purely local, and their smoothing factors are typically between .3
and .4 . Moreover, these relaxation schemes are highly parallelizable and
easily vectorizable: The relaxation can in fact be carried out simulta-
neously at (typically) half the grid points (see [11]). And when the method
of "physical" h-ellipticity is used, the discrete operators are all central,
containing no branching according to velocity directions, hence directly

vectorizable.
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A known disadvantage of the above operators is their low accuracy:
their error is O(h). In our double discretization scheme (Sec. 2} this
is not c¢rucial; the error is corrected to o(hz) Oor even 0(h3) by the
coarse-grid correction. Still higher orders can be produced@ by certain
generalizations discussed in Sec. 3.4 .

A more serious disadvantage of h-elliptic operators is their large
cross-stream viscosity, which is especially undesired near boundary layers
and other discontinuities. At such locations one often needs semi-h-ellip-
tic operators (Secs. 3.2 and 3.3) or special formulae (Sec. 4.2), or local

refinements (Sec. 4.4), depending on the situation.

3.2 Semi h-ellipticity

We have discussed the numerical stability an an indiscriminating

grid. Another situation is that of a characteristic grid, namely, when
characteristics of the differential operator (or those of the reduced
operator, in case of singular perturbations) consistently coincide (or

nearly coincide) with grid directions. We can then allow high-frequency

modes to be carried from boundaries, and be even amplified,

along characteristics, as they are in the differential case. That is,

the numerical solution can be allowed to change wildly in cross-charac-
teristic directions, but not in the characteristic direction itself. More
generally, in a d-dimensional domain, suppose characteristic lines proceeds
only (or mainly) in a subset S < {1,...,d} of grid directions; i.e., if
k € s then ¥, 1is constant (or slowly varying) along every characteristic
line. We would then like to forbid high-frequency ogcillations only in the

directions of S. This kind of stability we will call semi h-ellipticity




in directions S, or briefly S-h-ellipticity. Its measure can be defined

as

e’ = min TR /10, (3.5)
pﬁSIQJSSW

where [ﬁjs = max|8,l. Full h-ellipticity (3.3) is the special case

JES
s={1,...,d}. We say that Lh is S~h-elliptic if it has good S-h-ellip-
- h,_h h h
ticity measure: E_(L) = 0(1). If S ,cs. then clearly E, < E. ,
S 2 1 Sl 52

e h _h h
hence Sl—h-ellipticity entails S,-h-ellipticity. If Ej(I.) =EE}(Lh)<<O(l)

we will say that Lh is weakly coupled in direction j .

A simple and safe way to construct semi-h-elliptic operators is again
by magnifying the elliptic singular perturbation (see Sec. 3.1), except
that the magnification can be anisotropic, with "viscosity” added mainly
(or only} in the semi-h-ellipticity directions 5.

For example, a semi-h-elliptic operator for approximating (3.1) is

h ~h, . .h sh
-€ .. - . 9. . . 3, , 3.6
jés i3 jéssj @355 + ) a5 (361
where
h h,, _ oy _oh h 2
25, U () = [P (x hy)-20"(x0) + 0% xth ) 1/
2 2
h’ hy
E;.l(g) =max[€,B—h']J('lak(y_)l, Bh—gf:]. (3.7
X

with B = O(1l), R = 0O(1), and the max being taken over all 1 g k < d

and over all points y in a neighborhood of X. Usually it is enough to

take y = x, except near a stagnation point (at which maXIajl is much smaller

than at neighboring points}, where the larger e?'is needed both for stability

and for multigrid convergence (see [37}). On a sqguare grid (hj=h), (3.7) sim-

plifies to (3.4).



~18-

Such physical artificial semi-elliptic terms are again important
in order to obtain correct selection of discontinuities. For that pur-
pose it is usually enough to have the correct sign in the streamwise vis-
cosity; cross—-stream discontinuity (contact discontinuity) does not de-
pend on the sign of such terms. Hence all we need is that S contains
the stream direction.

We distinguish between two kinds of semi-h-elliptic operators, de-
pending on two ways of choosing the set of strong-coupling directions 8.
First, S can be chosen separately at each point, taking into account
only the characteristic directions at that point. We can call it point-

wise semi h-ellipticity. This is the kind of semi h-ellipticity produced

by upstream differencing. It gives full h-ellipticity at points where the

flow happens to be obligue to all grid lines, and {j}-h-ellipticity at
points where the flow is in the xj direction. Thus the cross-stream
viscosity in upstream differencing is inconsistent., Its size depends on
the alignment between grid lines and stream lines, which may vary over
the flow domain.

Another way is to choose § uniformly over a domain. For example,
in (3.6) the uniform set $§ will be the set of all directions in which
the reduced equation (e =0) has strong couplings at some point; i.e.,

k € s only if, at all points x of the domain, lak(E)l/hk is small

compared with some laj(z)l/hj - Such uniform S-h-elliptic operators pro-

duce consistent cross-stream viscosity.
Pointwise relaxation schemes cannot generally provide good smoothing
rates with S-h-elliptic operators. They can only provide good S-smoothing

rates. That is, they can guarantee amplification factors bounded away

from 1 only for modes exp(i8 « x/h) highly oscillating in S direc-
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tiong {i.e., with maijSiej[ 2 pT) . Indeed, we have the following

extension of Theorem 3.1.

THEOREM 3.2. S-h-ellipticity is a necessary and sufficient condition

for the existence of pointwise relaxation with good S-smoothing factors.

S-smoothing is enough for a multigrid algorithm which employs the
corresponding semi coarsening (i.e., the coarser grid is coarser only in
directions S. See Sec. 3.1 in {10]). To efficiently obtain full smoothing,

however, relaxation schemes for S-h-elliptic operators should use the dis-

tinguished direction S , by relaxing in S-blocks; that is, relaxing simul-

taneously grid points which only differ in their S coordinates. For such

schemes we can further generalize the above theorems as follows.

THEOREM 3.3. Let S and S' be two sets of directions: s, s'c<{l,...,d}.

A necessary and sufficient condition for the existence of an S-block relaxa-

tion scheme with good S'-smoothing rates is that the discrete operator Lh
h h

is uniformly coupled in all S'-S directions; that is, ES| s(L ) =0{l).
1’
Eg' g is the measure of uniform coupling in S§' modulo S. It can
r
be defined by
h ; i ;
By, (@ =  min e 7 1Ren1 . .8
r

prs|Blgy € m

6' =0, for jES
] 2

Theorem 3.3 states, in other words, that the 8'-smoothing factors, pro-

duced for Lh " by a suitable S-block relaxation, are bounded away from 1
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h h

by a quantity which depends only on ES‘ s(L ).
r

3.3 what to use where

All the above theorems deal of course with constant-coefficients
operators. They still describe the essential smoothing properties even
when the coefficients of Lh gradually change over the grid, because

smoothing is essentially a local process.

A basic difficulty with pointwise S-h-ellipticity seems to emerge:

When the coefficients change over the domain, the set § changes too,
hence full smoothing may require different S-block relaxation in different
subdomains. Thus, for exahple, upstream differencing in a flow which
occasionally aligns itself with all possible grid directions would re-
quire (in a 3-dimensional problem) three plane relaxation sweeps, which

is inconvenient to program and less efficient. In that situation full
h-ellipticity seems preferable, because it allows simple pointwise relaxa-
tion, every sweep being fully efficient at all subdomains. Moreover,

in that situation full h-ellipticity does not introduce considerably

more artificial viscosity than pointwise S-h-ellipticity, since the latter
avoids cross-stream viscosity only rarely and accidentally, at those par-
ticular points where the stream happens to be aligned with the grid.

On the other hand, in situaticns where the alignment between charac-
teristic directions and grid directions is not accidental, we can apply
the corresponding S-h-ellipticity without having to use complicated relaxa-
tion. If the streamlines are all in the xj direction, for example, we

can use {jl-h-elliptic approximations throughout, together with {j}-block
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relaxation (line relaxation with lines in the xj directicns).

Another example: If the stream is always in planes {x3==constant}
but otherwise has general directions (not always aligned with either X
or x,), then uniformly {1,2}-h-elliptic approximations should be used,
together with the corresponding plane relaxation. Instead of plane re-
laxation it may be more convenient to use point relaxation together with
semi-coarsening, the next coarser grid being coarser only in the Xy and

X

Notice that each of these two alternatives depends on uniform S-h-ellipti-

city. If upstream differencing were used we would have to use either several

directions of plane relaxation or several semi-coarsening procedures suc-
cessively.
Another example, most common in applications, is the non-accidental

alignment between flow and grid directions near houndaries. Boundaries

are often set to lie in grid planes, and the flow is often parallel to

the boundary. Assume now that all boundaries parallel to the flow are in
grid planes, whereas the main flow away from boundaries has no one parti-
cular alignment with the grid (vortex flow, for instance). 1In (3.1), for
example, this is modelled by the case of a 3-dimensional (d=3) box domain,
with |aj(£)l <<nmxklak(x)l near the boundaries {xj==constant}. Can

we then ignore the alignment near boundaries and use full h-ellipticity
throughout? Usually we cannot: Usually there are boundary layers (i.e.,
discontinuities) along the boundaries, hence the cross-stream atrificial
viscosity that will be created there by full h-ellipticity is by far larger
than any other artificial viscosity introduced anywhere in the problem.

It will therefore be far better to use near such a particular plane the

corresponding plane-h-ellipticity (e.g., {1,2}-h-ellipticity near the

2 directions, but retaining the same meshsize h3. (See Sec. 3.1 in [10]).
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boundary {x3==constant}. Since we may have several such boundaries, in
different directions, we cannot use just one plane-h-ellipticity through-
out. Also, away from the boundary we prefer, as before, the full h~ellip-
ticity with its simpler pointwise relaxation. The best procedure seems
thus to be to use full h-ellipticity throughout the domain, except on
particular grid planes adjacent to parallel boundaries, whe;e the corres-
ponding plane-h-ellipticity should be used, avoiding straddling the boun-
dary layer. (This is a special case of a more general rule discussed in
Sec. 4.2.) The relaxation will then be a simple point relaxation through-
out the bulk of our grid, supplemented with a special plane relaxation at
each of the particular grid planes adjacent to parallel boundaries. We do
not have to sweep with all these particular plane relaxation across the
entire grid. This scheme is convenient to program: The special relaxa-
tion is used exactly where the special differencing is used, and only there.
Often in the above situation one can avoid plane relaxation altogether.
The boundary layers are often thin compared with the meshsize. We can
then suppress them completely and let the external flow extend up to (and
including) the boundary. The plane-h-elliptic operator can then be used
only on the boundary itself. If the same procedure is also used for the
same boundary on the coarser ggid, then no cross-stream smoothing will be
needed there, hence simple point relaxation throughout the domain, inclu-
ding the boundary, will efficiently give us all the smoothing we need.
Finally, contrary to a possible impression from the discussion above,

we should point out that pointwise direction-free relaxation (red-black

scheme, for example) with fully h-elliptic operator, L; say, is not al-

ways better than with semi-h-elliptic operator, Lh say. The latter (with
—_— s

only streamwise artificial viscosity) has a worse smoothing rate, that is
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true; but this is an algebraic smoothing (see Sec. 2.2). If the cross-
stream high-frequency differential error components have amplitudes com-
parable to those of the cross—stream high-frequency solution components

(as it is usually the case when an FMG algorithm with suitable interpola-

; Z ; ; h |
tions is used) then the differential smoothing by LS 1s generally not
worse, and near boundaries it is even better, than by L?.
The optimal amounts of upstream and cross-stream artificial viscosity

in FMG algorithms (Sec. 6.2} should be studied quantitatively by local mode

analyses and numerical experiments (see Sec. 7.1).

3.4 Higher-order techniques

The stable approximations Lg discussed above are (for non-elliptic
or singular perturbation problems) all first-order methods, carrying ¢ (h)
errors. In view of the multigrid double~discretization option, they may
also be used in schemes that obtain higher approximation orders. To ob~
tain still higher orders, however, we have to increase either the approxi-
mation order of Lg or the convergence order of the associated relaxa-
tion scheme (see Sec. 2.2). The convergence order can be raised by using
distributive relaxation schemes equivalent (in the sense of Sec. 4.1 in
{8]) to a classical relaxation of a higher-order operator. It seems simpler

to directly use a higher-order approximation to LO .



Higher-order semi-h-elliptic approximations can be constructed by
using formulae from Sec. 5.2 of [7] and also, for conservation forms, from
Sec. 3.10.4 of [14]. They give stable operators of any order (which for
orders higher than 2 cannot be completely one-sided). For reasons explained
above, however, one would often prefer "physical” approximations. Higher-
order physical approximations are constructed similarly to the first-order
ones (Sec. 3.1), with one important difference: Instead of artificial
viscosity of the same form as the physical one, higher-order artificial
viscosity, with the same sign, should be used. For example, a p-order
S-h-elliptic approximation to (3.l1) is given, in case of a square grid

(hj==h), by the operator

LB o _aP) Bah )

LY (02.1% 4 ] a, 2 ® (3.9)
j€s 13 ]
where A(P) and ng) are p-order approximations to A and to B/ij,

respectively, s = [gﬂ + 1, B?j is as in (3.6), and as before aﬂ=max]ajl,
0 < B =0(1). The choice of S is still governed by the same considera-
tions as above (Sec. 3.3). Note that (3.9) is not R-elliptic (ecf. [14],
Sec. 3.6). It would be R-elliptic if the sign of 8 were (-1)°, but

for even s this would not be physical: Discontinuities will be admitted
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at the wrong end of characteristic curves.

High-order approximations are no better than lower order
ones near discontinuities, or generally when the solution has 0(1)
change over a meshsize. They may cause less smearring of the discontinuity
but may on the other hand cause overshoots and oscillations leading some~
times to nonlinear instabilities (see [2]) or to nonphysical solutions
{see [23]). See more on the treatment of discontinuities in [22] and in

Sec. 4 below.

3.5 Streamwise“andfoptimizedmartificial viscosity

Streamwise artificial viscosity has been suggested in [24] in terms
of finite element formulation. It can similarly be introduced via finite
differences. For example in case of (3.1} this can be done by adding, to

a central approximation, an artificial-viscosity term of the form

d . a
B Ve o) (e, 8B o, (3.10)
a 1555 e Y

F oh, . _ _.h B h . _ _h,o
where 3% U (x) {Uh(_n_c_+ﬁj) UMx) 1 /b and 20" (x) (" (x)-u (x-h )] /hy .

This term is an approximation to a second derivative in the stream direc-
tion. It is advantageous when the solution is smooth in all directions and
has a special smoothness in the characteristic direction; e.g., a smocth
solution which is constant along characteristic lines. {The successful
examples in [24] are of this kind.) In such cases the performance of
{3.10) is comparable to a higher-order scheme, since the cross-stream

viscosity it creates is of third order. But (3.10}) is simpler than a

regular higher-order scheme.
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Near discontinuities, however, the scheme is not better than other
schemes, since its cross-stream viscosity does not really vanish. 1In

fact, in case d=2 and a1=az=l for example, the artificial viscosity

+
created by (3.10) for the highest streamwise oscillations (-1)(x Y)/h

; ’ ~-y}/h
exactly equals that for the highest cross-stream oscillaticns (_1){x y}/ ‘

A similar equality holds in the first-order scheme (3.2) - {3.4). Hence,
in order to control the streamwise oscillation {which is the purpose of
artificial viscosity), cross-stream dissipation must be created by (3.10)
which is the same (near discontinuities) as the one created by the first-
order scheme. Also, even for smooth solutions, (3.10) is not much better
than the first-order scheme in case the physical cross-stream viscosity is
comparable to the physical streamwise viscosity, because in that case the
artificial cross-wind viscosity avoided by using (3.10) is comparable to
the artificial viscosity introduced anyway in the stream direction. More—
over, (3.10) has the usual disadvantage of upstream differencing: The need,
at least for the purpose of algebraic smoothing, for a multi-direction
hyper-plane relaxation in case the coefficients vector a accidentally

aligns itself with different grid directions (see Sec. 3.3).

Another possible approach is to construct difference operators based
exactly on the requirement that, for a given stencil and a given amount
of streamwise stability, the cross—stream viscosity will be minimal. in
the above example ((3.1) with d=2, a, =a, =1 and £ =0+) the optimal

nine-point differencing on a square grid will use only the three points

(xl-h, x2-h), (xl, x2) and (xl-fh, xz-bh). The cross-stream artificial

viscosity will truely vanish, unlike the one produced in this case by
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{3.10). such will not however be the case for general values of a, and

a2 . Also, in case of variable E}E), the optimal Lh at each point ma

!

require too laborious calculations. The usual disadvantage of upstream

differencing may be enhanced: Line relaxation sweeps may be reguired not
only in the two coordinate directions but also in the two diagonal direc-

tions.
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4. DISCONTINUITIES

4,1 Unidentified or untraced discontinuities

Not all discontinuities are identified as such by the numerical solu-
tion process. Some shocks, for instance, cannot be identified because they
are too weak, just comparable to normal increments of the solution on the
given grid; or too numerous. Some turn out to be clear strong discontinu-
ities, but at the initial stage of calculation we may not know them, or
may not know their location,

A basic rule in treating untraced discontinuities is to use difference

equations in conservation form (conservative schemes), corresponding to

the conservation laws described by the differential equations. See [26].
The physical h-elliptic and semi-h-elliptic operators in Sec. 4 can all
easily be constructed in conservation form. This form implies that the
jump conditions across discontinuities (derived from integration of the
conservation laws) are still satisfied by the numerical scheme, even where
the differential equation is not well approximated. As a result, conver-
gence of the discrete solution to the differential one is guaranteed. It
may, however, be a slow convergence.

Unidentified or untraced discontinuities usually have ©(h) errors
in their discretization, reflecting for instance the 0O(h) errors that
mist enter in determining the location of the discontinuities. More pre-
cisely: if the difference equations straddle the discontinuity, an error
equivalent to O(h) artificial viscosity must enter, because the discon-
tinuity is smeared at least along one meshsize. More generally, an 0 (h)
error must enter since along an O (h) part of the domain there enters an

0{l) error in the equations. The error may seem even larger if measured
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without care (see Sec. 4.5). Hence, the 0(h) physical perturbations
discussed above should perhaps be preferred near untraced discontinuities.
Higher-order approximations near a discontinuity would be wasteful. They
would not provide there a better approximation, and they may even intro-
duce undesired oscillations.

One way to reduce the 0(h) artificial viscosity at such disconti-
nuities is by reducing h; i.e., by adaptive discretization schemes that
automatically decide how far to go with local refinements, without getting
intc the task of deciding whether and where a clear discontinuity is in-
volved (see Sec. 4.4).

Another way is to try to use difference equations that will auto-

matically avoid straddling discontinuities. Upstream differencing tend

to do just that. Not always, though. In higher-dimensional (d32)
problems, a discontinuity will often be straddled by upstream differencing,
although with less likelihood then when all points participating in cen-
tral differencing are involved. A similar tendency not to straddle dis-
continuities can also be obtained in full h-elliptic operators, if the
size of the artificial terms is suitably chosen. For example, if B=3%

is used in (3.4), then the coefficient in (3.2) of the most forward point
of the stencil will vanish, and the chance of not straddling a discontinu-
ity will decrease, except when there is a consistent (non-accidental) align-
ment between grid lines and streamlines. In the latter case full h-ellip-
ticity is not recommended anyway (cf. Sec. 3.3).

The chance of straddling a discontinuity by such partly upstream

h-elliptic operators is still higher than by usual upstream differencing.
One has to weigh this disadvantage against the considerations of Sec. 3.3.
When the discontinuity is weak enough, the error caused by straddling

it may be tolerable. If a strong discontinuity emerges, and is identified,



one can then switch tec the (superior) type of treatment described in the

next section.

4.2 Xnown and traced discontinuities

The exact location of a discontinuity or a potential discontinuity
is often known. For example, boundary discontinuities (boundary layers
not resolved by the grid) are expected alcng boundaries. A strong inter-
nal discontinuity, shock, interface, etc., may emerge and be identified
at some previous stage of the calculations. Even when its exact location
is not given, it may be traced, i.e. special variables (unknowns) may be
added to describe its location.

Special equations, corresponding to these special variables, are then
added to the system. They describe the jump conditions. In our simple
example (3.1} the jump condition is simply that an interior discontinuity
rides along a characteristic; i.e., its direction at the point x is
(al(g),...,ad(g)). In fluid dynamics the jump conditions are known as
Rankine-Hugomiot equations, and discontinuity tracing is called "shock-
fitting" (see e.g. [29], Sec. 12.9).

When the exact location is known, or traced, superior discretization
schemes near the discontinuity are possible, even without local refine-
ments (which in some particular cases may still be needed - see Sec. 4.4).

Discretization schemes which use the unknown location of a discontinu-
ity as an explicit variable should be superior basically because that vari-
able is well-posed, whereas the solution function itself is an ill-posed
parameter at the discontinuity. Some authors fail to recognize this: They
develop sophisticated numerical schemes for treatiné discontinuities, which

implicitly or explicitly involve their identification, without recognizing
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that when this has been done the most effective and perhaps simplest
next step is to assign special variables to their location.
The basic rule for optimal differencing near a known or traced dis-

continuity is obvious, but often overlooked:

BASIC RULE. The difference equations should not straddle a discontinuity

whose location is known or traced. Only physically small terms (like those

with coefficient € in {3.6)) may violate this requirement.

What is often overlooked is that this rule should override upstream
differencing and even h-ellipticity considerations. Although upstream
schemes tend to obey this rule, they quite often violate it, too. When
they do, there is no reason to use them.

Owing to tracing, h-ellipticity can partly be ignored along the dis-
continuity. More precisely, needed is only h-ellipticity in directions
parallel to the discontinuity, not perpendicular to it. This is easy to
do in case the discontinuity runs.along a grid hyperplane (see Sec. 3.3).
But it can also be done for more general discontinuities.

Consider for example equation (3.1) in two dimensions {d=2), at a
point (A} with a traced contact discontinuity near it, and assume for sim-
plicity that € is infinetesimally small (e =0+ ; only its sign matters),
and that ai + a; = 1. Assume alsc for definiteness that a2>-a1>-0 .
giving the stream direction as shown by the arrow in Fig. 1. Upstream dif-
ferencing at the point A would then include points B and D, violating
the basic rule. We should insteéd base our differencing at A on the stencil
F

9. + a BB ; where 3§ and 3? are

{(A,D,E}), with the operator Lh = 1 29y

oy

as defined for (3.10). Comparing this operator to central differencing,
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FIGURE 1. Oblique traced discontinuity cuts between grid-points. The

arrow onh the discontinuity shows the stream direction.
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we see that the added term is .Sh(al 311-a2322), which clearly does

not correspond to an artificial viscosity term; the sign on B?l is

reversed. However, when this term is rewritten in terms of the character-

istic direction § and the perpendicular direction n ;, it reads

2 2
.5h[al(a185+ azanl - az(azag—.alan) 1

) a 1]

_ 3 .3
= .5h[(a1 a2)355+2a1a2(a1+-a2)3 + ala2(a2-al Lo

£n

the discontinuity in

Fig. 1 must cut on the other side of point C, and we would then base Lh

The coefficient of BEEiS negative. (If a, >a,,
on the stencil (A,C,D)). Thus, in the characteristic direction we still
have the correct viscosity sign. Near the traced discontinuity this is

the only direction that matters, since only at that direction instabilities
may grow and non-physical discontinuities may enter.

wWhen double discretization is used (see Sec. 2), the basic rule

. h h o s ;
should be satisfied by both L0 and L1 . This is even true when simple

h
0

defect corrections, rather than multigrid corrections, are used: If L
fails to satisfy the rule, and we make defect corrections with a better

. . h .
approximation L that does satisfy the rule, then we do at convergence

1
. . h :
get a good solution (corresponding to the operator Ll), but near the dis-

continuity this convergence will be painfully slow.

4.3 Corrections interpolation near discontinuities

Usually, when the multigrid algorithm switches from a fine grid to
the next coarser one, the error on the fine grid is smooth, hence the

correction calculated on the coarser grid is smooth, and its interpolation



is therefore easy. However, near discontinuity, especially in a nonlinear

problem near a discontinuity whose location is unknown (whether traced
or not), the coarse-grid correction may chéngefthe location of the discon-
tinuity. A smooth change in the characteristic directions, for example,
will change the location of the shock created by their collision. This
is allowed for by the FAS scheme, which is the scheme one would use any-
way because of the nonlinearity (cf. Sec. 2.1). Now, when this happens,
the coarse-grid correction is no longer smooth; near the discontinuity
it looks like a pulse function. Interpolating it by any usual interpola-
tion would create new errors with large oscillation near the discontinuity.
There is a natural way to avoid this trouble, exactly due to the Full
Approximation Scheme (FAS). Usually in FAS, the coarse-grid (approximate)

solution u2h is not directly interpolated to the fine~grid. It is the

2 2
correction u h‘—Ihhul1 which is the smooth function approximated by the
FAS equations, where Iflhuh is the same interpolated function as used in

generating the FAS equations (cf. (2.1) - (2.2) for example). Hence it is
that correction which should be interpolated. So the FAS correction inter-

polation is usually given by

»

h uh
ueew - YoLp +.Izh(u —Ih u) ., (4.1)
rather then by the simpler procedure

h h 2h
Weew = Top @ (4.2)
The usual advantage of (4.l1) is that it preserves the high-frequency con-
h
tent of Usrp (earned by previous relaxation sweeps on grid h), while

(4.2) destroys this content (producing high-frequencies depending only

on the interpolation). But this advantage disappears when the correction
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is not small compared with uh

- itself, which may exactly be the situa-

tion when the discontinuity moves. By locking at simple one-dimensional

examples is easy to see that in such a situation (4.2) gives better re-

h

sults. For example, {4.1) does not preserve monotonicity, even if IZh

is a linear interpolation.

Thus, the suggested rule is to generally use (4.1), except at (or

2h  _2h h . h
=T
h uOLD 15 comparable to Yoo

near) points where u . In the later

case {(4.2) should be preferred.

When the coarse-grid correction does not change the location of the
jump, and when this location is known or traced, the important rule is
; o ; . h
not to straddle that discontinuity by the interpolation operator IZh'

4.4 Local refinements

Cne can indefinitely reduce all truncation errors, including for
example total artificial viscosity, by reducing the effective meshsize
(the meshsize on the finest grid) . This however costs rapidly in-
creasing computational work. The reduced meshsize is in fact much more
needed where the truncation errors are large; e.qg., near discontinuities,
especially near untraced discontinuities. A general scheme to reduce the
errors should therefore be to adapt the meshsize locally so as to (nearly)
minimize the total error (suitably measured), in a given amount of compu-
tational work, and without spending too much computational work on the
grid adaptation and optimization processes themselves,

A FAS multigrid algorithm that does just that has been developed,
using increasingly finer grids which are confined to increasingly smaller
neighborhoods of the discontinuity, and which assume increasingly more

accurate orientations, tending to coincide with the
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orientation of the discontinuity (even when the latter is not explicitly
identified). The refinement criteria are based on local truncation errors,
which are approximately known anyway due to the FAS processing. See [5]

or [6], with additional details in [7]. This adaptive algorithm is a natu-
ral extension of the Full Multi-Grid (FMG) algorithm, in.which a solution
of a differential equation starts on the coarsest poséible grid and pro-
ceeds to finer ones. (On each grid an approximation is first obtained by
interpolation from the coarser solution, and then it is improved by a
multigrid cycle. See Sec. 6.2.) The only added feature is the adaptation.
Namely, before proceeding to a new finer grid the algorithm decides to
which subdomain this new grid should be confined.

Observe that when the algorithm proceeds to finer grids {whether
globally or just near discontinuities), the total amount of artificial
viscosity steadily decreases. (The multigrid double discretization scheme
does not itself eliminate the artificial viscosity at discontinuities
straddled by the difference operator.) In this respect the FMG algorithm,

especially with local refinements, is equivalent to a continuation method

which starts with large viscosity and gradually takes it out.

Does the tracing of a discontinuity (or the exact knowledge of its
location) eliminate the need for local grid refinements? Often it does;
the truncation errors at traced discontinuities need not be larger than
anywhere else. Exceptions are cases where the details of the boundary
layers (or other thin viscous layers) need to be determined numerically
because of their complexity and because they are essential for getting
the desired results. For example, in driven cavity problems, the whole
flow is driven by the cross-stream viscosity acting through the boundary

layer. Hence any misrepresentation of the boundary layer entails large



errors. 1In other problems the boundary-layer representation may be less
important for the external flow, but it may be important for calculating
the pressure distribution at the boundary.

Local refinements are of course very useful wherever tracing is im-
possible or inaccurate, such as regions of interaction of two discontinu-
ities.

A remark concerning h-ellipticity in locally refined grids at a thin

viscous layer, such as a boundary layer. The techniques described in [7]
employ a sequence of grids each of which refines its predecessor only in
one direction, perpendicular to the layer. If the correct rate of refine-
ment is used then there is no need to use semi h-ellipticity. Full h-ellip-
ticity, hence simple pointwise relaxation, can be used. (An example for
h-ellipticity on a grid with different meshsizes in different directions

is given by (3.6). Full h-ellipticity is the case S={1,...,d}). It is
interesting to note that with this full h-ellipticity, the artificial
cross-stream viscosity becomes comparable to the physical one exactly when
the cross-stream meshsize becomes fine enough to resclve the boundary

layer. If one refines further than that in this direction (perpendicular

to the layer) for some reason, the physical viscosity (£ in (3.7)) becomes
dominant in this direction k and dictates the artificial ellipticity

E? =‘E£:h§/hi in other directions 3j. A better procedure in this situa-
tion is not to use the last term in (3.7), thus avoiding excessive viscosity
in directions parallel to the layer. This would then create {k}—h—elliptic
difference operator, The point is that in this situation simple pointwise
relaxation is still all we need, since direction k is the only direction

of refinement and coarsening (cf. Theorem 3.2}.
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4.5 Measuring errors near discontinuities

In our numerical experiment very large errors, or changes in the
solution, have sometimes been measured locally. The use of wrong error
norms has then caused distorted pictures and wrong algorithmic decisions.
These large changes occur near discontinuities whose location, whether
traced or not, changes numerically. Indeed, suppose our solution has
O(hp) errors. 'This involves O(hp) errors in characteristic lines,
hence o(hp) errors in the location of discontinuities. That is, over
a region whose area (volume) is o(h®) the solution is switched and
{1} errors are measu?'ed in its values or its derivatives, depending on
the nature of the discontinuity. If we measure these errors by Lq norm

we will get O(hp/q) erroY norms.

CONCLUSION: In the presence of discontinuities, only the Ll norm

gives the correct picture.

This is also true near a discontinuity whose location is fixed but
straddled by the difference or interpolation operators.

For a traced discontinuity a better measure is one which separately
measures the changes in the discontinuity location (which is the
well-posed unknown near the discontinuity) and avoid measuring changes
of function values at points switched from one side of the discontinuity

to its other side.



5. LOCAL MODE ANALYSIS

An important tool in developing multigrid programs, deciding between
various options, and precisely predicting their performance, is the "lo-
cal mode analysis". For general nonlinear regular elliptic problems the
analysis proceeds as follows: The difference equations are linearized
arcund some approximate solution, and the coefficients of the linearized
equations are then frozen at local values. (or, more generally, the
coefficients may assume some typical mode of oscillations.) The result-
ing constant-coefficient (or simple-mode-coefficient) probleﬁ is then as-
sumed to hold in a grid covering the entire space, and its convergence
properties under various processes can be studied in terms of the Fourier
components of the error. This local analysis is a very good approximation
to the true behavior of high-frequency components away from boundaries,
since such components interact at short distances (comparable toc the
wavelength) and are therefore not influenced by distant boundaries and
slow changes of coefficients. The analysis is inaccurate for low-frequency
components, but those may be ignored in the multigrid work estimates,
since low-frequency convergence is obtained on coarser grids, where the
computational work i1s negligible. The analysis is also inaccurate for
high-frequency components near boundaries, but this i; a secondary pro-
blem because the boundary is a lower dimensional manifold, hence we can
invest more work to get better high~frequency convergence there. In fact,
it is an important advantage of the local mode analysis that it separates
the study of the main (interior) multigrid processes from the study (and
mistakes) of processes at the boundaries. (See details in Sec. 4 of [14]

and additional remarks in Secs. 2 and 3 of [10]).



This separation between the interior and the boundary is not gquite
possible in non-elliptic and singular perturbation problems. In such
problems some high-frequency modes far from the boundary are still strongly
affected by the boundary conditions. That is, high-frequency oscillations
on the boundary can travel along characteristics into the domain with
ﬁegligible decay. This can also happen in the discrete solutions, in
case grid lines coincide with characteristic lines and the corresponding
semi h-elliptic discretization is used. Full h-elliptic¢ solutions, on
the other hand, behave like elliptic ones, all high-frequencies being
attenuated within few meshsizes.

Thus, in analyzing semi-h-elliptic operators, or in analyzing con~
vergence to the differential solutions (even by fully h-~elliptic solutions),
or even in analyzing smooth components of full h-elliptic solutions, the

infinite-space mode analysis must be complemented with a mode analysis

which includes the boundary. This is most conveniently modelled by con-

sidering the semi-infinite domain, {xl'ZO} say, with boundary conditions
prescribed on {and/or near) {x1==0}. The mode analysis is therefore done

in terms of components exp{i g x/h), where only 62,...,6d are required
to be real, while Im 8, 20. More precisely, for each real vector (650---08
the number of modes for which Im 91 <0 should coincide with the number

of boundary conditions supposedly given at the far (xl-+m) boundary, so
that these modes could be determined by those conditions.

The semi-infinite analysis is enough by itself, but we can make it
simpler by considering separately the infinite-space case and subtracting
it off, so that at the semi-infinite analysis we can consider homogeneous
equations only (with non-homogeneous boundary conditions). In other words

the semi~-infinite analysis is done for characteristic modes only.



Another significant departure from mode analysis of regular ellip-
tic cases is the existence of different components with markedly different
convergence properties. As we will see (Sec. 5.1), this situation calls

for another type of two-level analysis, the FMG mode analysis (Secs. 5.2,

5.3). Also, in non-elliptic cases interesting convergence features are
related to low-frequency characteristic components, the analysis of

which is simplified by using first-differential-approximation mode analysis

(Sec. 5.1).

Various local-mode-analysis calculations have been made for studying
various features of multigrid solutions to non-elliptic and singular per-
turbation problems, and more are planned. Generally they are more compli-
cated then in the regular elliptic case. Sometimes more levels should be
brought into the picture (see end of Sec. 5.7). Here we will bring some
of the simpler analyses, which do not require computerized caleculations

but exhibit some of the main conclusions.

5.1 Slow convergence in characteristic smooth components

One fact that was noticed both in numerical experiments and in mode
analyses (by N. Dinar and separately by K. BSrgers) is that non-elliptic
and singular-perturbation problems exhibits rather disappointing convergence
factors, not much better than .5, per miltigrid cycle, and this cannot
be improved by putting more relaxation sweeps into the cycle. See for ex-

ample Table 1.
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B = .5 B = .75 large B
a
1
r=1 r =2 r=1 r = 2 r=1 r=2
1.0 1 1 .52 .50 .50 .50
0.5 .60 .50 .50 .50 .50 .50
0.0 || .51 .50 .50 .50 .50 .50
i
TABLE 1.

Asymptotic two-level convergence factors per multigrid
cycle for the difference operator -BhAh+a13?-b82 .

The cycle includes r sweeps of pointwise Gauss-Seidel
relaxation with red-black ordering (RB relaxation), a
fine-to-coarse residual transfer with full weighting,

a coarse grid sclution with the operator -2Bh.A2h+alB§h 4—3§h ;
and a linear coarse-to~fine interpolation of corrections.

(Calculated by N. Dinar.)
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This result could not be understood by one-level analysis, since it ap-
plied to low-frequency (|8| <<n) components.
A simple way to see clearly the behavior of lower-frequency compo-

nents is to apply first-differential-approximation (FDA) analysis. In°

this analysis we replace the difference operators by their first-differ-
ential approximations (see [32],[33],[34]), ignore inter-grid transfer
operators (i.e., since the function is smooth we ignore the small-amplitude
high-frequency components created by its interpolation), and ignore re-
laxation (since it is ineffective for smooth components). What is left
are just some simple intergrid relations.

Consider, in this fashion, a two-level cycle for solving (3.2),
where the physical € is infinitesimally small and hence replaced by
the artificial e(h) given by (3.4). The FDA representation of the

difference operator is then

h ]
= -Bah & + )a, — ;
L B Zjax.' (5.1)
]
where a = maxlajl . Consider now in the infinite space a characteristic

: h ; :
smooth error component Vh, i.e., Z ajav /ij = 0. Its residual is

therefore given by -&ﬂ1Avh. Hence the coarse-grid equation is

' 2h
L2hv2h = —5a(2h)AV2h + Eaj g: h

= -fah AV , (5.2)

and its solution is V2h = .SVh - Thus the new error on the fine grid

h
after a full multigrid cycle will by vy = vh-vh o syh,
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CONCLUSION: The asymptotic convergence factor .5 per cycle is attained

for all characteristic smooth components and it results from

the meshsize dependence of the artificial viscosity.

The asymptotic factors observed in practice were sometimes even much
worse than .5, That happened when a V-cycle algorithm was used (Sec., 6.l1).
In such a cycle we solve the coarse-grid equations again by just one cycle,
whose convergence rate is again no better than .5 . We thus come far
from solving the grid 2h equations, hence the above analysis is not a
good approximation. Indeed, if in the coarse of a cycle a much coarser
grid, grid kh say, is visited just once, an FDA infinite-space analysis
similar to the above would show a convergence factor no better than l-—k-l
per such cycle. This, the experiments however show, is too pessimistic.
Moreover, when a W cycle is used (i.e., switching Egigg from each grid
to the next coarser one before returning to the next finer one), conver-
gence factors better than .5 per cycle were chtained. The reason is
the boundedness of the domain and the influence of the boundary far into
the domain, especially for the smooth characteristic components considered
here.

But before rushing to an improved analysis, taking the boundary into
account, we pause to consider the practical meaning of the above analysis.

One conclusion is of course to use W <cycles (Sec. 6.1). Another conclusion

is that we could improve the convergence rate by using-less artificial vis-
cosity on the coarser grid. This is effectively obtained by applying

the double discretization scheme (Sec. 2) to the coarse grid. A more im-

portant point, however, somewhat surprising but typical to similar multi-

grid situations, is that we need not really be troubled by the slower



asymptotic rates.

Indeed, the slower convergence is obtained for vwery particular com-
ponents, namely, smooth characteristic components far from boundaries.
For such components L2h is not a very good approximation to Lh + hence
the slowness. But, for exactly the same components and the same reason,
Lh is not a good approximation to L. Hence, exactly for these compo-
nents, we do not need much algebraic convergence (convergence to the dis-
crete solution), since that solution itself is far from the differential
solution.

We will in fact show in the next section that one-cycle FMG algorithm
brings the algebraic errors well below truncation errors for all compo-
nents, even if the coarse-grid double~discretization scheme mentioned
above is not used. The latter is actually needed only if we want a one-
cycle FMG algorithm to produce algebraic errors well below truncation
errors for a scheme where double-discretization is used on the fine grid
(thus producing much smaller truncation errﬁrs). This is an example of
a general principle of correspondence between discretization techniques

and coarsening techniques (See [12]).



5.2 FMG Mode analysis: infinite space

Ag explained in the previous section, because of marked differences
between the behavior of different modes, the usual two-level local mode
analysis used for predicting the asymptotic multigrid convergence factors
{Sec. 4.6 in [14]) may be inadequate for predicting the power of Full
Multi-Grid (FMG) algorithms (Sec. 6.2); i.e., predicting how many multigrid
cycles will be needed to reduce the grid-h algebraic errors below truncation
errors, when the first approximation is obtained by interpolation from a
golution on grid 2h. "Thus -we will replace that analysis by a new type of
two—-level mode analysis,.the FMG mode analysis, which analyzes the two-
level stages of the FMG algorithm. As usual, it can be generalized to
a three-level analysis, etc., but the two-level case provides accurate
enough predictions.

Since the main trouble (slow algebraic convergence) occurs for
smooth components, we will greatly simplify our example here of the FMG
mode analysis by applying it in the framework of the first-differential
approximations (Sec. 5.1). On the other hand, since the troublesome
components carry information from the boundary far into the domain, we
will complement our infinite-space analysis with a half-space analysis
(Sec. 5.3).

Thus, we consider our standard example (3.1) with vanishingly small
but positive €=0+, and with the difference approximation Lh repre-
sented by (5.1). 1In the infinite space we consider a soclution Fourier
component

d

U({x) = exp(iw*x) = expi (] w.x.) .
{1 373
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{In analyzing only smooth components the Fourier variable u = (wl,.",md)

is more convenient than 8 = hw).

The corresponding right-hand side is therefore

F(x) = v U(x) , y=ia*w ,
and the exact discrete solution is

P = (v+O 1Rx,  6=pgnau’ .

The first approximation, obtained by interpolation from grid 2h, is

o = gl o (v+28) tF,

giving the residual

R'=F - L' = 6(y+26) L F .

The coarse-grid correction is

VP o (ye2571 g

giving the new approximation

-h  h %
T = w e v o (ye3s(ye2072 F (5.3)

This is then the solution of the two-level one-cycle FMG algorithm. We

need to compare the algebraic error Eh = Uh with the truncation error
h

U - U. From the above we easily get (for any imaginary y, real §)
h
Y6 Iyl8
(y+26) 2 lv12 + 452
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CONCLUSION: For all components, the algebraic error after one cycle is well

below (less than a quarter of) the truncation error. There

is indeed no reason to be concerned about the rather slow

asymptotic algebraic convergence exhibited above for charac-

teristic components.

5.3 Half-space FMG mode analysis

Here we can restrict ourselves to the homogeneous equation. Let
the boundary condition at xl=0 be the Fourier compconent
d

U(O,xz,...,xd) = UO = exp(ijzzmjxj) 5

We will consider the case of a non-characteristic boundary; i.e., Iall is

comparable to a=max Iajl. Hence the differential solution is

i 1
mxl, a= -

1

U(x) = U w.a, .

e i3

0

[\ T o N

The exact solution of the difference equation (5.1) is given by
Px = %2 U,

?

where « satisfies

h
Bha(a}21+$2) + iall (ah—a) = 0, 52=§w§ . {5.4)
Assuming hw << 1, the two solutions of (5.4) are
afll) = a+in, n = Bhg— (a2 +30), (5.5)

1

and
ia,
ﬂh A - Bha r



where O(h2 EQ) terms in ah are neglected, consistently with our

first-differential approximation. The second solution ig significant

only on the far boundary {at some large Xy 4 tending to ®). Since
it is o(h-l), it actually affects the solution near that boundary

only in a layer of width O©O(h). Outside this numerical boundary layer

1 ;

the solution is given by o = aé ) and is only affected by the boun-
dary condition at x = 0. This is the sclution we analyze here,

The solution on grid 2h is similar, Gzh replacing ah . Hence
the first approximation on grid h is

uh _ UZh - Uo el(u+21n)x1 ,
giving the residuals
& = -Lhuh = a1r|uh 5 {5.6)

The coarse-grid correction V2h satisfies LZhVZh = Rh with homogeneous

boundary conditions at X = 0, hence (still assuming hw <<1)

veh - aln(al-4i8haa)-l x,u Max. .  (5.7)

1 1

; g ; ~h .
The one-cycle FMG solution is given by u = uh-+V2h ¢ from which we

calculate the algebraic-error-to-truncation-error ratio

gt

o ~u

(1+£) e 25 - 7%
e-g-l

$ .15623 , (5.8)

where [ = n®, and the last inequality is calculated numerically.

We thus see again that algebraic errors at the end of one-cycle FMG
algorithm are far smaller then truncation errors. Note that this result

is obtained uniformly in Xy: For large Xy both algebraic and trunca-



tion errors are large. Both errors grow linearly in «x

and become

1
2 , ; i
0(l) for w llxl 3 0(1); but their ratio always satisfies (5.8).

A similar FMG mode analysis can be done without first-differential
approximations, thus analyzing also high-frequency components and their
interaction with lower ones, taking relaxation and interpolation pro-
cesses into account, and optimizing B. Our present analysis shows that
if enough smoothing is provided by relaxation, one-cycle FMG algorithms
are encugh to solve the algebraic problem to well below truncation errors.

This is also amply confirmed by numerical experiments, such as in Sec. 7.

5.4 BAnalysis of multigrid double discretization

In terms of this simplified, FDA two-level FMG analysis, let us
now examine the effect of the double discretization scheme of Sec. 2;
i.e., the effect of dropping the artificial viscosity in calculating the
residuals transferred to the coarse grid. Applying this modification

to the half-space analysis of Sec. 5.3, instead of (5.6) we get

h =3
R = L? uh = [2aln + Olaw hz)] uh
h | : ; h —3, 2
where L is a second-orxder approximation to L%, hence +he O(aw h”)

1

term. Continuing as before we easily find that the corrected fine-grid

solution is now
—h —
u = [l+2nxl+ Mw3h2xl)}uh.

Hence

-2nx,

[
|
c
1

l(1+2nx;)e =11+ o(Tu3h2xl) .

0(E3h2x1+a4h2xi) . (5.9)
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whereas the previous solution (Sec. 5.3) gave IGh-UI = 0(3211xl).
The constants in those estimates cannot of course be obtained by

this simple FDA analysis, since they depend on terms ignored by FDA.

5.5 Higher-order method for time-dependent problems

The example discussed above (equation (3.1) with e=0+ , and

Dirichlet conditions on {x, =0}), can alsc serve as an example for a

1
time~dependent problem, X, being the time coordinate. The double dis-
cretization {(or coarse~grid defect-correction) scheme roughly analyzed

above, indicates an attractive method for obtaining higher-order approxi-

mations for time-dependent problems.

Namely, let

(x

OL-"J'
o
i
o

1 0)
(5.10)
Ug is given for xl==0 e

be a stable discretization of the problem, regarded as time-~dependent

problem. That is, (5.10) can stably be integrated by marching in time.

Typically Lh

0
h . . . .
Lth = 0 Dbe a higher-order discretization of the same problem, where

will be a simple low-order implicit operator. and let

h . i ; ; g
L1 is simple (e.g., it may be central in time) but unstable. In our

h . '
example, L0 may be given by {3.2) with e==hal/2 , and LT by (3.2)

with €=0.

One can then improve the lower-order solution UE by integrating

H H h_ h
g =T, L) U (5.1la)
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and correcting
h h h
v} = Uy + v, (5.11b)

where H=2h (coarser-grid defect correction) or H=h (defect correc-

h
tion on the same grid). The new solution Ul is both stable and of

higher approximation order. 1Indeed, if error without the correction is

IUg-Uh| = 0 (aP0*1 nPo x;), then (5.11) will give

ol —ul = 0PI pPLx + WPP0*n%P05D) |, (5.12)

: h
where Pj is the order of approximation of Lj :
The scheme (5.10) - (5.11) is always stable, since we integrate
only with the stable discretization. Notice that this is true only if

Ug and VH are integrated independently. The seemingly similar scheme,

. T h
in which after each time step we reinitialize U

0 by replacing it with

U? ; may well be unstable. On the other hand it does pay to reinitialize
every O(1} time interval. This would prevent the o(xi) growth of
error (for large xl) indicated by (5.12). (This remark is due to a dis-
cussion with J.M. Hyman.)

The independent integration of Ug and VH requires extra storage.
By taking H=2h (coarse-grid defect correction) this extra storage is

only a fraction of the basic storage (one time level of Ug). The extra

computational work is not very significant either. This two-level scheme

can be extended to more levels.

5.6 principal finite-difference terms

Mode analysis of complex systems will be very much simplified, and

more easily yield the desired insights, if non-essential terms are dis-



carded. The only terms significant in local mode analysis are the

*gcaled principal terms” as defined in Sec. 3.8 of {14]. 1In our simple
example (3.2), if the artificial e is given by (3.4), then all terms
are scaled-principal. Generally, in singular perturbation prcbhlems the
scaled-principal terms are all those corresponding to the principal and-
sub-principal terms in the differential system. The principal terms in
the differential operator are all those which contribute to the highest-
order terms in the determinant of the operator. The sub-principal terms
are those which become principal when the singular-perturbation terms

are omitted. See an example in [13], showing how important this simpli-

fication is in designing relaxation schemes.

5.7 Some smoothing factors

The above discussion (except for Table 1) has dealt with the two-
level behavior of smooth components only. Teo give basic ideas about
the behavior of high-frequency components, we now describe some elemen-
tary smoothing-rate analyses, especially for Gauss-Seidel schemes in var-
ious orderings. See Sec. 6.3 below for our motivation in considering
such schemes, in particular red-black (RB) schemes.

The smoothing factor § and the smoothing rate 1/logul measure
the efficiency of relaxation in converging high-frequency compconents (see
Sec. 3.1 in [5], Sec. 4.1 in [14] and Sec. 2 in [10]). Their definition
is extended to RB schemes (and to other schemes which couple several
Fourier components) in [l11]. For such schemes ; depends on the number

r of finest-grid relaxation sweeps per multigrid cycle, so we denote it

ur . For the general (24 + l1)-point operator
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PP = ) b, UPlx+3jh), (5.13)

13, 1+...+l5qlsl
the smoothing factor of RB Gauss-Seidel relaxation turns out to be

= —(1} —{2)

b= maxfu o, WY, (séw
where
! 2
u(l) = max igte) |
lo, t<.5m< 1ol
w - max  1.59(0) T 1 -ge11Y"
lois.5m
_l ..
g(g) = b, E b, exp{ij-g)

and l8] = max(lBli,..-,IBdl) . Cf See. 2.3.1 in [27].

For any operator of the form (5.13), all Gauss-Seidel schemes badly

diverge, unless |a

. - i T
0[ ig sufficiently large compared with Elfg li

If it is not, distfzguted relaxation (e.qg., Kaczmarz relaxation) must
be used. The distributed schemes are considerably more expensive, hence
enough artificial viscosity should be used to obtain enough diagonal dominance.
{(The diagonal dominance is important only in this limited sense. The
equations are still stable and still "physical" when less artificial vis-
cosity is used.)

smoothing factors for various discretizations of our model problem
({3.1) with € =0+) have been calculated. For upstream differencing in

two dimensions (d =2} it has been found that pointwise lexicographic GS

(Gauss Seidel relaxation), symmetric pointwise GS (relaxing point-by-
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point in lexicographic order and then in the reversed order), lexicogra-
phic line GS, red-black GS and Zebra (odd-even line GS) are all inade-

guate in general; i.e., for each of these schemes there is a coefficient

~-1/2.

vector a such that H=l. ¥or symmetric lexicographic line GS, ps5
(C£. Table 7.1 in [18]). To get better factors, schemes with more than
two marching directions should be used. -Generally, in d dimensions,

>3 marching directions of pointwise GS or 2971

marching directions of
line GS are required to get U <1l for all a .
Better algebraic smocthing factors are more easily obtained if the set
S of s-h-ellipticity directions is enlarged {(cf. Sec. 3.2 and 3.3). For
the fully h-elliptic operator
d

h
Lh = —BhaAh + X a. 5

A {5.15)

symmetric pointwise Gauss Seidel (SGS) in three dimension (d=3) gives

T< (2/5% = .795 for B=.5, and (13/109) % = .59 for B=1. In

_1/4 = .67 for B:.S ; and H £ .527 for

two dimensions SGS yields u £ 5
B=1, for any coefficient vector a. 3GS and one-pass Gauss-Seidel schemes in

two dimensions are summarized in Table 2.

Numerical experiments and full two-level FMG analysis show the best
8 for FMG algorithms to be close to the minimal B8 for which reasonable
smoothing rates are still obtained. Much larger B cause some components
to be damped too much in relaxation, while significantly smaller 8 already
cause divergence. This minimal @, as shown by the Table 2, has some de-
pendence on the vector a. Some numerical experiments (see Sec. 7.1) show
that the best (or a very good} B can even be such that gives inefficient
smoothing. For example B=.5 in case d=2, a;=a,= 1 and RB relaxation.

The exact reason can be understood only by a higher-level analysis, as follows:
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| Relaxation a, | B=2 B=1 B=.75 B=.5 B=.4  B=.3 B=.25
Lex+ 1] .375 .249 .167 0 ® m ®
ol .456 .423 .415  .470  .581 .91 1.36
Lex+, Lex~ -1 | .544 .631 .721 1,00 1.67  5.00 o
Lex- 1] .625 .749 .833 1.00 1.29  2.00 3.00
of .580 .664 .721  .835  .919 1.05 1.223
sGSs 1 .480 .420 .353 0 w m ©
o .496 .487 .480  .492  .546  .703  .889
-1 | .505 .527 .558  .669  .801 1.51 o
RB £1 | .266 .333 .45  1.00  1.56  2.78  4.00
+.5] .266 .316 .374  .583  .B79 1.56 2.25
o .266 .313 .36l  .500 .641  .944 1.25
#1 | .386 .499 .595 1.0 1.56 2,78 4.00
£.50 .372  .429  .499  .644  .879 1.56 2.25
0| .364 .394 .422  .500  .641  .944 1.25
$1 | .36  .438 .503 1.00 1.56  2.78 4.00
5| .345 ,402  .444  .583  .879 1.56 2.25
ol .341 .381 .423  .,3505  .641  .944 1.25
TABLE 2,

Smoothing factors E; for the operator —BhAh + a Bh + Bg ;

1°1
The relaxation is pointwise Gauss-Seidel in lexicographic ordering

(Lex+) or reverse lexicographic ordering (Lex-) or in red-black or-

dering (RB} or SGS (Lex+ followed by Lex-). r is the number of sweeps

per multigrid cycle. ;; for Lex schemes is independent of r. For Lex

schemes some components may be amplified infinitely. Although these are

sometimes low-frequency components (not normally taken into account in

smoothing factors) we designate this catastrophic behavior
table.

by ® in the



The bad smoothing is attained only for very particular components --

those which are smooth in the cross-stream direction and highly oscillating
in the streamwise direction. Exactly these components will usually have
negligible amplitude. Moreover, each component which is streém—wise high-
frequency on grid 2h but cross-stream smooth converges efficiently by the
relaxation on the finer grid h, since interpolation (if it is symmetric
bipolynomial) converts half of it into a cross-stream high-frequency compo-
nent on grid h. Only components which are smooth in the cross-stream di-
rection and are high-frequency components on the finest grid will not con-

verge, but they are ill approximated anyway.
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6. THE MULTIGRID ALGORITHMS

In this section we will describe the multigrid algorithms used in
our numerical experiments. They are motivated by the discussions in the
previous sections as well as by some supplementary remarks below. The

algorithms are all "fixed" algorithms; i.e., their complete flow is pre-

assigned, with no dependence on internal checks. Such algorithms are
more convenient at this research stage, enabling us to have more precise
comparisons between various options, and also to avoid the problem of
devising internal checks (if at all desired).

We assign ordinal numbers 1,2,...,M to our sequence of grids, grid
1 being the coarsest, grid M the finest. We usually use uniform square
grids, the meshsize of grid k being hk==2hk__l . The approximate solu-
tion on grid k at any stage is denoted uk + Where the meshsize super-
scripts used before are here replaced by the corresponding ordinal number.
Note that in case Correction Scheme (CS) is used (rather than FAS), at a
stage when uk+l is defined, uk will stand for an approximate correc-—
tion to uk+l r not an approximate solution of the original problem it-
self. On each grid k we will have (or we will construct) two discreti-
L# k - k

lU Fi 4 (1=0, 1) . The first (i=0) is a stable

zation schemes:
discretization to be used in relaxation, the second (i =1) is an accurate
one to be used in computing residuals to be transferred to grid k-1
{see Sec. 2). The two schemes may of course coincide, as they always do
in "classical" codes. As usual, F? is not fixed in the process, but

depends on uk+1 when the latter has been defined.
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6.1 Multigrid cycles C, V, W and F

We denote by C(rl,rz)v(ﬁ) the multigrid cycle for grid & which

relaxes on each grid r sweeps before switching to the next coarser

1

grid, and «r sweeps after returning from it, and which switches v

2
times from each grid to the next coarser grid before returning to the
next finer grid. Formally, C(rl,rz)v(l) is flowcharted in Fig; 2,
with the following explanations.

Start. When the cycle starts, an approximate solution uL on grid
4 1is assumed to be given. The purpose of the cycle is to improve the
approximation. For this purpose the two discrete equations for this

grid Li vt = Fi . (1=0,1), are assumed to be given.

Sweeps on grid k are relaxation sweeps with the equation

k
Lk Uk = F

0 N where for k <% the right-hand side Fk is defined by

0
the coarsening process. Each sweep introduces new (improved) values for

. k . ,
the approximate solution u , based on its old values. Various relaxa-

tion schemes have been used (see Sec. 6.3).

. . . k-
Coarsening. This process defines the right-hand sides F, 1 on

the coarser grid k-1, and also sets on it the first approximate solu-

tion uk_1 . In Correction Schemes we set uk_l==0 and define
k-1 _ k-1 _k _k k .

F, 7 =30 (Fy-Lju ), (1=1,2) (6.1)
where iIk& are transfer operators from grid k to grid k-1 (dis-
cussed in Sec. 6.4). In Full Approximation Schemes (FAS) we set
uk-l _ Ik—l uk —

k
k-1 _ k-1 k-1 k k-1, k _k k g
F, =L (Ik u) o+ I T(Fp-Lyun), (i=1,2) (6.2)



k=1

!

r, Sweeps on grid k [=e—

k= f—’ r, sweeps on grid k
k>1
. k=1
Coarsening _
k - k-1 k<t
nk‘-—-z, nk:> o,

FIGURE 2.

j | -
| n=0 |

Correction interpolation
k = k+1.

1

v . .

Multigrid cycle C(rl,rz) (2}. The index k is used to denote
the grid number we currently work with, and ny is used to de-
note the number of switches remaining to be made from grid k

to grid k-1 before returning to grid k+1.
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(cf.(2.2)). See remarks in Sec. 2.1 concerning the calculation of Fg-l
k-1 . = |
and Fl « Sometimes Li are also calculated at the coarsening stage
k k-1 k
based on Li ’ iIk and Ik—l (see Sec. 6.4). Having so defined, one

way or other, the coarser—grid problem, we then set k +« k-1; to start

working with that coarser grid.

g ; . : ’ k |
Correction interpolation. The approximation u is used to correct

the finer grid solution uk+1 . InCS

k+1 k+1 k+1 uk

-
u u 4+ Ik (6.3)
k+1 k . 5 ; k ; .
where Ik u is an interpolation of u to the finer grid k+ 1. (See
remarks in Secs. 4.3 and 6.4). 1In FAS
k+1 k+1 k+l, k _k k+1
. & . 6.4
u <« u + Ik {u Ik+l u ), { )

where should be identical with the one used in (6.2, k « k+1).

k
Ik+l

We then set k « k+1, to return working on the finer grid.

V and W cycles. Cycles of the type C(rl,rz)l(z) are called V

cycles and are also denoted v(rl,rz)(z). Cycles C (rl,r2)2(2) are

called W cycles and denoted W(rl,rz){ﬂ).

Total work. In complicated problems (which are our main objective)
most of the work in these cycles is spent on calculating L? uk on the
L .
various levels. If we consider the calculation of L§ u over the finest
; ; , . d{k-2)
grid as our work-unit, then a relaxation sweep on grid k «costs 2
work units, where 4 1is the dimension,; and a similar work is involved
in computing the residuals to be transferred from grid k to grid k-1.
-k

Since the cycle involves v r sweeps on grid k, where r = rl-brz,

its total work roughly is

% b4 i 3
J Alk=2) (koo § 278 I = _£il___d (6.5)
k=1 j=0 1-v2

; ; d
work units, assuming v < 27 .



-62-

F cycles. Another cycle we have sometimes used is the similar
v ; : @
F(rl’r2) () cycle described in Fig. 3. It has similarity to the algo-
rithm FMG(v-1, O, V(rl,rz),m explained in Sec. 6.2. The number of re~
laxation sweeps on grid k is [{2-k) (v-1}) +1]r, hence the total work

is bounded by
% g ¥
2 2d(k"2) [(!,—k) {v-1) +l](l’.‘+1) < E Z-dJ [j(\J-l) + 1] (xr +1)
k=1 3=0
(6.6)
_ (eel) (14 (v-2) 279

(1-2'd)2

work units. The performance of F(rl,rz)z(l) is wvery much like that of
w(rl,rz)(z), but its total work is thecretically nicer in the one-dimen-
sional (d=1) case, since it is uniformly bounded for all £, while the

work associated with the W cycle grows linearly with £ .

6.2 Full Multigrid Algorithms FMG

Let C be any multigrid cycle; e.g. C = C(rl,rz)v or C==F(rl,r2)u 5

Then FMG(NI,...,NM;C)_ is the Full Multi-Grid algorithm with N cycles

2
C(2) performed for each grid &, starting with an initial approximation

u2 interpolated from the final result of the cycles for level £-1. It

is flowcharted in Fig. 4, with the following explanation,

Start. When we start an FMG algorithm we assume the basic discretiza-
: -] L P _ , h th
tion schemes Li U =Fﬁ (i=1,2; ¢=1,...,M) are given, together with some
first approximation ul on the coarsest grid. 1In linear problems and also

; . 1_
in many nonlinear problems, the trivial approximation u =0 can be used.

Soluticn interpeolation is the interpeolation

L —ri+l ot (6.7)

interpolating the current approximaticn u2 to a new (the next finer)

grid £+1, to serve there as the first approximation. We then increase



k-2

ny<v (1=1,2,...,2-1)

]

r, sweeps on grid k

k=1

5

y

>0

K —— k-{

Coarsening

1

FIGURE 3. Cycle F(r.l,rz)‘J (2).

rp sweeps on grid k

74

>0

e

Correction interpolation
k =—Kk +1{

l




=i

¢

N, times cycle C(f) [e—

=214+

Solution interpolation

Figure 4. Algorithm FMG (N, ,...,Ny ;C).
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2 by one to start improving that approximation by C cycles.
The order of interpolation in (6.7) is usually higher than that of
; ; . k+1 |
the correction interpolaticon Ik in (6.3) or (6.4). (See Sec. 5.1 in

{101.)

Various choices of (Nl""'NM) are used, depending to some extent on
the order of interpolation I[:+l‘. Often this order is such that on some
of the coarsest grids, grids 1,2,...,21—1 say, not enough points are avail-
able from which to interpolate at that order. The usual procedure then is
to choose Nz high enough to ensure we get below the truncation errors of

1

grid Rl before proceeding to grid zl+1 . Then we continue with a fixed

number of cycles on intermediate grids: N£4-1= ..s=NM 1==N, say, where.
1 -

most often N=1, sometimes N=2. Such an algorithm we denote

FMG(N, NM' C, M). 1In production codes one would usually use NM = N.
We call FMG(N, N, C, M} an N-cycle FMG algorithm, and denote it also
by FMG(N, C, M). In our experiments we used larger values of NM in

order to verify that the smaller NM could do just as well. See Secs.

5.2 and 5.3 in [10] concerning the choice of N and Ny -

Total Work. From (6.5) we can easily calculate that FMG(N, C(rl,rzfﬂ M)

roughly costs
N{r+l) (1-v2 ) ~({1-2 ) (6.8)

grid-M work units.

6.3 Remarks on relaxation. RB schemes

General aspects of relaxation for non-elliptic and singular pertur-
bation problems were extensively discussed in previous sections. More

specific remarks follow,
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The first approach to singular-perturbation and non-elliptic pro-
blems ([4],[30],[5),[7]) was to employ downstream Gauss-Seidel Relaxa-
tion, where a point A is relaxed before a peint B if the stream goes
from A to B; e.g., lexicographic order in case aj >0 (j=1,...d)
in (3.1). This provides very good smoothing factors. In case the stream
direction changes over the domain, however, this may require successive
relaxation sweeps in different directions, each being effective in only
part of the domain. Since one or two (efficient) sweeps are usually all
that is needed at each stage at each part, the multi-direction procedure
is not fully efficient. Also, it requires more complicated programs.
Hence direction-free schemes were developed. They include distributed
relaxation {7],[8] and relaxation with increased artificial viscosity
([8], sec. 4.3).

Since they are direction-free, those schemes may also be implemented
in red-black (RB) ordering. 1In each RB sweep one first relaxes all the
red peints (grid points X where ):xj/hj is even), then all the black
ones (the others). This ordering has been found more efficient than
others for regular elliptic problems [19]. It also has the advantage
of being suitable for parallei and vector processing. For systems (non-
scalar) problems similar advantages are obtained by distributed-red-black
(DRB) relaxation [11] . In case of non-elliptic and singular perturba-
tion problems RB schemes have also the important advantage of slower
convergence rates (cf. Sec. 2.2): In RB schemes information propagates
at most two meshsizes per sweep, hence the order of convergence (ro) can-
not vanish, whereas it does_sometimes vanish for downstream Gauss-Seidel
schemes (e.g., in case of upstream differencing; or in case of (5.15}

with B=.5 and al==...==ad). For the same reason, in RB schemes no cata-
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sﬁroPhic error growth can occur (cf. Table 2). On the other hand RB

schemes also have a certain disadvantage when used in double-discretization
schemes: No matter how smooth the solution is, red-black ordering intro-~
duces high-frequency error components whose amplitude is o(hp0+m), where

P, is the approximation order of Lg and m is the order of the differen-
tial equation being relaxed (or the reduced equation, in case of singular
perturbations. In fact, the order here should be the "scaled" order, denoted
by 2m in Sec. 3.8 of [14].) These errors cannot be corrected by the
coarse-grid correction, so they may degrade the accuracy in case P0-+Hl$p‘~q,

p being the approximation order of Lh and g beiné the order of deri-

1

vatives taken into our error norms.

6.4 Remarks on coarsening.

In coarsening the grid-k residual problem, we have to choose the
fine-to-coarse residuals-transfer operators ili-l  the coarse grid
operators L?-l + and also the correction-interpolation operator I:_l
which will transfer the coarse-grid solution back to the fine grid.
Choices here are different than in reqular elliptic problems.

Reqular elliptic problems have symmetric principal parts, i.e.,
the matrix corresponding to Lh is nearly symmetric. For such problems
. variational discretizations are very natural, and similarly, variational
coarsening techniques are straightforward and efficient, even in highly
discontinuous problems (see [1]): Having chosen a suitable interpolation
It—l (suitably reflecting the smoothness properties of solutions to the

homogeneous equations) one can simply take

I = I {6.9a)

L, = .I LI i (6.9b)
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*
where It_l denotes the adjoint of I:—l . That is, the matrix corre-

*
sponding to Ik—l is the transpose of the one corresponding to Ik

k-1"
Non-elliptic and singular perturbation problems, on the other hand, are
highly asymmetric, sometimes even antisymmetric. The choice {6.9) then

leads to bad approximations on coarser grids. Relation (6.9b), to be

k-1
iIk .

sure, can still be used, but with a different
Generally, any method of coarsening implies a certain method of dis-

cretization (see [12]), which show that the task of coarsening is at

least as difficult as that of discretization. For non-elliptic and singu-

lar perturbation problems, discretization techniques are mainly based on

physical considerations, such as upstream differencing or artificial

viscosity (Sec. 3). Hence we have used similar physical considerations

. k-1 ;
in coarsening. In fact, we use the same operator Li as when grid

k-1 is the finest grid. Thus, in case double discretization is used

on the finest grid (Li ¥ Lg), it is also used on coarser grids. (Except

for some particular experiments designed to measure algebraic convergence

factors.)’

k-1 _ .
The residual-transfer operators iIk should be of the full-weighting

type (cf., e.g., Sec. 3 in (101}, since the transferred residuals are not
likely to be smooth enough for injection. One reason for their non-smooth-
ness is that they are calculated by a different operator than the one used
in relaxation (quéLg). Other potential reasons are the RB relaxation

; k , .k
(for which "half-injection", as in [19], cannot be made if Iﬂ.#Ib)' and

the presence of discontinuities.
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k-1 k=1 ;
0Ik and lIk need not be different. It

The two operators
seems however that somewhat different considerations enter in choosing

. k-1 ' ; .
them. Since L has an upstream bias, it seems advantageous to use

0
such a bias also in 01;—1 . We have for example experimented with the
transfer
k-1 _k _ k k k k
(I, RI® = F[R(x) +R (x-h) + (R™(x-h)) + (R (x-h,-h,)] (6.10)

applied for residuals of approximations to (3.l1) in case d=2, a, >0,

1

a, >0. We call it downstream residual transfer, since each residual on

grid k 1is added at a point x on the coarser grid which roughly lies
downstream from the point of the residual. This is also physically reason-
able to do: Under strong convection, influence of forcing terms (such

as residuals) is convected downstream.

on the other hand, 11:-1 should be such that higher order approxi-
mation is obtained in transferring residuals from grid k-1 to grid
k-2 . Central interpolation is then natural. So for i=1 we may pre-

fer the usual full-weighting operator

- -d- k
(I w = ] 2 Ky, (6.11)
i“k = 2
Ivlsl
where Vv = (vl,...,vd), v, are integers and vl = lvll +...+ Ivdl.

The residual transfer is of course simpler and somewhat less expen-

sive if 11;-1 = Olt-l . We have therefore sometimes used either (6.10)

or (6.11) for both transfers.

k ;
The interpolation Ik—l should reflect the smoothness propertles

of solutions with relatively small residuals, which are like the smooth-

ness properties of solutions to the homogeneous differential equations.
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In case of non-elliptic or singular-perturbation problems this implies

symmetric streamwise interpolation. Because of the grid geometry, how-

ever, this is not possible to do (except approximately, and by using
values at far coarse-grid points). We have therefore mostly used the
usual symmetric bilinear interpolation from nearest coarse-grid neighbors.

We have alsc examined the efficiency of using first-order interpolation

from upstream, meaning

(F Ly g = KLU

k=1 Y. (6.12)

us s ; "
where x is the nearest upstream coarse-grid point. For example, in

U ; ; ;
case (3.1}, x B is the point nearest to x among all coarse-grid

peoints y such that (xj —yj) :':1j 20, (3=1,...,4).
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7. NUMERICAL EXPERIMENTS

Results of preliminary numerical experiments are described in [37],
a further systematic study is reported here, and a fuller account will be
given elsewhere. The experiments reported here were all performed in colla-
boraticn with D. Sidilkover. They all deal with the multigrid solution of

our model differential equation in two dimensions

_ U, U
LU = -(0+)AU + alaxl + 8x2 = F, (7.1)

where O+ means an infinitesimally small positive number (much smaller than
any meshsize used). The sign of this singular perturbation coefficient is
important, since it determines the position of boundary layers and the sign

of the O(h) numerical viscosity. Note that we normalize our equation, taking
here a,=1. With no loss of generality we examine only the case O¢ga, <1,

2 1

so that a==maxlaj| = 1. With these signs of a a, and the singular-per-

ll
turbation coefficient, the downstream direction is always in positive—xl-posi-
tive—x2 direction,

For coding simplicity we chose our domain to be the rectangle

Q={(xl,x2): 0O<x, €3, O0sx,52}, (7.2)

2
and we placed Dirichlet boundary conditions all around its boundary. With the
above signs, only the conditions on the {xl==0} and {x2 =0} boundaries ac-
tually affect the solution, while the Dirichlet conditions on the other boun-
daries will usually create boundary-layer discontinuities.

This problem can of course be solved as a time-dependent problem, X,

for example taken as the time coordinate. But for us it just serves as a simple

example for a non-elliptic BVP, hence the Processes we apply are only such that

can be applied to general Bvps.
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We used five grids (levels). Each of them is placed so that the four
segments of the boundary 9 all coincide with gridlines. The meshsize of

k-1 _

grid k is hk==21—k ; hence it has (3x2 1) x (Zk-— 1) interior grid

points and 5x2° boundary points, (lgk«¢5).

7.1 FMG algorithms for smooth scolutions

The purpose of our evperiments is to separate as far as possible the
various algorithmic questions, so that each can be studied on its own. First
we study how effective are different algorithms in case of smooth solutions,
aveiding any influence of discontinuities. For this purpose we solve (7.1)
with

in @,

Lo
]

&, COs X

1 1 Cos X

in X, + si
sin x, sin x, 2

(7.3)

]

sin x. sinx

Y 1 2

on dil ,

so that U = sixxxl sin.x2 is the exact soclution. With these particular
boundary conditions there are no boundary layers. In other experiments we
chose the boundary values so that boundary layers did appear, but this af-
facted our solution only near those boundaries, and, on the other hand, the
large errors in the boundary layers confused our study of the smooth regime,
hence we show here the c¢learer results without boundary lavers. To avoid in-
fluence of even small numerical boundary layers, we have measured our errors
only in a subdomain bounded away from the potential layers. Thus, all the
error measurements shown in Table 3 are L. norms of the difference uh - U

1

in the subdomain
Q! ={(xl.x2)= Osx, €2, 0¢x,54/3}, (7.4)

h : ; ‘
where u  1is the numerical solution produced by the specified algorithm.
The algorithms are all of the FMG(N, NM’ C, M) type (Sec. 6.2) with

M = 5, using the two basic discretizations of (7.1)
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g _ 2 N N o |
U~ = ("BihlA + al 31 + 32)U =F , {i Orl)r (7.5)

e

L

% hy

where A£ and §j are as A and 5j2 in (3.2), and FE is a certain re-

presentation (injection, unless otherwise specified) of F(x,y) on grid .

; 3 ; ;g El],
The first interpolation to a new grid ||

. is always cubic interpolation.

Since the coarsest level (R =1) is too coarse to cubically interpolate from,
we have used five C(2) cycles to safely reduce the error on grid 2 below
truncation errors.

Each column in Table 3 describes one numerical experiment. Above the
double line the parameters of the experiment are given, and below it some out-
put results are shown, all as indicated by the left-most column. The cycles
C shown in the so-designated row are explained in Sec. 6.1. "N" is the num-
ber of cycles at intermediate levels (levels 3 and 4). In the row "Relax" the
relaxation scheme is specified: It is always a point-by-point Gauss-Seidel
scheme; RB indicates red-black ordering, Lex+ lexicographic ordering, Lex- re-
versed lexicogrpahic ordering, and Lex-+ indicates ordering reversed in X,
and forward in X, "BO" and "Bl“ are the artificial-viscosity coefficients
used in relaxation and in residual transfers, respectively (see (7.5)). 1In
some particular experiments anisotropic artificial viscosity was used, in the
form

2

L. = -B.h 32 + a,
i

2 ~
i"8 %55 1% * 7

L
P (7.6)

L . hg . ;
where ajj is as ajj in (3.6). This is indicated by (j) being attached

n i n
to the value of Bi' In the row designated ili 1 + the type of residual
transfer is specified: "Cen" means that the central full weighting (6.11) was
k-1 k-1 . "
used for both 0Ik and lIk i Dwn" denotes the downstream transfer (6.10),

"Dwn2" indicates the modified downstream transfer

k-1 k 1 k k k k
(iIk R)(x) = EIR (_:5-31_1) + R (§+£l) + R (3_-_111—11-2) + R (5+El-£2)]

+z R0 + B (x-n )1, (5.9
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k-1 k-1
and "DwCn" means that (6.10) was used for OIk and (6.11) for 1Tk . In
k ; s
the row titled "Ik_l" the type of the coarse-to-fine correction interpolation

is given: "Lin" stands for the usual bilinear interpolation; "Ups" for the first-
order interpolation from upstream (6.12) ; and "SSL" for Streamwise Symmetric
Linear interpolation, which is the same as Lin except for points x of grid k

neither on rows nor on columns of grid k-1, where the linear interpolation

k -1 _ 1, k-1 k-1,
T q Vh® = SV (x+hy +hy) + V0 (x=hy -hy)] (7.8)

is used (for the case a, > 0}.

1
In the row marked "Other" we indicate deviations from the above standards.
"Ul" indicates that the solution U1 = sin.(2nx1) sin (anz) is used instead
of (7.3). Also, whereas usually we use injected right-hand sides Fl(gg = F(x),
with Ul it is necessary to use proper weighting, lest the results on coarser
. X : X A ‘ L _ ak 2+1
grids will be grossly distorted. So with "U;" we use F (x) = I, 4 F (%)

3 ; 4 .
for & < M, where I£+1 is the central full weighting (6.11} and

M
F (x) = F(x) = 2'fral cos (2mx,) sin(2ﬁx2) + 27 sin(27x,) cos(2ﬂx2) %

"ﬂi" in the row "Other" indicates that

91= {(xl,x2): -5¢% £2.5 , 0£x2€4/3}

is used instead of (7.4).

h i
The output rows show the error |lu -U “L (@) at various stages, the
1
stage being specified in the left-most column: In the row marked "2(n}", uh

is the result of FMG(N, n, C, ) where C is the cycle V(rl,rz) or W(rl,rz) orF%rl,r2L
as indicated in the row "Cycle". 1In case r, # 0 we show a pair of numbers
in row "&(n)" (for n>0), the first being the error before the last relaxation

sweep, the second being the error after that sweep.
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a; 1 2/
Cycle w(2,1) W(2,0) w(l,0) W(l,0) w(1i,0)
N 2 2 2 1 1 2 2 1 1 2 2
Relax RB RB RB RB RB
By i 1 1 <5 1 +5 1 <5 1 w5 1 .5 1 .5 1 5
By 1 C 0 0 0 0 1 .5 ) 0
k-1
MHw Cen Cen Dwn Dwn Dwn Dwn Cen Dwn
k . , . .
HWIH Lin Lin Lin Lin Tin
Other
.624 .569 .303
stuwz nwoq 741 708 .371 .mmo___.wmq ‘:.mwo‘ -287 |.439 .24l  .439  .241 | .903  .467 |.465 .221
.0516 .0575 .0258 o o
.uﬁzu 570 "1ue 170 115 | -0416 .0254 .0896 .0258 | .0548 .0347 .148 .0410| .558 .262 [.0725 .0346
.0105 .0081 .0062 .
4(N) -239 " el 0332 o208 | -0085 .0071 .0124 .0076 | .0089 -0095 .0187 .0153| .231 .113 {.0098 .0100
5(0) .238  .0328 .0399 .0349| .0064 .0057 .0146 .0075|.0060 .0053 .0175 .0128| .232 .110 |.0068 .0052
.0031 .0026 .0018
541} 14 T 0es Tooms  .opsa | 0026 0022 .0026 .oomm .0024 .0038 .0051 .0058{ .114 .0566 |.0024 .0035
T . .0025 ,0023 .0019| o ‘
mﬁmv 120 0091 ‘ooss  .oosy | -0023 0021, .0025 .0022 | .0024 .0025 .0027 .0035| .121  .0579 [.0024 .0025 .
.0025 .0023 .0019 g d
5({6)} .120 _0072 .0084 .0081 .0023 .0020 ,0023 .0020 | .0024 .0023 .0024 .,0025[ .120 .0580 |.0024 .0023
1 2 3 4 5 6 7 8 9 10 11 12 13 14 7E 16
TABLE 3



1
Cycle W(l, 0}
N 2

Relax ‘RB

B 2 3 .4 .5 .6 .7 .8 .9 1.0 2.0 4.0 8.0
mH 0

k-1
u..Hw Own

K .

Hw..u. Lin
Other
2(5) 7.75 .195 .183 .241  .290 .336 .376 .410 .43%9 .591  .683  .732
3(N) 56.5 .124 .0421 .0347 .0319 .0330 .0382 .0454 .0548 .184 .312  .395
4(N) [l9580 .177 .0150 .0095 .0085 .0084 .0085 .0087 .0089 .0234 .0911 .176
5(0) I .114x10° .181 .0123 .0053 .0044 .0045 .0049 .0055 .0060 .0226 .0884 .171
5(1) | .163x10°8 .251 ,0114 .0038 .0028 .0026 .0025 .0025 .0024 .0053 .0374 .113
5(2) |l .748x101° 1.12  .0050 .0025 .0024 .0024 .0024 .0024 .0024 .0030 .0171 .0765
5e6) I .123x10%% 67977 .0078 .0023 .0023 .0023 .0024 .0024 .0024 .0025 .0034 .0176

17 13 - 19 20 21 72 23 24 25 26 3% 28
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TABLE 3 cont’'d




mH 1
Cycle v(z2,0} - V(1,0) F(1,0) F(2,0) F(1,0}

N 1 2 2 1 1
Relax RB RB RB RB RB

mo | 1 «8 1 .5 1 ) 1l .5 1 .5
mH 0 0
&t Dwn Dwn
17k

K . .

HWlH Lin Lin
Other
2(5) 1 .530 . 287 .439 241 .439 241 .530 .287 .439 .241
3{N) .167 L0253} .156 .0425 | .0548 .0347 | .0896 ,0258 .th .0410
4 (N) .0312 .0091 | .0330 .0101 | .0092 .0095] .0118 .0076 1} .0191 .0153
5(0) .0341 .0101%f .0354 .0090 | .0070 .0054 1 .0136 .0074 | .0173 .0133
5(1) .0088 .0Q027F}F .0l56 .0054 | .0024 .0037{ .0025 ,00254 .0054 .0065
5(2}) .0044 .0025§ .0088 .0030 | .0024 .OONm_ .0024 .0022 | .0027 .0036
5(6) .0042 .0Q023}t .0055 .0027 | .0024 .0023| .0023 .0020 | .0024 .0025

29 30 31 32 33 34 35 36 37 38

TABLE 3 cont’'d
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1
cycle W(1,0)  W(2,0) W(l,0) W(l,0) wW(2,0) W(1,0) W(1,0)
N 2 1 1 2 1 1 2
Relax Lex+ Lex+ Lex+ Lex- Lex- Lex- Lex—-+
By 1 .5 1 .5 2 .5 1 .5 1 .5 1 .5 1 .5
By 0
k-1
Dw,
1Tk n
k .
Lin
Te-1
Other
2(5) .0890 .0685 | .157 .0685 |.0890 ,0685 |.232 .0598 |.218 .0452 | .232  .0598| .142  .0491
3(N) .0242 .0278 | .0571 .0278 |.0566 .0278 { .0078 .0165 {.0369 .0137 |.0338 .01211{ .0292 .0160
4(N) .0080 .0083 | .0107 .0083 |.0126 .0083 | .0053 .0052 [.0086 .0095 |.0073 .0083)| .0070 .0047
5(0) .0139 .0580 | .0197 .0580 |.0184 .0580 | .0024 .0016 |.0095 .0067 | .0084 .0040] .0070 .0054
5(1) .0012 .0026 | .0017 .0026 |.0025 .0026 |.0017 .0020 |.0013 .0013 |.0022 .o014] .0015 .0012
5(2) .0012 .0026 | .0011 .0026 {.0008 .0026 |.0018 .,0016 |.0018 .0014 | .0017 .0016] .0013 .0014
5(6) .0012 .0026 { .0011 .0026 |.0012 ,0026 {.0015 .00l6 |.00l4 .0014 | .0015 .0016 | .0015 .0O013
39 40 41 42 43 44 45 46 47 48 49 50 51 52

TABLE 3 cont'd
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wH 1
Cycle W(l,0)

N 2
Relax RB

mo 1 ) 1 5 1 .5 1 5 1 .5 1l .5 1 .5

mp 0 0 0 0
Hlew Cen Cen Dwn Dwn Cen Cen Dwn Dwn DwCn DwCn Dwn Dwn Dwin DwCn

Hw Lin Ups Lin SSL

x-1 P
Other ”
2(5) .504 .257 .439 .241 .632 . 346 .541 . 307 .496 .297 .474 .266 .524 .316 m
3(N) .104 .0521 .0548 .0347 | .173 -0470 .166 .0537 | .0584 .0520 | .0654 .0362 .,0752 .,0482
4(N) .0375 .0149 .0089 .0095 | .0330 .0104 .0325 ,0105 | .0168 .0l145| .0095 .0101 .0l166 .0l54 ]
5(0) .0345 .0083 .0060 ,0053 ] .0361 .0081 .,0345 .0099 | .01l6l .0Ql061}] .0062 .0060 .0172 .0113
5(1) .0075 .,0068 .0024 .,0038 ! .0144 .0042 ,0151 .0041 4% .0054 ,0071)| .0025 .0047 .0073 .0087
5{2) .0049 .0050 .0024 .0025 | .0074 .0Q026 .0082 .0026 ”.oouw L0065 | .0024 .0028 .0044 .0076
5(6) -0028 .0033 .0024 .0023 | .0027 ,0023 .0027 .0023 | .0025 .0058| .0024 .0024 .0028 0099

53 54 55 56 57 58 59 60 61 62 63 64 65 66

TABLE 3 cont'd
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mH 0

Cycle wW({l,0)

N 2
Relax RB Lex+ Lex+ Lex- Lex- RB Lex+ Lex—

mo 1 .5 1 o5 1 .5 1 5 .5(2) 502}  .5(2)

mH 1 5 0 0 6] 0

it Dwn2 Dwn2 Dwn2
ik

Hw Lin Lin Lin

k-1

0 1 1 L]
. Other SH bH nw
2(5) 1.23 .722 .977 .436 .683 .125 . 745 .172 | .252 .187 .0378
3(N) .990 .427 . 300 L0430 § .154 .0272  .142 L0165 §.0647 .0298 ,0538
4 (N) nuow .179 .0279 .0112 | .0078 .0078 .0182 .0109 |.0152 .0040 .0133
5(0) .402 179 .0240 .0084 | .0120 .0125 .0217 .0054 ].0067 .0454 .0072
5(1) .186 .0927 .0136 .0062 [ .0082 ,0014 .0113 .C038 W.OObw L0010 .0040
5(2) .186 .0916 .0035 .0030 ] .0015 .0018 .0023 .0014 |.0039 .0010 .0043
5(6) .193 .0916 .0029 .0028 w.oowh L0020 .0021 .0022 1.0028 .0010 .0l07
67 68 69 70 71 72 73 74 75 76 17

TABLE 3 cont'd




4
Cycle w(l,0)
N 2
Relax RB RB
By .25 .3 .5 .7 1. 2. L3(2)  .5(2) .7(2) 1.(2) 2.(2)
mH 0
k-1
WHW Dwni2
k :
HWlH Lin
Other cw.nw
2(5) .0026 .,0022 .,0013 .00L0 .0007 .0O0O4 .0170 .0022 .0016 .00l1 .0006
3(N) .298  ,623 1.28 1.50 1.61 1.69 .561 .420 .998 1.39  1.67
4 (N) .314  .156 .657 1.06 1.41 1.96 3.61 .322 .363 .764 1,56
5(0) .388 .231 .692 1.17 1.60 2.09 4.15 .368 .403 .850 1.74
5(1) .241 127 .376 .725 1,14 1.80 | 7.16 .182 .168 .517 1.27
5(2) -142 .118 .283 .490 .852 1.58 [27.9 .168 .165 .233 .988
5(6) .258  .108 .166 .250 .436 .935 .mmuxHOm .172 .121 .189 427
78 79 80 81 82 83 84 85 86 87 88
Im..._.l

TABLE 3 cont'd
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7.2 Discussion of the results

The experiments clearly show the advantage of double discretization:
Experiments with Bl==80 {columns 1, 13, 14, 67, 68) show only O(h) con~
vergence and much larger errors then with Bl,=0' (The use of iI:_l = Cen
in experiments 1, 13, 14 is immaterial. When Bl==BO Cen and Dwn give
essentially the same results.)

Relaxation has temporary bad effect on the solution in double discre-
tization schemes because of its lower order (experiments 2, 3, 4), but this
is only temporary (compare the errors in coclumns 3 and 4 before the last
relaxation with the corresponding errors in columns 5 and 6).

For Bl.=0 the errors are clearly O(hz). This second-order con-
vergence is obtained without too much work. The ﬁables show that best
results are obtained already by FMG(2, 2, W(1,0), M) which involves 9.7
work units (6.1 in three dimensions), by FMG(l, 1, W({2,0), M} which involves
8 units (4.6 in 3 dimensions), and even by FMG(1, 1, W(1l,0), M) (see columns
50-52) which involves only 5.3 units (3.0 in 3 dimensions), This work
count is based on (6.8), in which each residual transfer from grid M is
counted as one work unit.

If the work count is somewhat larger than in some regular elliptic
problems, this is due to the use of W cycles which are 3/2 (7/6 in 3
dimensions) more expensive than V cycles. The W cycles do seem safer
(compare columns 7 and 9 with 29 and 31) although with a more careful choice
of BO' Vv cycles may approach similar results (columns 30 and 32). F cycles
(columns 33-38) give results essentially identical with the corresponding
W-cycle results (columns 7-12), but their work is alsc essentially the same
{except for very large grids in one dimension). Since a real concern about

computer time usually arises only in three-dimensional problems, where W
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cycles are just slightly more expensive than V cycles, we preferred using
mainly W cycles in our further experiments.

Notice that in case of Lex+ relaxation with upstream differencing
(columns 40, 42, 44 and 76) Vv cycles would give results identical with
those shown for W c¢ycles, because once such a relaxation is made {(on
any problem or correction problem) the upstream solution is immediately
introduced and the previous history (of solving that problem) is immaterial.

Hence in these cases results are also independent on r, and N (columns

1
40, 42 and 44 are identical). In fact, in these cases the FMG algorithm
itself is redundant: We would obtain the same results on grid M if we
started there with any scolution, just performing one V(1,0) (M) cycle.
This would cost only 2.7 work units (2.3 in 3 dimensions)! But this is

true only for purely hyperbolic schemes where the downstream direction of
relaxation is the same throughout the domain.
It is intergsting to compare the errors in Table 3 to the "ideal"

h
errors associated with the residual-transfer operator L Taylor ex-

1 -
. : ; ; h Uh ;
pansions show: that the discretization error e = - U approximately
tisfi th—-Ei B3+B%U I £ luti U=sin in x
satisfies 18 =7 5(a9 5 . n case of our soluticn =sinx, sinx,
2 2
we therefore get L eh = L.U, hence eh . U and
1 6 1 6
h h? 4 2
= —— - 2 - —— = . =,
lle IIle.) g (1 -cos2)(l-cosz) 181 h 00075 ,
h b 1 5 4 2
= '—'-{ —— o - e = = .
lle ”L @ e~ (cos S -cos 7 (1 cos3) .214 h 00084 ,
1'71
for h=1/16 (meshsize of our grid 5). In case of Ul = sin 27 Xy sin 2w X,
we similarly obtain Ilehll o = 2212 < o286 . These ideal errors do not
Ll(Ql) 3

take into account large high-frequency errors that would be introduced if

Ll were the only discretization used. Still, we can see that the ideal



error is sometimes approached by our numerical results (columns 39, 41, 43,
45-52, 76). 1In case RB relaxation is used, the results are somewhat worse
because of the high-frequency errors introduced by such schemes (see Sec.
6.3; in our example here p0==n\=1). In view of other RB advantages (Sec.
6.3), its use may still be recormended (see comment at the end of this
section). The results are also somewhat worse for the Lex+ relaxation
with B=.5 (columns 42, 44). This can be explained by the lower order

of convergence (see Sec. 2.2; here po==1 and r0==0). Thus surprisingly
in a way, the relaxation Lex-, against the stream direction, as well as
Lex-+, give best results in the shortest algorithm (column 50-52).

The optimal artificial wviscosity for relaxation is studied in ex-
periments 17-28, 78-88. We see that there exists a reasonabie range of
insensitivity, with the optimal BO obtained close to the minimal value
of convergence predicted by mode analysis (compare with Table 2 and see
the discussion at the end of Sec. 5.7}. The minimal value itself can be
used, but smaller values give fast divergence. For large BO the error
grows linearly with BO.

In experiments 53 to 66 we have tried varicus combinations of residual-
weighting and correction-interpolation schemes. Downstream residual transfer
{Dwn)} seems to perform better than the usual (central) full weighting (Cen).
On the other hand the correction interpolation from upstream (Ups) performs
worse than the usual linear interpolation, simply because of its lower order.
{See remark on interpolation orders in Sec. 2.2. In our example here p=2
and p0==l .). The symmetric streamwise linear interpolation (SSL) does not
improve over the usual interpolation, since both reach the lowest errors
possible with RB schemes. The combined residual-weighting procedure DwCn
performs worse than Dwn, indicating that Dwn is a better weighting than Cen

even for smooth components. This issue perhaps requires a further clarifica-



tion by mode analysis.

The last set of experiments (67-88) deals with the case of a flow aligned
with the xz—gridlines (a1==0). Note that the later half of these experiments
{78-88) were performed with a different solution (Ul), so the results are
not directly comparable to those in the first half. The best results are
obtained for upstream differencing with downstream relaxation (column 76.
Remember, furthermore, that identical results would be obtained by using the
simpler cycle V(1,0) witﬁ N=1.) This, however, is not a direction-free
result. If we relax against the stream direction, or in red-black ordering,
results (75~77) are considerable worse. By contrast, results with full h-
ellipticity are direction-free (columns 71-74). They seem to be worse than
the upstream-differencing results, but this is because they do not use their
minimal artificial viscosity. When isotropic artificial viscosity (7.5) is
used with the minimal BO for which RB Gauss-Seidel still converges (in
case al_=0 this minimum is BO =12“l/2 = .288), the performance is bet-
ter than with upstream differencing (compare column 79 with 85-86). still,
the performance shown here for isotropic-viscosity differencing is not as
much better (than for upstream differencing without downstream relaxation)

as might be expected from smoothing-rate analysis. The reason: its algebraic

smoothing is much better, but not its differential smoothing. (See Sec. 2.2

and end of Sec. 3.3.) The results here indicate that for variable-direction
flows upstream differencing with symmetric Gauss Seidel relaxation may give
very good results (not better than isotropic-viscosity differencing, to be
sure, unless the flow consistently aligns with the grid). The optimal arti=-
ficial viscosity may indeed be anisotropic, although not necessarily the one
yielding upstream differencing.

Comparing results for a, =1 and al==0, the best isotropic artificial

1

viscosity seems to be as in (7.5), with By =(l+al)/3.
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Last important comment: Perhaps the small differences between many

of the second-order results (those with Bl.=0) do not matter much. The
errors shown are so small that the overall error in a real problem may well

be dominated by much larger errors committed near discontinuities.

7.3 Preliminary FMG experiments with contact discontinuity

Our next concern, then, is the behavior of discontinuities in multigrid
processes {(see Sec. 4). The numerical behavior of contact discontinuities

1/2)

is notorious for Of{h smearing entailed by usual artificial viscosity..
S0 we test its behavior in our double-discretization multigrid algorithms.
The test problem is again equation (7.1) in the domain (7.2), in the

special case =1 and F(xl, xz)E 0, with the discontinuous boundary con-

e

dition

-1) on 30, (7.9)

U(xl, x2) = H(xl--x2

where H(E) =0 for £<0 and H{E)=1 for £:20 (Heaviside function}.

The solution is simply

U(xl, x2) = H(xl-x - 1) throughout § . (7.10)

2

We see that the boundary discontinuity at (1,0} travels along the charac-
teristic line {xl-x2==l}. This is called contact discontinuity. The
boundary conditions are again chosen so that no boundary layers enter, so
that we can more clearly examine the behaviour at the contact.

Tﬁe numerical solution algorithms were the same as in Sec. 7.1, with
the (double) discretization (7.5). The most intgresting feature in the
numerical solution is its profile around the discontinuity a certain dis-
tance away from the initial boundary. Such profiles are shown in Fig. 5

for the solution obtained by the algorithms FMG(N, N, W(rl,rz), 5y with
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' : k-1 k ;
RB relaxation, iIk = Dwn and Ik-l = Lin, in the four representative

cages:

(a) r,=2, r,=1, N=2, 8 =Bl=1-

(b) r, =2, r,=1, N=2, By=By=-5 .

1 2
{c) rl=l, r,=0, N=1, B,=.5, B, =0 .
(d) r,=1, r,=0, N=2, B,=.5, B, =0 .

The last twc cases are effectively higher-order calculations that
proved very good in the smooth cases. Typical to higher-order methods they
exhibit less smearing but more oscillations. Various improvements, dis-

cussed in Sec. 4, are now being tested.
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§ u@+jh,1-jh)

O rm

o 7 —-— (d)

Figure 5. Smearing of contact discontinuity .
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