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MULTIGRID METHODS FOR DIFFERENTIAL EIGENPROBLEMS*

A. BRANDT, S. McCORMICKt AND J. RUGE

Abstract. This paper develops an efficient multigrid algorithm for solving the eigenvalue problem
associated with a linear differential operator. The algorithm is based on the full approximation scheme
(FAS) and incorporates a Ritz projection process for simultaneous computation of several eigenvalues and
their eigenvectors. Included are the results of some numerical experiments that illustrate its performance
in various contexts.
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1. Introduction. The usual method for finding eigenvalues of a differential
operator is to discretize the problem and solve the resulting matrix eigenvalue problem
by some algebraic technique. If, as we assume here, the first several eigenvalues and
corresponding eigenvectors are desired, then one may use a simultaneous or block
version of such methods as inverse iteration, Rayleigh quotient iteration or Lanczos.

This approach of treating the discrete problem as a purely algebraic one can
result in a loss of valuable information, especially concerning the smoothness of the
eigenvectors. In general, the operator’s eigenvectors corresponding to the desired
smaller eigenvalues are very smooth, so that they are fairly well approximated on
coarser grids. Certain multigrid processes (e.g., FMG described in 3.2) take full
advantage of this smoothness and are therefore very effective for solving such problems.

The experiments we have performed indicate that the first eigenvalue of a
differential operator can be approximated to within truncation error with a little more
work than is needed for solving the related boundary value problem by multigrid.
When more than one eigenvalue is desired, the work needed per eigenvalue increases
somewhat due primarily to the orthogonalization and Ritz steps used to prevent all
of the emerging eigenvalue approximations from converging to the first eigenvalue.
Nevertheless, as we note in 7, the total work is zag-q:Zn + O(q2n + q3 log n), where n
is the number of fine grid points and q is the number of desired eigenvalues.

After introducing the notation and some basic multigrid ideas, the method for
finding an approximation to the first eigenvalue of the operator is detailed and
discussed. This method is then extended in 6 to the computation of several
eigenvalues.

Basically, the algorithm proposed in this paper uses the version of multigrid that
treats the eigenvalue problem as a nonlinear problem on all grids. The problem is
solved on successively finer grids, using the solution at each level as the initial guess
for the next. To improve this initial guess, a multigrid cycle is then performed for
each eigenvector, retaining nonlinearity on coarser grids and maintaining separation
of the vectors by coarse-grid orthogonalization with respect to previous eigenvectors.

The Ritz projection is used to maintain a stable basis for the emerging invariant
subspace approximation and results in accelerating the speed of convergence of the
multigrid iteration to the true eigenvectors. It raises several questions in algorithm
design, as we shall see.
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Several other algorithms incorporating multigrid methods have been proposed
for the solution of differential eigenvalue problems. Hackbusch [5] developed a method
for approximating the. eigenvalues of an elliptic differential operator. The basic
algorithm is similar to ours although the emphasis of his work is mainly theoretical.
Strakhovskaya [9] proposes another method for approximating the first eigenvalue
that is similar to Hackbusch’s but that uses coarser grids to solve the residual equation
obtained on the finest. Clemm and Guderley [4] use the theory of a two-level method
for linear problems to develop a method for finding several eigenvalues. It is much
different from the modern recursive multigrid approach taken here. McCormick [7]
uses Newton’s method (that is, Rayleigh quotient iteration) with multigrid as the
inner-loop equation solver, together with Ritz projections to compute several eigen-
values and eigenvectors.

The method developed by Alcoutte, et al. [1] for solving linear problems has
been extended to apply to eigenvalue problems. It is similar to our approach for
computing the first eigenvalue, although their emphasis is in applying the method to
their problem and ours is in a full development of the algorithm.

The essential features of our algorithm were developed by the authors in 1979.
In fact, the present algorithm is an improvement of the one coded and distributed on
magnetic tape at the 1979 multigrid workshop at Yale University.

2. Notation. Let L be a differential operator on a set of functions defined on a
domain l) in Rd. Let G1, G2,..., G, be a sequence of increasingly finer grids that
extend over f. Assume that all grids are uniform and that each, except G 1, is a
refinement of the previous grid made by halving the mesh size. Let Lk denote the
finite difference approximation to L on grid G k.

Since interaction between grids is necessary, we need a procedure for transferring
functions from one grid to another. Let G k and G be two different grids and let u k

be a function defined on Gk. Let I be a mapping from the functions on Gk to the
functions on G such that:

a) if G k is coarser than G , IkU k is the function obtained on G by linear
interpolation of u k to G t’, and

b) if G k is finer than G l, the value of IlkU k at a given point of G is the weighted
average of a small number of points neighboring the corresponding Gk point. (This
includes the frequently used definition that the value of IkU k at a given point of G
is just the value of u k at the corresponding point of Gk.)

For k <l-1 we assume that I/ I_1I-1.
In the following, the inner product denoted by (.,. is a discrete approximation

to the continuous L2(f) inner product which, in d dimensions, is given by

(u

Here, hk is the mesh size of G and u k (x) and v
k

V at the grid point x.
k(x) represent the values of u k and

3. Basic multigrid processes.
3.1. Muitigrid cycle. The efficiency of multigrid methods results from the fact

that, although relaxation is usually slow to converge, it is quick to reduce high-
frequency error components. This allows the problem to be transferred to a coarser
grid where the error can be resolved with much less work. (Not only is relaxation
cheaper per sweep on coarser grids, but the solution process is also much more
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effective.) The coarse grid equation can be solved by relaxation and appeal to still
coarser grids. The coarsest grid used is chosen so that solution of the problem there
is inexpensive compared to the work performed on the fine grid. The number of
relaxation sweeps needed to smooth the error on each grid is generally small and can
be predetermined by the usual mode analysis, for example. The process of using a
predetermined number of sweeps per grid is called fixed cycle multigrid. Such a cycle
is defined by the following steps (where G is the finest grid).

1. Set k l.
2. Relax u times on the Gk problem.
3. Ifk=l, goto4.

Otherwise, set k -k- 1, transfer the problem to a coarser grid and go to 2.
4. Relax u2 times on the Gk problem.
5. If k =/, stop.

Otherwise, correct the Gk+l solution approximation using the solution of the
Gk problem, set k k + 1 and go to 4.

(This actually illustrates the so-called V-cycle, where one multigrid cycle on the Gk

problem involves exactly one multigrid cycle on Gk-1. The so-called W-cycle uses
two Gk-1 cycles before correcting the Gk solution.) Note that the problem on G 1,
the coarsest grid, is solved by ul +//2 relaxation sweeps.

3.2. Full muitigrid (FMG) algorithm. The cycling scheme described above does
not provide a procedure for determining a good initial guess for the problem on G .
However, since the G problem is approximated by one on G-1, it is natural to
determine a good starting vector by solving the G- problem and interpolating the
result to G i. This suggests solving the problem first on G (by some convenient method)
and then solving the grid G problem by multigrid cycling, using the interpolated
solution from level 1 as the initial approximation (l 2, 3, ., rn). Cubic interpola-
tion may be used here for the initial approximation to the G cycle (cf. [3]). Algorithms
utilizing this procedure are referred to by the term full multigrid (FMG).

Throughout this paper, denotes the currently finest level, that is, the finest level
reached thus far in the FMG procedure, and level k is the current level in the cycling
process.

3.3. Full approximation scheme (FAS). For linear problems, the residual
equation for the G problem may be transferred to G-1. The solution of the resulting
coarse grid problem then yields an approximation to the error of the G solution
approximation, so the G-1 solution is interpolated to G and added to the solution
there. However, for nonlinear problems, such as eigenproblems, instead of the actual
error, it is more convenient to approximate the fine grid solution itself on coarse grids.
This leads to the very powerful but subtle so-called full approximation scheme (FAS),
the details of which can be found in [2]. The essence of FAS is the construction of
the coarse grid problem so that its solution is a good approximation to the fine grid
solution transferred to the coarse grid. This ensures that the difference between the
fine grid approximation and the coarse grid solution is an approximation to the smooth
components of the fine grid error so that it can be used as a correction to reduce
these components. Note, at convergence, that the coarse grid solution must provide
a zero correction; that is, the coarse grid solution is just the fine grid solution transferred
to the coarse grid.

To be more specific, assume that FMG is applied to LU =f and level is the
currently finest grid. The G version of the problem is written as LtUl-- ft. Assuming
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we have an approximation, b/l, to the exact solution, Ut, and the error Ul- l,l is
smooth, then the problem is transferred to G t-1 as

l--1 l-1Ll-lul-l=It f +7"
l-1.where 7"l-1= Ll-lllt-lul _iI-lLlul. (Note that 7" s approximately what is needed to

obtain 11-1U as the coarse grid solution; that is, if u Ul, then the level 1 solution
is exactly Ill-1 ul.) Transfer of the problem to grid G k, k <= 1, using the same idea
yields the problem

k k(3.1) LkU=If +7"

where
k ki k+l (7"k+l Lk+l k+l(3.2) 7" =L +lu +Ikk+l U ).

The notation we adopt here uses the usual somewhat simplified multigrid conven-
tions. However, this simplicity introduces unfortunate ambiguities. Specifically, note
that capital letters are used to denote exact solutions and small letters to denote
current approximations to these solutions. Thus, Uk is the exact solution to the G

k k+lproblem, so it depends on 7" which in turn depends on u ,..., u and itself.
Thus, 7" and hence U do not represent the same functions throughout the solution
process. This is an ambiguity that is necessary to avoid substantially more complex
notation, but should cause no difficulty to the reader if this dependence of the coarse
grid solution on the emerging fine grid solution is kept in mind.

Once a suitable approximation, u , to U is found, the approximation u +1 can
be corrected according to

(3.3)

This is the so-called FAS interpolation step. (Note that I/1 is used in two different
terms in (3.2). In some instances, it is advisable to use different interpolation schemes
for each of these terms, but it is essential that the interpolation used for u k/l in (3.2)
be identical to the interpolation used in (3.3).)

The processes mentioned above form the basis for the algorithms used in this
paper.

4. The problem. The problem treated in this paper is to find approximations to
the first few eigenvalues and associated eigenvectors of the differential operator L
defined on functions with domain II. That is, we are looking for the smallest real
numbers A1 <- A2-<" -< Aq and functions U1, U2," ", Uq so that

LUi AiUi O on

(4.1) U=0 on

(U,U.)=L, i, f l, 2, q.

Here we assume that L is an elliptic, self-adjoint differential operator on f. (Our
work extends naturally to the generalized eigenproblemLU AMU 0 with appropri-
ate assumptions on M. We restrict our attention to the case M I for simplicity.)

Several alternatives can be used in specifying the accuracy required of the
eigenvalues and their eigenvectors. For example, a mesh size can be prespecified,
determining the discrete operator whose first q eigenvalues approximate those of L.
In this case, it is required to find the eigenvalues and eigenvectors to the level of
truncation error, that is, to the level of accuracy determined by the extent to which
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the discrete eigenvalues and eigenvectors approximate those of the continuous
operator. Solving beyond this level does not necessarily improve the error between
the approximations and the solutions of the continuous problem. Note in this case
that the accuracy is not uniform; that is, the error is larger in the higher eigenvalues
than the lower ones since higher eigenvalues generally have larger truncation errors.

Another way to define the accuracy requirements is to specify each eigenvalue
error explicitly by giving a fixed tolerance for all eigenvalue approximations. This
method is more intricate, since different fine grids will usually be required for different
eigenvalue/eigenvector approximations.

The method presented in this paper is designed according to the first accuracy
criterion, although the design and testing of an algorithm for use with the second is
discussed briefly in 6. We first examine the case where only one eigenvalue is desired.
This avoids this accuracy question yet clarifies some of the basic processes involved
in the full algorithm.

Following the notation introduced in 3, the current Gk approxirr, ations to the
ith G eigenvector and eigenvalue are denoted by u k and A k, respectively, where G
is the currently finest grid. Upper case is reserved for exact solutions so that UI and
A are the exact G solutions. When no ambiguity exists, superscripts and subscripts
will be dropped.

5. The method for the first eigenvalue.
5.1. The basic method. The full algorithm is listed in the appendix. In this section

we discuss the essentials for a version of this method as it applies to the computation
of the first eigenvalue only.

The first step is to obtain the coarsest grid approximation to the first eigenvalue
and its eigenvector. Some initial approximation u on this grid is chosen at random,
although whatever information is known about the first eigenvector may be used here
to provide a better initial guess. A is chosen as a suitable approximation to the first
eigenvalue of the operator. On this coarse grid, relaxation is performed on the equation
Lu 1- Au= 0 with A fixed, followed by an update of A by computing the Rayleigh
quotient

, (u’, u)/(u ,u )

This process is repeated until a fairly accurate solution emerges. The vector is then
normalized. In the experiments reported in this paper, 15 iterations were generally
sufficient, although this value depends on the mesh size of the coarsest grid and the
separation of the first and second eigenvalues there (cf. Kahan [6]). In any case, these
iterations cost very little since the coarsest grid has only a few points.

Once a solution has been obtained on a level l-1, u t- is cubically interpolated
to level l, where it is then improved by one fixed multigrid cycle from level to level
1 and back. On all but the coarsest grid of this cycle, relaxation is performed holding
A fixed. Two relaxation sweeps per grid ( ’2 2) usually ensure sufficient smoothing
and elimination of high frequencies introduced by coarse grid corrections. Thus, the
cycle begins with a fixed number of level relaxation sweeps on the approximate
vector followed by FAS transfer of the problem to the next coarser grid. This is
repeated until the coarsest grid is reached, where the nonlinear problem resulting
there from FAS transfers is solved by repeated relaxation and normalization of the
approximate vector and update of A by (5.6). FAS interpolation (3.3) is then used to
transfer the corrected solution back to the next finer grid, where a fixed number of
relaxation sweeps is performed, followed by transfer of the approximation to a finer
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grid until level is again reached. Relaxation on L/l is then performed to complete
the level cycle is then increased by 1.

The process of cubic interpolation followed by one multigrid cycle on level is
then continued to yet finer grids until a solution is obtained on level m, the finest grid
to be used.

The remainder of this section is devoted to a detailed discussion of certain aspects
of this method.

5.2. The coarse grid problem. The coarse grid equation is derived in much the
same way as described in 3. Specifically, let the currently finest grid problem be
written as

(5.1a,b) LtU- AIu O, "r (U l) 1,

where r/ is a normalization constraint functional which specifies the size of the solution.
This constraint is necessary for uniqueness since a solution U to (5.1a) is specified
only up to a multiplicative constant. The specific nature of r/will be discussed below.
If we have an approximation u to U, and the error has been smoothed by relaxation,
then the G t-1 equations are

Ll-l ul-1 AI-I uI-1 =7. l-l, TI
l-1(Ul-1) o. l-l,

l-1where r1-1= Ll-Ill-lul--Ilt-Llu and tr is some appropriate quantity. In general,
the Gk problem is

(5 2a, b) Lkuk Akuk k k k=, n (U) r
k+l k+l k+l k+lwith 7.k =ikk+17. +LkI+lU _ikk+lL U ,7" =0.

kTo see what r should be, it is necessary to examine the goal of the coarse grid
solution process. Since Ak is unknown, there are fewer equations than unknowns,
hence (5.2a) can have an infinite number of solutions. Condition (5.2b) is needed in
order to uniquely define the solution. One possible way to define tr k, analogous to
the definition of 7"k, is

k k+l k k+l k+l(L k(5.3) = +In (+,u )-n +’)], , =.
This definition arises from the attempt to force the corrected level solution to satisfy
(5.1b). However, this is not actually necessary, since on the fine grid a solution of any
reasonable size is acceptable. Thus, it is acceptable to use a constraint which seeks
to maintain the size of the solution, and which, together with (5.2a), provides a zero
.correction at convergence. Such a constraint is given by

k k k+l).(5.4) o" =’0 (I+au
This constraint is easier to enforce than (5.3) and appears to work well experimentally,
so we adopt this definition for ,our algorithm.

The most obvious choice for the ,normalization functional is

However, since the condition

i>.(u)=<u,u

l,l k, Ll
k

0
k

when coupled with (5.2a) admits two related solutions, one of which is essentially the
negative of the desired one, it is possible to converge to the wrong one on the coarsest
grid. In addition to obtaining a bad eigenvalue approximation, this would cause the
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corrected approximation to lose most of the eigenvector component that we really
want. It is therefore better to use a linear normalization constraint to ensure that the
extraneous solution is eliminated. To maintain the "sign" of the coarse grid solution,
we can choose rt

k (u k, Ikk+lU TM) SO that the normalization constraint then becomes

(5.5)

This normalization constraint, which we adopt here, ensures that the coarse grid
solution is approximately in the same direction as the current fine grid approximation,
and is compatible at convergence with (5.1a).

Relaxation on the finest few grids affects high-frequency error, which is generally
small compared to the solution norm, so the size of the solution changes only slightly.
However, on the coarser grids (i.e., for k 1 or 2), low-frequency changes are made
and the magnitude of the major component of the eigenvector approximation can
change significantly. For this reason, we enforce the normalization constraint (5.5) on
the coarse grids only.

kFor the eigenvalue calculation, note that - naturally provides the correction
needed to compute a Rayleigh quotient on the coarser grid. That is, A can be updated
by the relation

(L’uk--,r’, u k)
(5.6) X (uk, u k)

5.3. Relaxation. Gauss-Seidel relaxation with a shift parameter for equation
(5.2a) was used in the experiments reported in this paper. Let Mk be the lower
triangular part of Lk (including the main diagonal), u k and A the current approximations
to Uk and Ak and t7 k the approximation after relaxation. For each constant shift
this relaxatioti scheme is given by

(5.7) a " u " +(Mt" -i.,,I)-(r k -(Lk --AI)uk).

A useful tool for analyzing (5.7) is the smoothing rate analysis exemplified in [2].
For simplicity, let L k be the usual five-point approximation to -A. If we describe the
grid by Gk {(ahk, flhk)E ’: o/., fl integers}, where f is the function domain for L k,
then a given Fourier error component before and after the relaxation sweep is denoted
by Ao e i(x+Et3) and fi0 e i(/2), respectively. Letting the corresponding component
of the actual solution Uk be given by Bo e+2), then 0 is given as a function of
Ao and Bo by the following equation corresponding to the relaxation scheme (5.7)’

o -Ao(ei + ei2 + h g(A ))/(e-i + e -i2 4+h 2/z)
(5.8)

+ h 2(Ak -/X)B0/(e -i1 + e-i2-4 + h 2ix).
If we define

Co h 2(At’ A )Bo/(ei + e i2 + e -ix + e-i:-4 + h 2A ),

then we obtain

Ao-Co =[eiOa+eiO:+h2(A_l)l/[e_iO+e_iO 4+h2(5.9) -Ao -Co t l.

Note that if h 2(A /x) and h 2
/x are small, as is generally the case on finer grids

with a proper choice of tz, and if Co is small compared to Ao, then the (01, 02) component
smoothing rate approaches that for the Poisson problem. On finer grids, h2(A-A) is
small, even when the eigenvalue approximation has not been updated, and for higher
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frequencies, the denominator of Co is relatively large. In addition, Bo is generally
small since the solution is smooth and has very small high-frequency components. On
coarser grids, however, h2 can be of significant size, so that Co is no longer small
compared to Ao, causing a deterioration of the smoothing rate. To reduce A-A and
thereby minimize the affect of Co, we update A on the coarser grids where the Rayleigh
quotient is inexpensive to compute.

The experiments reported in this paper used tz 0, that is, relaxation without a
shift. Generally, this works well if the first eigenvalue is small compared to the spectral
radius of Lk, which is always the case here. Relaxation with the shift/ A would
actually yield slightly better smoothing rates in this case, and for some problems, such
as for -A + cI with large c, a nonzero shift may be necessary. However, when a shift
is used, care must be taken on coarser grids to avoid letting the denominator of (5.9)
become too small since this could lead to substantial magnification of high frequencies.
A robust algorithm should incorporate a full shift (/x A) on finer grids and adjust
the shift on coarser grids in order to ensure convergence there. This is especially true
for the initial stages of obtaining coarse grid eigenvalue approximations and for
computation of higher eigenvalues.

6. The full algorithm.
6.1. General discussion. There are several possibilities for extending the method

described in 5 to apply to the computation of the first q eigenvalues and eigenvectors
of L. They differ mostly by the degree to which they handle the eigenvector computa-
tions simultaneously. For example, a fully simultaneous extension of the method of
5 would update all eigenvector and eigenvalue approximations together, both in the

fine grid iterations and coarse grid corrections. A fully sequential process would
attempt to compute to convergence each eigenvector and eigenvalue in turn. Of
course, both methods require additional processes to ensure numerical separateness
of the approximations so that they do not all converge to the same eigenvectors. This
usually amounts to some sort of orthogonalization process that reflects the orthogonal-
ity of the eigenvectors themselves.

One attribute of the full simulataneous method is its ability to use Ritz projections
with all of its attendant advantages. For example, as with conventional techniques
such as the power method (cf. [8]), the emphasis is placed on producing a good
approximation to the subspace spanned by the first q eigenvectors of L. This has many
subtle advantages, even more than with the conventional uses of Ritz, but the most
direct is that convergence of a specific eigenvalue depends now on its separation not
from its neighbor but from the (q + 1)st eigenvalue of L. The major disadvantage with
the fully simultaneous method (and one of the main advantages of the fully sequential
one) is storage requirements. All vector approximations must be maintained on all
levels of the multigrid cycles. The additional storage is up to of the storage needed
(in any case) for storing all of the vectors on the finest grid (since on coarser grids
both uk and -k are stored).

The method we propose is intermediate to these two extremes. To retain the
advantages of each, we carry all vectors simultaneously through the FMG process by
maintaining approximations to all of the eigenvectors and by performing orthogonal-
ization and Ritz projections on the currently finest grid, and we proceed sequentially
within the cycling scheme by performing in turn a fixed multigrid cycle on each
currently finest grid eigenvector approximation. Sequential use of the multigrid cycling
process is apparently no less effective than, yet reduces the storage requirements of,
the simultaneous approach. The steps of our algorithm are listed in the appendix and
loosely described as follows.
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6.2. Initial coarse grid approximations. The first step is to obtain coarse grid
approximations to as many of the desired eigenvectors as possible. In general, the
correspondence between eigenfunctions of the continuous operator and eigenvectors
of a discrete approximation to that operator is not exact; that is, the eigenvector
corresponding to the ith eigenvalue on some Lh may be a closer approximation to
the fth eigenfunction of .L with # f. This may not necessarily cause problems if and
j are less than q. However, if a coarse grid eigenvector is computed which does not
correspond to one of the desired eigenvectors on the finer grids, then it is unlikely
that further finer grid work will achieve the desired accuracy. This is less likely to
happen if the eigenvalues computed on a coarse grid are limited to a fixed part of the
spectrum. Thus, on the coarsest grid G 1, we approximate only c lGl eigenvalues and
eigenvectors, where ]GI[ represents the number of interior G grid points and c < 1.
c- 1/4 is usually safe, although at times a higher value was used in the experiments
reported in this paper since the correspondence for our problems was known to be
exact.

The relaxation steps for approximating the eigenvalues and eigenvectors on the
coarsest grid are the same as for one eigenvalue with the addition of a Gram-Schmidt
orthogonalization step after each sweep. Thus, the ith eigenvector approximation is
kept orthogonal to u, f 1,. , i- 1, and normalized only at convergence. Once all
of the eigenvectors on G have been suitably approximated (i.e., we have accepted
min {q, c lal} approximations), then a Ritz projection is performed (see 6.3). The
resulting vectors are then cubically interpolated to the next finer grid, G2.

In general, once starting vectors are cubically interpolated to level l, one multigrid
cycle as described in 5, along with orthogonalization conditions given in 6.3 below,
is then performed on each u individually. The coarsest grid j >-1 used in this cycle
for u is one on which u first appeared (i.e., /" is the smallest index so that <=

l-1min {q, clal}). If q >clat-l, then each of the vectors ui, c[G I<i <-_min{q, clGll},
are computed by the coarse grid process described above (i.e., by relaxation sweeps,
each sweep being followed by orthogonalization with respect to /,/l1, Ui--1). All
the vectors are then cubically interpolated to G l/1 and the process is continued until

6.3. Ritz projection. As stated before, once the vectors u 1,’", uq have been
corrected by multigrid cycles ,on G l, the subspace X span {u ,..., uq} is a good
approximation to the subspace spanned by the eigenvectors U, , Uq that we seek.

inX andS1, q so that theRitz projection is a process which finds t,..., tTq
orthogonal projection of such LtS t-u onto X is zero. This ensures that any
eigenvector of L contained in X will be found by Ritz projection. More generally,
it will determine a basis for X that is closest to the UI in some sense.

To determine the Ritz vectors we first perform a Gram-Schmidt orthonormaliz-
ation on u .l ,l

1, U q, resulting in vectors u 1, u q. Then a//q/T is an orthogonal
projection operator onto X, where

Any vector in X can thus be written as q/z, where z is a q-vector. Letting tii--
then Ritz projection attempts to find zi, Ai, 1, 2, , q, so that

00T(LlOzi XiOlzi) 0

or, since o?/is full rank, so that
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Hence, the Ritz process requires the solution of a q q symmetric eigenvalue problem.
Since q is small relative to the size of the fine grid, then the work involved is small.
Note that the resulting vectors tii form an orthonormal set and that the eigenvalues
produced are the Rayleigh quotients of these vectors. This follows clearly from the
condition that Lli Aii is orthogonal to X and hence tii.

Ritz projection could be performed on a coarse grid using FAS approximations
to the entries in the Ritz matrix, all’LkL?l, but it is better to wait until the coarse
grid cycles have been completed on the currently finest grid. At that time, the
q-dimensional eigenspace approximation has been corrected. Note that no more fine
grid work is needed to perform Ritz on the fine grid than on the coarse grid since the
FAS approximation to the Ritz matrix involves calculations on the finest grid. An
added advantage of using Ritz on the fine grid after the cycles is that the results are
generally more accurate.

6.4. Coarse grid corrections. The fine grid problem (4.1) we seek to solve is
equivalent to finding the smallest A1h<Ah < < Aqh and U, Uh h

=’ "= 2," ", Uq so that for
i=1,2,...,q,

Luh -AUih =0, U =0 on

/’=1,2,...,i.

Since the Ritz process requires only a numerically well-determined subspace for
the eigenspace from which it computes the eigenvalue approximations, the aim of the
multigrid cycle performed on the ith eigenvector approximation is to produce a vector
which differs from U/h only in the directions of the vectors U, j =<q. Thus strict
orthogonalization is unnecessary, and we can instead try to maintain the amount of
separation that already exists between the vectors. We will refer to these separation
constraints as orthonormalization conditions, although it should be understood that
these only approximate true orthonormality. The multigrid cycle for the ith vector
will tend to produce an approximation to the vector with minimum Rayleigh quotient
which satisfies these separation constraints. That is, components of higher eigenvectors
are eliminated from the approximation, and those of the previously computed eigen-
vector approximations remain unchanged. Relaxation changes low-frequency error
components only very slightly, and since these components dominate the approxima-
tion, then vector norms and the amount of vector separation are approximately
maintained during relaxation on the fine grid. Thus normalization and orthogonal-
ization may be reserved for use on coarse grids only, where low-frequency changes
will occur.

Orthogonalization is therefore performed only on the very coarsest grids, with
the exception that at the termination of each multigrid cycle on the current finest grid
G t, Gram-Schmidt orthonormalization is used to start the Ritz process. Thus, during
each cycle, the separation exhibited by the fine grid vectors results only from them
being the interpolants of the orthonormal grid I- 1 approximants. This separation is,
however, adequate to provide good numerical determination of the subspace in which
they belong. Thus, our FAS orthonormalization conditions are designed to maintain
this separation rather than the much more difficult task of maintaining actual orthogo-
nality. The (approximate) orthonormalization constraint, analogous to that for normal-
ization in (5.3), is given by

(6.1) (u,/+lU/k+l 0",/’, 1,..., f,
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where crijk (I+1U+1, I+IU +). Note that the case =/" is the normalization con-
straint. Then the coarse grid equations are, for 1, 2,. , q,

k kLt:Ui -AiUi --I
(6.2)

uki, ikk+lU o.kil."
Relaxation on the coarse grids tends to increase the components in the direction of
previous eigenvectors, so for </’, (6.1) is enforced by subtracting a multiple of Iu
from u, and the equation for i is enforced by multiplication by some constant.
Since o-. 0 for </’, unlike true Gram-Schmidt orthogonalization, (6.1) is not exactly
satisfied after one pass through the equations. However, experiments show that further
work to enforce (6.1) is neither needed nor helpful.

We rely mainly on the coarse grid solution process to eliminate error components
of u in the direction of U,+ and other higher low frequencies. Since relaxation on
intermediate grids does not significantly affect these frequencies, the approximate
action of coarse grid solution on a component U. is given by

I (L-AI.I)-(LI -ILI)US.
Ignoring grid transfer errors, this means that the U5 component in u is approximately
multiplied by yj, where

%" A]-A
If 3’+1 is less than 1 for all i-<q, then the eigenspace approximation will improve
since higher frequencies are reduced at a greater rate. However, this quantity generally
depends on q and and the type of discretization. For programming convenience in
the work reported in this paper, 5-point stencil discrete operators were used on all
grids. In this case, for a positive definite operator, the discrete eigenvalue approxima-
tions generally decrease as the mesh size increases. Thus, for some q, 3’ can be greater
than 1 when coarse grid truncation error exceeds the eigenvalue separation At+x- A.
For such problems, a variational formulation of the problem may be useful. Here,
the coarse grid and grid transfer operators satisfy, up to a scalar factor,

1. A:" IhA
2. Ih "--I2h,

Using such problem formulation yields discrete eigenvalues which decrease as h
decreases. Thus if A;< A. then

A]-A A-A 1"Y S-i <
A.-Ai A-A.

This avoids any coarse grid anomalies and ensures coarse grid convergence, even
when these grids are very coarse.

The coarsest grid used in multigrid cycling, when G is the currently finest grid
in the FMG process, should be G, where k is min {/’: q <_-clG]}. This ensures that
relaxation is not performed on levels for which the G eigenvectors we seek do not
correspond to those on the coarse grid. On too coarse a level, eigenvalue ordering
can be different than on G and relaxation there can introduce error in the direction
of higher G eigenvectors. Another reason not to go to such a coarse grid, even for
low eigenvalues, is that most of the correction provided there will be in the direction
of eigenvectors belonging to the subspace that we are trying to approximate. More
specifically, if ]Gal is not large compared to q, then there is only a negligible change
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in the approximate subspace X on G due to the corrections computed on G1. Use
of the Ritz process allows us to take this view that we are concerned only with errors
in the subspace approximation, not the eigenvectors themselves.

6.5. An alternate accuracy criterion. The results and methods so far have been
geared towards finding q eigenvalues of. L to within truncation error defined by a
prespecified grid mesh size h. Truncation error generally increases with A, so the same
accuracy is not achieved for all eigenvalues. If one wishes to compute the first q
eigenvalues of L to within some given tolerance e, limited experiments indicate that
this can be achieved without performing relaxation on the eigenvalues that have
already been accepted because they are accurate to that tolerance. These accepted
eigenvectors need not even be included in the Ritz process, although they should be
carried to the finer grids demanded by the higher eigenvalues and used in the coarse
grid and pre-Ritz orthogonalization processes there. Also, if for some reason the
discrete eigenvalues are wanted to some level of tolerance smaller than truncation
error for a fixed h, we can make the first cycle for all vectors as before, with more
work (i.e., further cycles) performed only for higher vectors, using the lower ones
again in orthogonalization only.

In both of the above cases, if all vectors are used in the Ritz projection, the
convergence rates for the higher eigenvectors are close to those obtained by the more
expensive algorithm that includes the lower eigenvalues in all processes. In the second
case, the rates are almost identical.

7. Work and storage requirements. Since normalization, orthogonalization and
computation of the orthonormalization correction terms and the Rayleigh quotient
are performed primarily on coarser grids, we neglect these processes in developing
the following overall work estimates. For convenience, let nk-IGI and assume
nk zn/l for k 1, 2, ., m 1. Let an represent the number of operations in one
G relaxation sweep. This is essentially the cost of one matrix multiply, a is approxi-
mately twice the number of nonzero entries per row in Lt. (In some cases, such as a
uniform discretization of the Laplacian, a is much smaller than this.) An inner product
on G is assumed to cost 2nk operations. The amount of work involved at one stage
of the FMG process results from the following computations:

l--11. Cubic interpolation of u to u for 1,. , q.
2. vl + v2 relaxation sweeps on u, 1, ., q, k 1, ., 1.
3. Coarse grid - calculation for k 1,. ., l- 1, 1,..., q.
4. FAS interpolation of u -1 to u/, 1,. ., q, k 2,. ., l.
5. Ritz projection on G t, which includes:

a. orthonormahzaton of ul,...,
ITrb. compilation of the Ritz matrix Lui L u]i.., i,/" 1,. , q;

c. solving for all the eigenvectors and eigenvalues of the Ritz matrix;
d. computing the new vectors a, a,..., rTq.

The work involved in each of these processes is measured as follows:
1. !f-nt .q.
2. -a(vl + v2)n q.
3. -(a + 1)nl-lq (a + 1)n q.
4. 11 4-z-n g" q =--nl q.
5. a. (2q z + q )nl

b. cq. n + q (q + 1)n;
C. O(q3);
d. q(2q 1)n.
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This gives a total G operation count, W, of

Wl =-}(1 + ’2 + 1/4 )qanl + [!_9_q + 5q2]nt + O (q3).
The total operation count, W Yl--1 WI, for the complete FMG algorithm is therefore

W(,+ ’2 +-)qan,, +[12q + q2]n,,, + toO(q3).

Note that m should be proportional to log n,, so that

W n,,O (q2) + log nmO (q3).

Storage is needed for all vectors on all grids, although future work on small-storage
algorithms (see [2, 7.5]) may drastically reduce that requirement. Since coarse grid
problems are inhomogeneous, storage is also required for the right-hand side of these
problems. However, the sequential manner in which the coarse grid cycles are per-

kformed means that only one vector per grid is needed to store the right-hand side -The finest grid actually needs no storage for this, since the problem is homogeneous.
All other storage is at most proportional to the product of the number of points in
one direction on the fine grid and the number of eigenvalues being computed. Thus,
disregarding locations needed for bookkeeping, the total storage location requirements
are approximately

4S =-qn, +1/2n,.
8. Computational results. The model problem used in our experiments is

given by
-Au +10y(sin 3rx)u =,u on f=[0, 1Ix[0, 1],

(8.1)
u 0 on 0II.

The Laplace operator by itself has several properties not typical of more general
operators which made it unsuitable for reliable tests. The term added to the Laplacian
in (8.1) causes the multiple eigenvalues of the Laplace operator to be perturbed,
yielding instead sets of close eigenvalues. This poses more of a challenge to our
algorithm. Moreover, the eigenvectors are altered so that they are not exactly represen-
ted by the discrete problem as they are for the Laplacian alone.

Unless otherwise indicated, h 1/4 and m 4 so that h, 2. Also, t,1 z,2 2.
A closed form solution for the eigenvalues and eigenvalue discretization error of

this problem is not known, but can be closely approximated by carrying out the test
results farther than the number of cycles and the fineness of h,, than we report. The
"exact" values A, used in Table 1 were calculated by extrapolating the computed
solutions on levels m 4 and m 5. h in Table 1 represents h ha 32.

TABLE

n A A iAO Ah iiLhUO o o

1 18.73558161 18.71847149 .0171 .0407
2 48.32534796 48.18927363 .136 .142
3 51.69556290 51.56004355 .136 .148
4 81.32645700 81.07201016 .254 .263
5 97.65037417 97.00117915 .649 .651
6 100.2221931 99.57484220 .647 .654
7 129.8746755 129.1084354 .766 .773
8 130.6674040 129.8996943 .768 .771
9 166.65623 164.6376509 2.02 2.02
10 169.0329 167.0085449 2.02 2.03



MULTIGRID METHOD FOR DIFFERENTIAL EIGENPROBLEMS 257

The last column in Table 1 is the norm of the residual of the solution to the
continuous problem projected onto the h grid. This is also an approximation, but
is close enough to serve as a quantity against which to measure convergence of the
discrete solution. That is, when the grid h residual is comparable to the residual
formed by the projected continuous solution, then we conclude that the discrete error
is the same order as the truncation error. The algebraic error in the eigenvalue is not
necessarily a good measure of the algebraic error in the eigenvector, the former being
approximately proportional to.the square of the latter.

The method for one eigenvalue and h is given in Table 2. The amount of
work performed in relaxation, which dominates the overall work in this case, is
equivalent to about seven sweeps on the fine grid.

TABLE 2

t A1 IlL h/,/lh -Aeulll

18.71871030 2.39x 10-4 1.40x 10-2

The results for ten eigenvalues and h are shown in Table 3. A comparison
with Table 1 shows that the problem is solved to below the level of truncation error.
Note that the accuracy is better relative to this truncation error for the lower eigen-
values. If more eigenvectors are included in the process (whether or not they converge),
all approximations are improved. When 15 eigenvectors were included in a test that
we ran, although the last two failed to converge, the residual norm of the 10th
eigenvector decreased by about a factor of 2. This is not of too much practical
importance, however, since even though it suggests that less work is required for the
lower eigenvalues when Ritz projection is used, the error decrease is actually due
mainly to elimination of low-frequency error.

TABLE 3

n ,h Ih Ahl ilLhu u 211
18.71847153 3.40 x 10.-8 4.26 10-3

2 48.18927456 9.31 x 10-7 2.04 x 10-2

3 51..56004444 8.90 x 10.7 2.32 x 10-2

4 81.07201416 4.00x 10-6 3.80x 10-2

5 97.00123840 5.93 x 10-.5 1.64 x 10-1

6 99.57489151 4.93 x 10-5 1.56 x 10-1

7 129.1088552 4.20 x 10-4 2.64 x 10-1

8 129.9001827 4.88 x 10-4 2.77 x 10-1

9 164.6602169 2.26 x 10-2 1.74
10 167.0701555 6.16 x 10-2 1.72

As explained in 6, low-frequency error can arise if the coarse grid solution does
not provide a good correction to the approximations on finer grids. In these cases a
cycle with more visits to coarser grids may help. Table 4 gives the results for the
so-called "W-cycle" for ten eigenvalues. A W-cycle means that the coarse grid
correction to any grid k is calculated by two cycles on grid k 1. The amount of work
performed in relaxation is times the amount needed for usual multigrid cycles. The
total amount of work is then

W-(3 (,1 + u.)+ -)qanm +[12q + qZ]nm + mO(q3).
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TABLE 4

3.60 x 10-8 4.21 10-3

2 6.57 10-7 1.83 10-2

3 6.55 10-7 2.12 10-2

4 2.34 x 10.6 3.10x 10.2

5 3.97 x 10.5 1.47 x 10-1

6 3.27 x 10.5 1.40 x 10-1

7 4.68 x 10.5 1.53 x 10-1

8 5.29x 10.5 1.58x 10-1

9 2.36 10-3 7.15 x 10-1

10 1.42 x 10.2 8.83 x 10-1

Tables 5 and 6 show the results obtained with red-black ordering in place of
lexicographic Gauss-Seidel with usual cycling and W-cycling, respectively. This type
of ordering is a more effective smoother than lexicographic, as evidenced by the higher
accuracy obtained in the eigenvalues.

TABLE 5

1 1.23 x 10-8 2.98 x 10-3

2 8.40x 10-8 2.39x 10-2

3 1.03 x 10-7 2.33x 10-2

4 5.54 x 10-7 6.50 10-2

5 5.64 x 10.6 1.89 x 10-1

6 8.51 x 10.6 2.57 x 10-1

7 1.44 x 10.5 3.32 x 10-1

8 2.72 x 10-5 2.88 x 10-1

9 9.84 x 10.3 1.05
10 1.16x 10-1 1.96

TABLE 6

n Ix -A"I IILhu A "u "11
1 4.45 10-9 1.65 10-3

2 2.96 x 10-8 1.35 x 10-2

3 3.31 x 10-8 7.48 x 10-3

4 7.64 x 10-8 2.08 x 10.2

5 9.79x 10-7 6.19x 10-2

6 1.17 x 10.5 3.00x 10-1

7 1.31 x 10.5 3.18 x 10-1

8 1.77 x 10-6 9.22 x 10.2

9 2.60 x 10.3 4.40 x 10-1

10 3.87x 10-2 1.31

The nature of the FMG process is ideal for the use of extrapolation on the
eigenvalues approximations. Table 7 shows the eigenvalue approximations extrapo-
lated from the 6 and grids and the accuracy obtained.
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TABLE 7

n (41 A 2hh)/3 IA (41 A h)/31

18.73554270 3.89 x 10-5

2 48.32469250 6.55 x 10-4

3 51.69476513 7.98x 10.4

4 81.32502517 1.43 x 10.3

5 97.64234667 8.03 10--3

6 100.2140080 8.19x 10.3

7 129.8582268 1.64 x 10
8 130.6508394 1.66 x 10.2

9 166.4985283 1.58 x 10-1

10 168.8655123 1.67 x 10-1

Appendix. The algorithm is broken into two parts" the FMG Ritz procedure and
the CYCLE procedure. CYCLE is called from FMG Ritz. The parameters of the
algorithm are as follows:

q: The number of eigenvalues and eigenvectors desired.
m" The number of grids to be used.
u0’ The number of iterations used to obtain a first approximation to each vector

on the coarsest grid.
u" The number of relaxation sweeps performed before transferring the problem

to a coarser grid.
u2: The number of sweeps performed after the coarse grid correction.

FMG RITZ.
1. Set n - 1, n max- 1, - 1, ho 0
2. Set u in # Random function hn #/n-1

For 1, 2,. ., vo, do
u # Relax (Llu -hu =0)
Forf 1, 2,.. , n-l, do

Un Un Un U] U]
Set h, (Lu un)/(u u

Setuu/(ul,,u,).
3. If n q, set n max q, k min l,

Ritz on ug, l, 2, ., n max & go to 4
If n < c IGI, set n n + 1 & go to 2.
Set n max n, k min & go to 4.

4. If m, stop.
Set//+1
For 1, 2,. ., n max, do

ui -lU
cycle (i, k min, l)

Ritz on u , 1, 2, ., n max.
5. Ifnmax<q, setnnmax+l&goto2.

Otherwise go to 4.
CYCLE (n, k min, l).

k1. Setkl,z,0
2. Fori=l, 2,...,ul, dO

(Luu Relax h,u
If k N k min
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For]= 1, 2,..., n-l, do
k k k k k+l k k k

Un <’- Un ((U., Iluj>
Set u

k k k k kIf k k min, set A, -(L’u,, -7.,,, u,,)/(u,,, u,,).
3. Ifk=kmin, gotoS.
4. Setkk-1

+
7., =7., +L +lu +IL u
L/n <-- +lt/n

Go to 2.
5. For 1, 2,..., v)., do

k ku ku, Relax (L A,u 7.,,)
If k <-_kl
Forf 1, 2, ., n-l, do

k k k (I+IU [l Uj>)/(Iu k
n, i, IlUi)’Iui

Set u k(I,+auk+ I )/( k i kun u un, un) Itu
If k k min, set A. "(Lkblkn --7"k, tt kn)/(ttn,k bln).k

6. If k l, stop.
7. Setk <--k +1

k I (uk-_i-I k
lgn <"- Ign q- -1 bin)

Go to 5.
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