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MULTIGRID ALGORITHMS FOR THE SOLUTION OF LINEAR
COMPLEMENTARITY PROBLEMS ARISING FROM

FREE BOUNDARY PROBLEMS*

ACHI BRANDTt AND COLIN W. CRYER

Abstract. Several free boundary problems (including saturated-unsaturated flow through porous dams,
elastic-plastic torsion and cavitating journal bearings) can be formulated as linear complementarity problems
of the following type: Find a nonnegative function u which satisfies prescribed boundary conditions on a
given domain and which, furthermore, satisfies a linear elliptic equation at each point of the domain where
u is greater than zero. We show that the multigrid FAS algorithm, which was developed by Brandt to
solve boundary value problems for elliptic partial differential equations, can easily be adapted to handle
linear complementarity problems. For large problems, the resulting algorithm, PFAS (projected full
approximation scheme) is significantly faster than previous single-grid algorithms, since the computation
time is proportional to the number of grid points on the finest grid.

We then introduce two further multigrid algorithms, PFASMD and PFMG. PFASMD is a modification
of PFAS which is considerably faster than PFAS. Using PFMG (projected full multigrid) it is possible to
solve a linear complementarity problem to within truncation error using less work than the equivalent of
seven Gauss-Seidel sweeps on the finest grid.
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1. Introduction. Several free boundary problems can be reformulated as
an (infinite-dimensional) LCP (linear complementarity problem): Given a domain
l) c R with boundary 0f, and given functions f and g, find u (defined on f) such
that (in an appropriate weak sense)

(a) u (x <-_ f(x ), x e f,

(b) u(x)>-O, x
(1.1)

(c) u (x)[u (x) -[(x)] 0, x a,
(d) u (x) g (x), x

where ’ is a given second order elliptic operator. We do not write (1. l a) in the more
usual form -Sgu(x)+f(x)>-0 because we wish to maintain compatibility with the
notation in previous papers by Brandt.

Well-known examples of free boundary problems which can be written in the
form (1.1) include porous flow through dams (a recent reference is Baiocchi [1978]),
journal bearing lubrication (Cryer [1971a], Cimatti [1977]) and elastic-plastic torsion
(Cea, Glowinski and Nedelec [1974], Lanchon [1974], Cryer [1980]). General refer-
ences include: Duvaut and Lions [1976], Glowinski, Lions and Tremolieres [1976],
Cryer [1977], Glowinski [1978], Cottle, Giannessi and Lions [1980], and Kinderlehrer
and Stampacchia [1980].
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When (1.1) is approximated using finite differences on a grid G, one obtains a
(finite-dimensional) LCP:

(1.2)

(a) LU(x) <=f(x), x G,

(b) U(x) >_- 0, x G,

(c) U(x)[LU(x) -f(x)] 0, x G,

(d) U(x g (x x OG,

where U(x) is an approximation to u (x) at the grid points x G U OG and where L
is a difference operator which approximates . The coefficients of L are O(h-2),
where h denotes the grid length.

By multiplying (1.2) by h 2 and eliminating the known values of U(x) on OG, the
LCP (1.2) may be written in matrix form:

(a) AU<=b,

(1.3) (b) U >=0,

(c) Ur(AU b) 0,

where U is the N-vector of values of U(x) on G, and A is an N xN matrix with
coefficients which are O (1). We will assume that A is symmetric and negative definite.

For example, if is the Laplace operator in R 2, then a possible choice for L
would be the classical five-point difference operator, in which case A would be a
matrix with diagonal elements -4 and off-diagonal elements either 0 or 1.

There is an extensive literature on the (finite-dimensional) LCP (see Balinski and
Cottle [1978]). In particular, if A is negative definite, as we assume, then there exists
a unique solution to (1.2) and (1.3).

Since the LCP (1.3) arises from a free boundary problem, the matrix A has special
properties which make it possible to use specialized algorithms which are particularly
efficient. Such algorithms include projected SOR (Cryer [1971], Glowinski [1971])
the method of Cottle and Sacher [1977], and the modified block SOR (MBSOR)
method of Cottle, Golub and Sacher [1978]; Cryer [1980a] summarizes these
algorithms, and Cottle [1974] gives numerical comparisons between them.

Recently, it has been found (Brandt [1977], Brandt and Dinar [1979]) that
multigrid algorithms are an effective tool for solving linear equations of the form

(1.4) AX b.

The basic idea of these multigrid algorithms is to compute on a sequence of nested
grids. The computation proceeds on a particular grid until the error becomes smooth
and the rate of convergence slows, at which point the computation is transferred to
a coarser grid. When the error has been reduced on the coarser grid, the solution on
the finer grid is corrected using interpolated values from the coarser grid.

In this paper, we show how the multigrid algorithm FAS of Brandt can be modified
to solve the LCP (1.3). We find that the modified multigrid algorithm, PFAS, is
substantially faster than previous single-grid algorithms.

The paper is organized as follows. In 2, we describe PFAS, the projected full
approximation scheme for solving (1.3): PFAS combines the concepts of multigrid
algorithms with those of projected SOR. In 3, we discuss the implementation of
PFAS, and in 4, we give numerical results obtained using PFAS. In 5, we discuss
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alternative implementations of PFAS, the last of which (PFASMD) leads to substan-
tially improved convergence. We also include several less successful implementations
because they are instructive. In 6, we describe results obtained using PFMG, the
projected full multigrid algorithm. The basic idea of PFMG is to compute the initial
approximation on each grid by interpolating an accurate solution on the next coarsest
grid. Using PFMG we are able to solve a problem to within truncation error using
less work than the equivalent of seven Gauss-Seidel sweeps on the finest grid. Our
results are summarized in 7, and some possible extensions are mentioned.

Listings of the programs used in this paper are given in Brandt and Cryer [1980].

2. PFAS (projected full approximation scheme). Brandt [1977], [1980], and
Brandt and Dinar [1979] give a detailed exposition of multigrid methods and their
philosophy, and the reader is referred to these papers for background information.
The algorithm described below, PFAS, is a modification of the FAS (full approximation
scheme) which is considered in Brandt [1977, 5] and in Brandt and Dinar [1979,
2.2].

The domain f R is approximated by a sequence of grids

G1cG2c...GM cR n,
with corresponding grid sizes

hl=2h2=4h3 2M-lht.
Let Fk be the restriction of f to G k,

(2.1) F(x) f(x), x s G k.
Then, on G k the difference equations (1.2) approximating (1.1) take the form

(a) L U (x) -<_ F (x) in G,
(b) Uk (x) >_- 0 in G,
(c) U(x)[LU(x)-F(x)]=O in G,
(d) Uk (x) g(x in OG.(2.2)

k k, UkLet the points of G be ordered: x , x ,..., x Nk e G and let be the vector

U :{U I <-j <-N}=-{U(x). I <-] <-Nk}.

Then, (1.3) takes the form

(a)

(2.3) (b)

(c)

AU <=b ’,
U>_O,

(u)T[AU-b]=O
where

k(2.4) A={aii l <-_i,]<-_Nk}

is a known sparse symmetric negative definite matrix and b k {b} is a known vector
with components b hF(x) except at points x adjacent to 0G.

2.1. The projected Gauss-Seidel algor|thm. It is possible to solve the LCP’s (2.2)
and (2.3) using the projected Gauss-Seidel algorithm which we now describe.

Let u’(x) be an approximate solution of (2.2) and (2.3). We compute recursively
a sequence of approximations u’(x), u ’2(x), .. Let u’S-(x) be given. From (2.2d),
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the boundary values of u k. (X) are equal to g (x). The interior values of u ’ (x), which
together comprise the vector

(2.5) u ’ ={u .k’" 1 <] <N}={u’(x) 1 <-] <N},

are obtained, point by point, by first applying the classical Gauss-Seidel method to
(2.3) to obtain

(2.6) U]
k’s-1/2 U"s-1 -[-[b Z

l<i / k_.u,S-1 ~k,s. kau"- Z alu"s-1 a. + r,

say, and then profecting"

(2.7) u’s= max {0, u’S-1/2}.
The process of applying (2.6) and (2.7) for 1 <=f <--Nk to obtain u k’s from u k’s- will
be called a G k-pro]ected Gauss-Seidel sweep, or a G k-pro[ected sweep. The quantities
y,s will be called the dynamic residuals.

It is known (Cryer [1971], Glowinski [1971]) that u
When implementing the projected Gauss-Seidel method only the latest values

of the solution are stored. We will, therefore, often suppress the iteration counter s
and denote one projected Gauss-Seidel sweep applied to (2.2) and (2.3) by

(2.8) u <- projected Gauss-Seidel [u k" Lk, Fk].
Similarly,

(2.9) Vu k =u’S-u
will denote the difference between the latest approximation u and its predecessor,
while

(2.10) Vu kold U
k,s-1

lg
k,s-2

denotes the previous difference.

2.2. Error estimates for the projected Gauss-Seidel algorithm. When
implementing the projected Gauss-Seidel algorithm as part of a multigrid process, it
is important to be able to estimate the error. In order to do so, we note that since,
by assumption, -A k is symmetric and positive definite, there exists a coercitivity
constant ak > 0 such that

(2.11) wT(--A)w OlkWrW,
for all w e R N.

LEMMA 2.1. Let U be the solution of the LCP (2.3), and let u >-0 be an
approximate solution. Let

(2.12) r (r) b k -Au,
k (r+i), whereand r+

(2.13) r+i= { r if u >O,
min{O,r} if u =O.

Then

(2.14)
k(Uk u )T(-A)(U u ) <= (Uk u )7" (-r+).
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Hence,

(2.15) U u ll2 < c I]r + 112.
Proof. With r+ defined as above, we see that u k satisfies the LCP"

(a) A ku < b r /,

(2.16) (b) u ->0,

(c) (u’)r(Au’-b ’ +r/) 0.

Following Falk [1974], we multiply (2.3a) by the nonnegative vector (uk)r and use
the complementarity condition (2.3c) to obtain

(*) (u’-U)rA’U’ <_(u’_U’)rb .
Similarly, multiplying (2.16a) by (U)7- we obtain

k(**) (U-uk)TAu <=(U--u)r(bk--r+).
Adding (*) and (**) and combining terms we obtain (2.14) and hence (2.15). [:]

LEMMA 2.2. Let U be the solution of the LCP (2.3), and let u >=0 be an
approximate solution obtained after one or more G projected sweeps. Let

(2.17) A =(Dk-L-P)
where D is diagonal, and L and Pk are strictly lower and upper triangular matrices,
respectively.

Then u satisfies the LCP

Au <b_PkVu

(2.18) u>=0,
(ut’)T(Auk-b +pVu) 0.

Hence,

(2.19) IlU-u’ll= IIellzllVull2.
Proof. Consider the projected Gauss-Seidel method defined by (2.6) and (2.7).

k,sFor each point x we first compute the dynamic residual .,s. The new value of u
is chosen so as to reduce the residual. Denote the residual at the point x immediately

,k
after step (2.7) by rj’, so that

’ ).(2.20) f’s=f’-a,(u’-u"-
Remembering that A is negative definite, and hence a ii < 0, we see that there are
two possibilities:

either u’ > 0 and f’ 0,

or u’=0andri
Thus, dropping the superscript s, and setting f {" 1 N] NN},

(2.21) u0, f0, (u))=0.
Let

r =b -A u
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It is readily seen from (2.17) that

(2.22) rk fk +P (u g’s u g’s-1) +P’Vu .
Combining (2.21) and (2.22) we obtain (2.18). Comparing (2.16) and (2.18) we

see that the arguments which led to (2.15) from (2.16) may be applied to (2.18), with
p ,r+ replaced by Vu to obtain (2.19).

As Lemmas 2.1 and 2.2 show, we can estimate the error in an approximate
solution u k in terms of the residual r or the difference Vu; we will usually use Vu
to estimate the error, since this quantity is readily available during a G-projected
sweep.

Remark 2.1. The reader may wonder why we bothered to introduce r+ in Lemma
k replaced by r k The reason is that for the LCP (2.3)2.1, since (2.15) holds with r+

there may be large positive residuals at points x where U (x)= 0, but this does not
mean that the error is large.

In multigrid algorithms it is necessary to compare norms on different grids. We,
therefore, wish to introduce a norm which is not grid dependent. To do so, we proceed
as follows.

We first note that, to a good approximation, the coercivity constant a for -A
satisfies

ck ch2
where a is the smallest eigenvalue of .

Next, assume that the approximate grid function u has been extended to a function
ku (x) on approximating the solution u (x) of (1.1). Then

1/2

Ilu (x) u (x)[l,: I. lu (x) u (x)l dx
1/2

"hZlU-ul
j=l

<
h ,/_2 lip II=llvu
k

IIe I1= h/=-=llull=.

The norms IlPll= are essentially independent of k; for example, for the five-point
formula, Ilell . Thus a measure for the error Ilu(x)-u (x)ll=,. is provided by

(2.23) I[Vu 11 h U-2 [IVu 112,

and this norm will be used in the computations.

2.3. PFAS (projected full approximation scheme). PFAS (projected full approxi-
mation scheme) obtains an approximation t7t to the solution Ut on the finest grid
Gt by recursively generating a sequence of approximations t7 on the grids G.

Each t7 is an approximate solution to an LCP of the form (2.2) with Fk replaced
by a function/ which is defined later. In general,/k is different from F so that t7 k

is not an approximation to U. However, fft=Ft and so t7t is an approximation
to Ut.
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We begin by initializing t7M to some suitable value. For example, we might set

a (x)
g(x) on OGM,

(2.24)
0 in GM.

We also set

(2.25) iivaMl[ 103o, M
8 -’-8

(where 8 is the desired accuracy on the finest grid, and where the astronomical number
103o ensures that at least two GM projected sweeps are carried out),

(2.26)
ff,M (X) FM (X) for X e Gt
OM(X) UM (X) for x Gt.

We now make a number of Gt projected sweeps,

(2.27) a - projected Gauss-Seidel [aM. LM, if,M].
After each sweep we test whether

M(2.28) Ilva’ll <--
If so, the accuracy criterion is satisfied, and we accept M as an accurate approximation
to Ut =- Ot on GM.

It is known that Gauss-Seidel iteration is a smoothing process’ the error
OM(X)_M(X) becomes smoother as the number of sweeps increases, while, at the
same time, the rate of convergence slows down. We, therefore, carry out only a few
G projected sweeps, stopping when either (2.28) is satisfied or convergence is slow"

(2.29) Ilva ll --> nllvu oldII .-M
Here, r/ is a fixed parameter; in our work we have taken r/= .5.

Suppose that (2.28) is not satisfied but that (2.29) is satisfied. This means on the
one hand that the accuracy of t7t must be improved, and on the other hand that it
is inefficient to continue iterating on G. The slow rate of convergence on GM indicates
that the error is smooth, so that the error can be represented satisfactorily on the
next coarsest grid, GM-. We therefore move to Gt-.

Since OM (X) satisfies (2.2), with k M and FM= if,M, the error

(2.30)

satisfies the LCP

LMVM(x <= ?M (X on GM,
VU(X)+aM(x)>--O on GM,

(2.31)
[Vt(X)+a’(X)][LVM(x)--M(X)]=O on OM,
VM (x) 0 on OGt,

where the residual ?M is given by

(2.32) FM (x) ff’M (x)--LMaM (x), X e aM.
As already observed, Vt(x) is a smooth function and may, therefore, be accurately

represented on GM-1. Furthermore, comparing (2.31) and (1.1) we see that V(x)
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is an approximation to the continuous solution v (x) of the LCP

(2.33)

Lev (x <= (x ), x f,

v(x)+a(x)>=O, x,
[v(x) + al(x)][v(x)- W(x)]= o,
v (x) 0 on

(where, by abuse of notation, yt (x) and t(x) are defined on f by appropriate
interpolation between the values of ?M and aM on the gridpoints of G a). Thus, a

good approximation to Vt(x) may be obtained by solving the finite difference
approximation to (2.33) on Gta-. That is, Vt (x) is closely approximated on G
by the solution WM-X(X) of the LCP,

(2.34)

(a) LM-1 wM-I(x) <=SMM--I’M (X), on GM-l,
(b) wM-a(x)+It-aa(x)>--O, onGM-a,
(c) wM-’(X +It-’aM (x )][LM-’ wM-’(x SI-’fM (x)] O, on GM-’,
(d) WM-(X) O, on OG-.

Here I-1 and S-1 are operators taking grid functions on GM into grid functions
on GM-. (As an aid in memorization, note that in IM-XtiM the subscript M and
superscript M "cancel".)

The operators IMM- and SMM-1 can be defined in many ways. One way is to
choose both IMM-1 and SMM_ to be the injection operator:

(2.35) Inj-Xw(x)-- W(X), X E aM-1.

If we were solving a linear boundary value problem, then condition (2.34b) would
not apply, and it would be most efficient to solve for the correction W-x on G-.
Since we are solving inequalities the problem is nonlinear, and it is necessary to solve
for a "full approximation" - on G-1.

Setting

(2.36) OM-I(x) wM-I(x)-.[-II-IIM(x),

it follows that OM-I(x) satisfies the LCP

(a) LM-OM-I(x)<=M-I(x) in aM-I,
(b) O-(x)_->O in a-x,

(2.37)
(c) Ot-I(x)[LM-aOlVt-a(X)--M-(X)] 0 in GM-a,
(d) OM-I(x) g(x) on OGM-a,

where

(2.38)
pM-I(x) SII-IM (x)-t- LM-1III-IM (x)

S-’ [P’ (x) L’O (x)] +L’- - (x).

Finally, we set

(2.39) e
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and

(2.40) tM-a It-l M,
where 6 is a constant; in our computations 6 has been set equal to .15.

To recapitulate, starting with initial values of tM, e and/M, we first carry
out aM projected sweeps until convergence slows down. We then introduce a

M--1subsidiary problem on Gm-1 with known/M-a and e and initial approximation
-M--1u The process can be repeated, so that at any one stage of the computation
we have a sequence of grid approximations 6M, ffM-a, ffk-a (approximating

M, M M-1 k-1/Q /QM-1, ., /Q-a, respectively), tolerances e e e and right-hand
sides M,

In the general case, Jk is the solution of the LCP

L’IQ’(X)<--_ff’k(X) in G,(a)

(b)
(2.41)

(c)

(d)

or equivalently,

(a)

(2.42) (b)

(c)

/.k(x)->0 in G,
lQ(x)(L’O’(x)-’(x))=O in G,
/Q (x) g (x) on OG,

AOk

O__>0,
(Ok)T(A’Ok -b’)=O.

This LCP is solved approximately using G projected sweeps until the latest approxi-
mation a satisfies either

(2.43) Ilva ll -<_ 
or

(2.44) IlVt/[1 > rt ]lVti old[IG.

If (2.44) holds but (2.43) does not, then a new problem on Gk-a is defined by
setting

(2.45) p-a S-a [p _Lkk]+Lk-ai-a,,
(2.46) e lie,

(2.47) a k-1 I-a ft k,
(2.48) Ok-l= W- +t,-a,
(2.49) Vk 0k a k,

where Wk-a is an approximation to V on G k-a. Unless otherwise indicated, I-1

and S-a will be taken to be the injection operator Inj-a.
At some stage the latest approximation t7 -1 must satisfy (2.43)’

(2.50) Ilva-*ll_-<
if for no other reason than that when k 1 i we cannot introduce any more subsidiary
problems and must iterate until (2.50) is satisfied. Having found an approximation
-k-1u of sufficient accuracy, we return to G. To do so, we first determine an
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approximation W k-1 to Wk-1 from (2.48), namely,

(2.51) wk-l k-l--[-lt k.
Next, let I-a be an interpolation operator taking grid functions on Gk-1 into

grid functions on G k. One choice for I_1 is the bilinear interpolation operator Lkk_l
defined as follows. If P1, P2, P3 and P4 are the corners of a square in G k-a (see Fig.
2.1), then

k-1w (P), 1 <- -<_ 4,

(w ’-I(P)+ wt’-a(P2))/2, 5,
(2.52) L,-w’-a(Pi) (w-X(Pa)+w-a(P4))/2, i=6,

)/W (Pi) 4, 7.
i=1

P

P

FIG. 2.1. Bilinear interpolation from G k-1 to G k.

Since Wk-a is an approximation to Vk on Gk-l,
(2.53) I,-lw-=/-i [/ k-I _/./-I/ k]
is an approximation to V, and, noting (2.49),

(2.54) t2k fig + Ikk_lwk--1
is an improved approximation to . However, because of the nonnegativity constraint
upon , we allow somewhat greater generality, and replace t7 k as follows"

(2.55) ti 0 (tT /i k) k k-1 k).qo(ti +I-lW
Initially we set

(2.56) (a.a)=a
but other choices will be considered later.

PFAS is described by (2.24) through (2.56). A flowchart is given in Fig. 3.1, and
the implementation is discussed in 3. If the algorithm converges, we will eventually
obtain an approximation ti

t satisfying the required accuracy condition (2.28), and
the algorithm will terminate.
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3. Implementation of PF/kS. The flowchart for PFAS is given in Fig. 3.1. PFAS
has been implemented as a FORTRAN subroutine for the case when 1) is a rectangle
in R 2, f is the Laplacian operator, L is the five-point difference operator, I-1 and
S-1 are injections (see (2.35)), and I_ is bilinear interpolation (see (2.52)). The
subroutine PFAS, which is listed in Brandt and Cryer [1980] as part of the program
for solving the porous flow free boundary problem described in 4, is a modification
of an earlier program, FAS Cycle C, of Brandt.

INPUT PARAMETERS: M, TOL, WMAX
INPUT SUBROUTINES: F, G

*-TOL’ k- M’ WU 0’ "5’ "15

103oq lira kllG

projected Gauss-Seidel

Compute llV-u

Is IIV kll <

YES

WU WU+2

Isk =M?
]

Go to finer grid

,-.-I k- 11 eqn. (2.51)

FIG. 3.1. Flow chart for PFAS.

"dg"
Is WU WMAX"-’

YES
NO

YES

ul
ES

Go to grid

eqn. (3.1)

kk-1

PFAS is very easy to implement" the subroutine, with profuse comment cards,
requires only 280 FORTRAN statements. It may also be remarked that many other
interesting free boundary problems (for example, elastic-plastic torsion problems and
cavitating journal bearing problems) are formulated on simple polygonal regions, and
the program could easily be modified to handle these problems.
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The following comments arise.
1. In PFAS, the LCP for Ok is solved in the form (2.42) rather than (2.41), but

the values of fik on 0G k are also stored. Thus,/ h/0 is stored instead of/k. In
going from G k to G-1 we have, from (2.45), since hk-1 2hk,

(3.1)

ffk-1 h_lpk-1

h_ (S-I[Pk --Lkvtk]+Lk-lI-lak)
h_ (S-h-2[k --Akk]+Lk-I-8k)
4S-1 [/;k -A k/ik] +Ak-lI-lti k.

2. A GCwork-unit is the work required for one Gk-projected sweep. The work
for one GCprojected sweep is approximately 2-n(M-k)Gt-work-units, and WU
denotes the total number of GM-work-units. When no confusion is possible we write
"work unit" instead of "GM-work-unit’’.

3. The asymptotic speed of convergence is measured by the asymptotic conver-
gence factor 12, which is defined by

(3.2) = lim [llva’ll 3
WU

4. All the numerical computations were performed on the Univac 1180 at the
University of Wisconsin-Madison. The programs were written in ASCII FORTRAN
and compiled and executed using full optimization.

The Univac 1180 single-precision arithmetic has approximately eight decimals.
The residuals usually decrease quite rapidly at the beginning of a computation so the
round-off threshold is quickly reached. For example, for the problem considered in
4 with M 5, [IuMI[ is about 2 x 103, and the single precision algorithm went into

a loop when Ilvo ll reached 5 x 10-6 after a mere 50 work units.
In the numerical experiments we were particularly interested in measuring the

asymptotic convergence factor . To eliminate round-off effects, all the computations
reported on here used double precision arithmetic. Of course, this is not normally
necessary. Furthermore, even if very accurate solutions of the discrete problem (2.2)
were required, it would suffice to store aM in double precision and all other quantities
in single precision.

The execution times quoted are those provided by the Univac 1180 Exec. System.
As is often the case on timesharing systems, the times are only reproducible to within
about 10%.

Because of its word length, the UNIVAC 1180 can only directly access 64K
words of storage. When M _-> 7, more than 64K words of storage are needed by PFAS,
and there is a significant degradation in performance.

5. To measure , the iterations were continued for the first 100 work units,
unless the residuals vanished before. In practice, one usually iterates only for about
30 work units.

We also used several values of M in order to measure the dependence of /
upon M.

The computations starting at a level-M-level-(M-1) junction and continuing
until the next level-M-level-(M- 1) junction are called a cycle.

While minor variations do arise, a cycle often consists of a sequence of 2 sweeps
at each of levels M-1, M-2,..., 1, followed by 2 sweeps at each of levels
2,..., M-1, terminating with 2 or 3 sweeps at level M. If this pattern is followed
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with 3 sweeps at level M, then the average number of work units per cycle is

(3.3) 3 + 4[2-" + 2-2" +... ] 3 + 4/(2" 1),

and the average number of work units per Gt projected sweep is 1+4/(3(2n- 1)).
Of course, very irregular patterns are observed when the round-off threshold is

reached.
6. It is usually found that II’tTtll decreases steadily but not very regularly, in

part because of slight variations in the number of sweeps at each level. To evaluate
the algorithm, we have used two quantities:

(3.4) r IlVt7tnna[IG the value of IIa’ll at the end of the last complete cycle

before 100 work units,

(3.5) e [lira’ -’ 1/[WUfinal--WUinitial]

wlaere lira initialll is the value of lira’11 after the first Gt sweep;/2f is an estimate
for the asymptotic convergence factor/2.

We usually only quote rf to one decimal place and/2 to two decimal places, since
this is quite adequate for our purposes.

7. In all the experiments reported here, the parameters 6 and rt (see (2.29) and
(2.39)) were given by 6 .5 and rt .15. According to Brandt [1977], the rate of
convergence is not very sensitive to changes in these parameters, and this was confirmed
in a few experiments.

In a few cases, but never for 6 .5 and r/= .15, the program "hunted"" that is,
the program went down from Gt to G 1, up to G k for k <M, and then down again
to G instead of continuing up to Gt. This might happen several times before Gt

was reached again.

4. Numerical results for porous flow through a dam. Calculations were performed
on the well-known free boundary problem describing the flow of water through a
porous dam. The geometry is shown in Fig. 4.1. Water seeps from a reservoir of
height y through a rectangular dam of width a to a reservoir of height y2. Part of
the dam is saturated and the remainder of the dam is dry. The wet and dry regions
are separated by an unknown free boundary which must be found as part of the
solution. For an introduction to the problem see Bear [1972] or Cryer [1976].

head wate

F
free surface

saturated

.,wet)

Y1

B impervious foundation

seepage face

tail water

FIG. 4.1. Seepage through a simple rectangular dam.
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As shown by Baiocchi [1971], the problem can be formulated as follows: Find
u on the rectangle 12 ABCF such that

u + uy <_- 1

(4.1) u ->_ 0

u(u + u,, 1) 0

in

in ,
in 12,

(4.2) u g

(Y Y)2/2 on AB,

(Y2 Y)2/2 on CD,

[y(a-x)+ y(x)]/2a onBC,

0 on DFA,

which is in the form (1.1).
This problem was solved using PFAS. The initial values of ti

t were obtained
by interpolating the boundary values of u linearly in the x direction. A listing of the
program is given in Brandt and Cryer [1980].

We considered the well-known case, yl 24, y2 4 and a 16. In all computations
G was a (2 + 1) x (3 + 1) grid with h 8. The finest grid used was G7 with (128 + 1) x
(192 + 1) 24897 grid points.

To give the reader an idea of the solution, the solution U2 of (2.2) is given to
four decimal places in Table 4.1.

0 4

24 0 0
20 8 2.5371
16 32 18.1486
12 72 47.2732
8 128 89.9564
4 200 146.5702
0 288 218.0000

TABLE 4.1

U for the dam problem.

0
0
6.7841

24.9879
53.9823
94.3247
148.0000

12

0
0
0
7.9120

22.6601
44.7462
78.0000

16

M
GM

Execution time for
100 work units

(seconds)

0 SORopt

2
5x7
0*
.404

TABLE 4.2

Solution of the dam

3
9x13
4(-17)*
.607

.114

.18

.428

.49

* Reached round-off level before 100 work units.

oroblem using PFAS.

4
17x25
1(-13)
.726

1.04

.71

5
33x49
1(-8)
.813

3.55

.84

6
65x97
1(-lO)
.778

13.39

.92

Required 70K workspace so extended storage facility invoked, and timing not compatible.

7
129x 193
1(-7)
.81

.96
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MThe numerical results, for different values of M and e TOL 0, are given in
Table 4.2. The most important conclusions are that convergence always occurs and
that the convergence factor tf is always less than .81.

We now compare the convergence factors f in Table 4.2 with those for single-grid
methods of solving the LCP (2.2).

A popular single-grid method of solving the LCP (1.3) is Gt-projected $OR
(point SOR with projection) which has also been called "modified SOR" by Cottle.

When using Gt-projected $OR, it is observed experimentally that the values of
ti
t settle down quite quickly into positive values and zero values. Thereafter Gt-

projected SOR is equivalent to using point SOR on the subset G=
{x Gt’ Ut (x) > 0}. Thus the asymptotic convergence factor for Gt proiected SOR
is in general equal to the asymptotic convergence factor for point $OR on Gt+. It is
known (Varga [1962, p. 294]) that for a region of area A and for the finite difference
equations corresponding to the five-point difference approximation to Laplace’s
equation with stepsize h, the convergence factor for the optimum choice of overrelaxa-
tion parameter w is approximated quite well by

2
(4.3) px(h) 1.

1 + 3.015[h 2/A]1/2-

In the present case we do not know the area of Gt+, but, as a rough guide, the area
of Gt+ is approximately equal to the area of D, which is about 80% of the area of
the rectangle ABCF. Therefore, for our present purposes the asymptotic convergence
factor for Gt-projected SOR with optimum choice of o) may be taken to be

2 2
(4.4) PSORopt

1 + 3.015[h 2/(.8 X 16 x 24)]1/2 1 1"
1 +.172h

these values are given at the bottom of Table 4.2.
As Table 4.2 shows, for large problems, PFAS is faster than Gt-projected SOR.

On G;, for example, the increase in speed (measured in work units) is
In .81/ln .96 5.2. Against this, two factors must be borne in mind: (1) PFAS is more
complicated and requires more overhead per work unit; (2) PFAS requires somewhat
more storage. We discuss these two factors below, but before doing so we wish to
emphasize that although these factors reduce the advantage in speed of PFAS, the
measured execution times for PFAS are much smaller than those for Gt-projected
SOR.

1. Overhead. To obtain an indication of the additional overhead required by
M 0-8PFAS, we compared execution times forM 5. We first used PFAS with e 2 1

This required 96.156 work units and took 3.40 seconds. We then modified PFAS so
that only the grid k =M was used and so that overrelaxation was used with the
overrelaxation parameter o given by equation (4.4). We were thus using .Gt-projected

MSOR with a nearly optimum o. To reduce Ilva ll e 2.10.8 required 146 work
units and took 4.82 seconds. Since

(3.40/96.156)/(4.82/146) 1.07,

we conclude that, in this application, the additional overhead required by PFAS only
increases the computation time per Gt-work-unit by about 10%.

2. Storage. As implemented here, PFAS keeps the solutions and residuals on all
the grids, and therefore requires storage for 211 +4-1 +4-2+ .]=8/3Gt grids. In
contrast, Gt-projected SOR requires storage for only one Gt grid.
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If storage is at a premium, the residuals on Gt need not be stored, and PFAS
requires only 5/3 times as much storage as Gt-projected SOR. If t7t is stored to
double precision, but a k and/k are stored to single precision for k <M, only 4/3
times as much storage is needed. If F(x) were not the constant 1, but a complicated
function, then either the function values or the residuals would have to be stored for
GM-projected SOR, and PFAS would require at most 33% more storage.

Another possible single-grid algorithm for solving the LCP (1.3) is the MBSOR
(Modified Block SOR) algorithm of Cottle, Golub and Sacher [1978]. This algorithm
is based upon the solution of a sequence of "one-dimensional" LCP’s in much the
same way as line SOR is based upon solving a sequence of "one-dimensional"
equations. We used MBSOR to solve the dam problem (4.1), (4.2) for the case M 5.
The program was kindly provided by Professor Sacher. We tried a few values of the
overrelaxation parameter w, and found that 1.8 gave the best results. With w 1.8,
MBSOR required 114 iterations to reduce II u ’ll to below 2.10-8 and took 13.13
seconds. The following comments arise.

(i) In numerical experiments on the dam problem, Cottle [1974] found that
MBSOR was about 20% faster than "modified point SOR", that is, Gt-projected
SOR. This is consistent with the fact that, for equations, the convergence ratio for
line SOR is only faster by a factor of / than point SOR, while there is more
computation per iteration. This is also consistent with the present results, since
Gt-projected SOR required 146 iterations to reduce the residual to 2.10-8 while
MBSOR required only 114.

(ii) The poor execution time of MBSOR (13.13 seconds) compared to PFAS
(3.40 seconds) can be explained in part by two factors: (a) MBSOR requires more
computation per iteration than is needed by PFAS for a single work unit; (b) the
MBSOR program was written for the case of general coefficients, while the PFAS
program takes advantage of the properties of the five-point difference operator.

(iii) It must also be borne in mind that Cottle, Golub and Sacher [1978] found
that MBSOR was three times as fast as Gt-projected SOR for the journal bearing
problem where the solution is zero at a high percentage of the gridpoints.

We conclude from Table 4.2 and from the above discussion, that for the dam
problem (4.1), (4.2), PFAS is faster than Gt-projected SOR and modified block SOR
for M_->5, that is, for grids of dimension 33 49 or greater. Furthermore, we also
conclude that the values of/2 and 10SORopt in Table 4.2 provide a reasonably accurate
guide to the relative performance of PFAS and Gt-projected SOR. We believe that
PFAS will be faster than both Ga4-projected SOR and MBSOR for a wide range of
problems. Indeed, as shown by Table 4.2, the asymptotic convergence factor t for
PFAS is approximately equal to .8 for all values of M. Consequently, the amount of
work required to reduce the residuals on Gt to below a given threshold e is O(N),
where N is the number of gridpoints in G4. In contrast, both Goprojected SOR
and modified block SOR have computation times which are 0(N3/2).

5. Alternative implementations of PFAS. In this section we discuss alternative
implementations of PFAS, the best of which achieves substantially improved per-
formance.

The improvement in PFAS which might be possible is suggested by considering
the asymptotic convergence ratio, FAS say, for FAS for Poisson’s equation. For FAS,
the error reduction per Gt-sweep is .5. If each Gt-sweep is accompanied by, on
average, one G-sweep for l<-k<-M-1, then the number of work units per
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Gt-sweep is

1+2-2 + 2-4 + 4/3,

and the convergence ratio is (.5)3/4-- 595, as stated by Brandt [1977, p. 351]. In the
present case, as observed in 3, the average number of work units per G-sweep is

1 +4/[3(2n- 1)]= 13/9,

so that

(5.1) /-FAS (.5)9/13 .6188.

This value of /2FAS is observed experimentally. The worst observed value of/2 for
the PFAS results quoted in 3 was/2 .81. Thus, FAS (for equations) is faster than
PFAS (for LCP’s) by a factor of In .6188/ln .81 2.28.

Plausible reasons why PFAS is slower than FAS include the following difficulties:
DI" Negative components o] a k. The inequality (2.41b) requires that Ok be

nonnegative. In each Gk-projected sweep the step (2.7) ensures that ak is nonnegative.
Furthermore, if I-1 is the injection operator, the initial approximation t7 k-1 defined
by (2.47) is also nonnegative. However, (2.54) does not preserve nonnegativity" in
returning to G k from Gk-l, the initial approximation t7 k may have negative com-
ponents, and this is often observed. Of course, any negative components are removed
in the first subsequent Gk-projected sweep, but nevertheless the introduction of
negative components must retard convergence.

D2" Large residuals near the free boundary. At a point x Gk where Ok(x) =0
the corresponding residual

(5.2) /(x) (x)-Lt? (x)
must be nonnegative because of the inequality (2.41a) but need not be small.

D3" Influence of the discrete interface. The discrete interface Fk c R 2 is the inter-
face between the set of points where Ok >0 and the set of points where Ok= 0. Fk

approximates the continuous interface, or free boundary, F separating the points where
the solution u (x) is positive from the points where u (x) is zero.

In special cases it may happen that Fk F for all k, in which case PFAS converges
as fast as FAS. An example is given by problem (5.3), (5.4) below with R 2, for
which F is the line y 5- 2x; it is found experimentally that Fk F for k <= 6.

In general, Fk and F differ by O(hk), and Fk and Fk-1 differ by O(hk). In particular,
it may happen that Ok (X) > 0 while Ok-(x) 0. Furthermore, near Fk- the residuals
may be less smooth because of the projection (2.7) and because of the irregular shape
of Fk and Fk-. This introduces errors in the coarse grid corrections (2.55), thereby
slowing the rate of convergence. Finally, the injection operator (2.35) is not adequate
if the data to which it is applied is not smooth.

To test the influence of the relationship between F and Fk on the convergence
of PFAS, computations were made not only for the dam problem (4.1), (4.2) but also
for the LCP:

(5.3)

(a) Uxx + uyy <- )(x, y) in l),

(b) u _-> 0 in f,

(c) u g on 0,

(d) u (uxx + uyy -[) 0 in f,
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where D [0, 3] x [0, 2], and f and g are chosen so that the exact solution is

(5.4) u [cos (x + y) + 2][max {0; 2.5R -Rx y}]2.

Here, R is a parameter which is chosen close to the value 2. Note that u e C2(12) and
u 0 above the line y R (2.5 x). By changing the value of R we can force gridpoints
to lie very close to the exact free boundary; this may be expected to cause PFAS
difficulty, because if Ok(X) is positive but very small for some x Gk then it will take
PFAS a large number of iterations to determine whether ]k (x) is zero or positive.

Multigrid algorithms can often be speeded up by modifying the operators I-1,
S-1 and I_1. We have tried a number of modifications of the corresponding PFAS
subroutines which were intended to address the difficulties D 1 to D3 mentioned above.

Our first modifications to the auxiliary subroutines of PFAS were not very
successful, but they were very instructive and we briefly summarize them. In all cases,
the results are for the dam problem with M 5.

M1. PFAS was modified so as to enforce nonnegativity of tik immediately after
returning from G-x. This was done by defining q in (2.55) by

(5.5) q(t7 ’, tik max {0,

This modification converged slightly faster than PFAS with/r .803.
M2. The usual situation in which the nonnegativity of 7 k is violated is as follows.
Let a (x) 0, where x G k but xg Gk-. Let y Gk- be a neighbor of x, such

that a(y)>0. It may then happen that W-(y)<0. As a result, (I_Iwk-)(X) may
be negative, and if so the updated value of t k (x) will be negative.

To avoid this, PFAS was modified so that the operator I- became"

(y) if t7 (x) > 0 for all eight

(5.6) I-a(y) neighbors x of y in G,
otherwise.

Remembering from (2.48) that

Ok-= W-I +I-t2,
we see from (5.6) and (2.41b) that the restraint W-(y)->0 is enforced for every
point y G- with a neighbor x G such that t7 k (x)= 0.

This modification converged slightly more slowly than PFAS, with .817.
M3. PFAS was modified so that if the current value of a a4 (x) was zero, then

-ku (x) was forced to be zero for k <M. In effect, (2.7) was followed by a further
operation"

(5.7) Ifk<M and at(x)=0, thent’s=0.
This modification converged, but much more slowly than PFAS, with Cf .887.
M4. Brandt [1977, p. 378] has found residual weighting useful when the

coefficients of the differential equation are changing rapidly. We, therefore, changed
the algorithm so that S- became"

(5.8) 4S-ar (x) Z P(A)rk (x + Ah,),



MULTIGRID ALGORITHMS FOR LINEAR COMPLEMENTARITY PROBLEMS 673

where A (A1, m2) for integers A1, m2 and the only nonzero O (A) are

o (o, o)=

(5.9) 0(0, 1)=0(1, 0)= 0(0,-1) =0(-1, 0)=1/2,
o(1, 1)=o(1,-1) =o(-1, 1)=o(-1,-1)=1/4.

This modification cycled between G and G2, as did the further modification for
which I-a was also defined by (5.8), (5.9).

The nonconvergence of Modification M4 requires explanation, and this is provided
by

LEMMA 5.1. Let ( be defined by (2.56). For 1 <-k <-M let 0 be the solution of
the LCP (2.41), where P satisfies (2.45). Finally, let I_a satisfy

(5.10) (I_ (z-) =0)=>(z- =0) for all z- eR-.
Then for PFAS to converge it is necessary that

(5.11) S-I[Pk --LkOk]>=O,
(5.12) ,-O _->0,

(5.13) [I-IO,]Ts-X [pk L Ok O.

Pro@ We apply PFAS by setting O k Ok, and forming the LCP (2.41) on Gk-:

(***) O-__>0,
(Ok-1)T(Lg-10g- _pk-1) 0.

Solving this exactly so that t7 k-a Ok-l, we then return to G k. Since PFAS converges,
the new value of tik given by (2.55) must be equal to Ok. That is,

I-IW k-1 Z-I [Ok-1 --/’kk-10k 0,

which, from (5.10), implies that

Ok-l I-lfk.
Substituting into (***) and noting (2.45), we obtain (5.11) through (5.13).

The following remarks follow from Lemma 5.1.
1. Lemma 5.1 brings out an interesting difference between multigrid methods

for equations and for inequalities. For equations,/k LkOk 0 and conditions (5.11)-
(5.13) are satisfied for any reasonable choice of S-1 and Ik-l, but this is not true
for inequalities.

2. Since Ok solves (2.41), inequalities (5.11) and (5.12) will certainly hold if S-a

and I-x map nonnegative vectors into nonnegative vectors. In particular, this will
be the case if Sk-x and I- take linear combinations of values with nonnegative
weights.

3. If S- and I-1 are injections, then (5.13) is implied by (2.41c).
4. If Sk -a is defined by (5.8) and (5.9) while I- is injection, then (5.13) does

not hold in general. This is because in general there will be points x, y e Gk such that
x e G k-x, gQk (x) >0, tQk (y) =0, y is aneighbor ofx inG k and(ffk --LkgQk)(y) > 0. Then

I-10k (x) O’ (x) > 0
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and

(S-1 (pt, _LkOt,))(x) >= 1/4(p, _LkOkl(y) > 0,

so that (5.13) does not hold. This explains why Modification M4 of PFAS did not
converge.

We now describe two further modifications of PFAS which were tried"
MS. Bearing Lemma 5.1 in mind, it is possible to introduce weighted sums for

which (5.13) does hold. One choice uses weighted residuals only near the boundary"

4r k (x) if t2 k (x) 0 or if t7 k (y) > 0

(5.14) 4S-lr’(x) for all eight neighbors y G of x,

Y p (A)rk (x + Ah) signum [t k (x + Ahk)] otherwise,
A

where

1 if a >0,
signuma=

0 if a=0,

and where the weights p(A) are as in (5.9). This modification converged more slowly
than with PFAS, and it was found that t .854.

M6. As mentioned in D1 and D3 above, if iTS(x)=0 then it may happen that
-k k ku (x)= t7 (x)+I_lw -(x) is not zero. It can be argued that changes of iTS(x) from
or to zero should only be done on G. We, therefore, modified PFAS so that in (2.55)
q9 was defined by

(5.15) <ak<x)’k<x))={k(x) if 2k(X) > 0’
otherwise.

I-1 and S- were injections. This program was called PFASMD.
We solved (4.1), (4.2) with M 5 using PFAS and PFASMD. In each case, the

computations were terminated when [[VM][ <_--2.10-s. The results are summarized
in Table 5.1.

In Table 5.2 we compare PFAS and PFASMD for the problem (5.3), (5.4). As
in Table 5.1 we iterated until [[Vu<>[[ <=2.10-8 on G5.

We conclude from the results given in Tables 5.1 and 5.2 that PFASMD is
substantially faster than PFAS.

Finally, in Table 5.3 we extend Table 4.2 by comparing the measured execution
times for the projected SOR method and PFASMD for the dam problem for various
values of M. In each case, the iterations were continued until [[V[I <= 2.10-s.

TABLE 5.1

Solution of (4.1), (4.2) with M 5 and e
t 2.10-8 using PFAS and

PFASMD.

Method

PFAS PFASMD

Work units 96.15 42.81
Execution time (seconds) 3.40 1.63

t2 .815 .623
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TABLE 5.2
MSolution of (5.3), (5.4) with M 5, R 32/15 and e 2.10-8 for

PFAS and PFASMD.

Method

PFAS PFASMD

Work units 73.62 56.96
Execution time (seconds) 3.09 2.58

t .731 .669

TABLE 5.3

Comparison of Gtprojected SOR and PFASMD for the dam problem with e
M 2 10-8.

M= 2 3 4 5 6
GM 5 7 9 13 17 25 33 49 65 97

GM projected G iterations 19 34
SOR Execution time (seconds) .02 .09

69 146 295
.60 4.88 39.37

PFASMD GM work units 23 30.5 38.7 42.8 45.7
Execution time (seconds) .04 .12 .41 1.64 6.57

As can be seen from Table 5.3, PFASMD is better than projected SOR except
for very small grids.

6. PFMG (projected full multigrid algorithm). In this section we describe
PFMG (projected full multigrid algorithm), which is a modification of the full multigrid
algorithm of Brandt. The flowchart for PFMG is given in Fig. 6.1. PFMG has been
implemented as a FORTRAN subroutine for the case when f is a rectangle in R 2,
and is the Laplacian operator. This subroutine is listed in Brandt and Cryer [1980]
as part of a program for solving the porous flow free boundary problem of 4, and
the problem (5.3), (5.4).

PFMG differs from PFAS in the following respects:
I. Instead of beginning on G, one begins on a coarser grid GLIN and gradually

works up to GM. The computations begin on the initial grid G t, LIN, with an
initial approximation t7 t. a is computed to the required accuracy using grids G
through G as in PFAS, except that, as will be discussed below, the decision to move
to a different grid is based on slightly different criteria.

Once a has been found to sufficient accuracy, the initial approximation a /1 is
obtained from

(6.1) a+ =Jlt+lal,
where Jl+1 is an interpolation operator taking grid functions on G into grid functions
on G t+l. It is known (Brandt [1977, p. 377]) that Jtt/l should be more accurate than
11+1 in order to preserve the smoothness of a

There are two errors in the program as listed in Brandt and Cryer [1980]. On line 1127 change
(ITAU.EQ.1) to (ITAU.EQ.1 AND. T.NE.0). Card 1123 (TAUGNM=TAUGNM+ T’T) should be
placed after card 1126 (*O(IP +JK). EQ.0) T 0).
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wu,,- 0
LIN

Initialize

1
Begin level

WU .25 WU
-0

Begin J. level

[[V/ k[[G 103o L

Begin sweep

ilk Proiected Gauss-Seidel [ilk. A , ]
Compute IlVi kll

WU-WU +4**(k -l)

Decision to to different grid.
Is based the number of sweeps at level k,

k and the number of levelcycles at

YEs

t-l ’-l-l A i’-I

New level

Set boundary conditions
for
l#l+l

Yes

=/?

No

Go to finer grid

lilk+l--lk+
i+l0(i "i

kk+l

I
Go to grid-,_4S ( -Ai)

ff’k- 4S
ek-a.-llvikll
kk-1

ok+lk+l
kk+Akfik

ITAUEX
If ITAU and 1, ITAUEX

2P/(2 1)

If ITAUEX then
k(x) Pk(x), if ilk(y)= 0 for

of
the four neighbors of

r(x) +Pk(x), otherwise

Ilk =M-l,

FIG. 6.1. Flow chart for PFMG.
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In PFMG, Jl+1 is based upon repeated use of the cubic interpolation formulas

(6.2) f(1/2) I-f(-1)+ 9f(0)+ 9f(1)-f(2)]/16,

(6.3) f() If(-1)- 5f(0) + 15/(1) + 5(2)]/16.

Repeating this process, we finally obtain an initial approximation on G.
Thereafter, the computation proceeds essentially as in PFAS.

II. a is used to estimate the local truncation error on Gg-. Suppose that the
difference approximations are of order p and that can be extended to a smooth
function on . Then on G-a,
(6.4) A-I-aa
and

(6.5) S-aAa ha +2-(+2)z-,
where the local truncation error depends upon the derivatives of a Eliminating
the unknowna we obtain

2-(6.6) r -2_1

2p

(6.7)
2’_1

[{45- (/ -Aa)}+{A"-aI-a}-{4S-}].

The estimate (6.7) is not accurate near the discrete interface, and so PFMG computes
k-1

Zz where

k-I(x) ifk-1(6.8) z (x)
0 if /k-l(x) O.

Because of the lack of smoothness of the solution near the free boundary, it is
not entirely clear what the value of p should be. It is known (Brezzi and Sacchi [1976])
that the convergence of the finite difference approximations is probably only O(h 1)
in the wl’2(f) norm, and Nitsche [1975] has proved O(h 2 ln h) convergence in the
infinity norm. However, these are global error bounds, while we are concerned with
the asymptotic behavior of the local truncation error -. Except in a neighborhood of
the discrete interface Fl, p is clearly equal to 2. Since the choice of p may vary over
f, we could perhaps set p 1 near F, but the values of z near F are not very accurate
and so, for simplicity, we have taken p 2 everywhere.

III. As usual in numerical analysis, the estimate (6.7) for .k-1 can be used in
two ways:
(a) To estimate the error a k u. Since r

k 2-2-P’r k-l, and remembering that G k has
four times as many points as Gk- but hk-1 2hk, we see from (2.23) that

Combining (6.7), (6.8) and (6.9) we obtain an estimate for II  ll ,
In the previous sections we were concerned with asymptotic convergence. That

is, we were concerned with the rate of convergence of ti k to fQ over a very large
number of iterations. However, if we want an approximation to the solution u of
(1.1), it is only necessary to iterate until the residual on G is small compared with
the truncation error, that is, until

(6.10)
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Once (6.10) holds, further computation will improve the accuracy of t7 k as a solution
of the finite difference equations, but will not improve its accuracy as an approximation
to u. Noting (6.9), we see that (6.10) will certainly be true if

(b) Improvement of accuracy of k--1. Once an estimate for the truncation error
k-1- is available, it can be used to improve the accuracy of the difference approximation

on G- by replacing Fk-(x) by Fk-(X)+’k-(X) (see (6.4)). This is only done at
points x Gk-1 such that tTk-l(y)>0 for all four neighbors y G k-1 of x since the

k- is not accurate elsewhere.value of rz
Of course, this is only meaningful when ]l-k-]l is small compared to IIv  ll 

if the iterations are continued for a long time, then convergence will not occur because
the conditions of Lemma 5.1 will be violated; but PFMG is never used in this way.
In fact, experience with equalities indicates that when z-extrapolation is used, the
best procedure is to avoid relaxation after returning for the last time to the finest grid.

IV. As already mentioned, the logic of PFMG is more complicated than that of
PFAS. Several parameters are introduced, and this enables one to control explicitly
the number of Gk-projected sweeps at any level k, and the number of cycles at level
l. In the computations reported on here, in each cycle on grid G two Gk-projected
sweeps are carried out for l<k <- as we descend from G to G 1, and one Gk-projected
sweep is carried out as we ascend from G to G t. For LIN, up to three G cycles
are allowed, so that a good initial approximation can be obtained. For LIN < <M,
only one G cycle is allowed, while up to 10 Gt cycles are allowed.

We now describe numerical results obtained using PFMG to solve the dam problem
(4.1), (4.2). In all cases, G is a (2 + 1) (3 + 1) grid and LIN 2.

PFMG includes the option of computing lit7 l- u ll and Ila ’- u ll , where u is the
exact solution. For the dam problem, it is possible to compute u analytically using
elliptic integrals (Cryer [1976]), but this has not yet been done" we therefore took
u to be the most accurate approximation known to us, namely the approximation a 7

computed in double precision on a (128 + 1) (192 + 1) grid as described in 4. For
problem (5.3), (5.4) the exact solution is given by (5.4).

We first performed a number of experiments with M 2, 3, 4, and 5"
1. --extrapolation (with p 2) gave slightly worse results for the dam problem

and slightly better results for problem (5.3), (5.4). (This is explained in part by the
observed behavior of - as a function of h, as discussed below.)

2. In contrast to our experience with PFASMD, the use of equation (5.15)
(modification M6) had only a slight effect. (This may be explained by the observation
that the slow convergence of PFAS is caused by the existence of gridpoints near the
discrete interface at which (without modification M6) the computed values of t7 k

fluctuate between zero and small positive quantities. This is a delicate asymptotic
matter below the level of the truncation error, and hence does not trouble FMG.)

3. It was thought that convergence might be improved by multiplying the
difference VtT(x) by h for points x near the free boundary before computing
lira (x)ll . This was found to have negligible effect.

All the results given below are for the case of no r-extrapolation and no
modification.

The results for the dam problem for different values ofM are shown in Table 6.1.
Since we only have estimates for .t-, it is not possible to obtain rigorous error

bounds. Nevertheless, it is interesting to apply the error bounds of 2.
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TABLE 6.1

Solution of the dam problem using PFMG.

M

3 4 5

Gt work units 8.75 6.67 6.41
Execution time (seconds) .0675 .145 .404
Ila’ ll/llu I1 .000665 .000168 .0000532
I1’ 11/11’11 .00080 .000145 .0000388

IIv’ll .0666 .0557 .0339

I1-111 0.0771 0.0795 0.0383

Let Ot denote the vector obtained by evaluating the solution u(x) on Gt. Then,
from (6.4), (1.1), (2.2), (2.3), (2.13) and (3.1),

MAtOt __<bt +-(6.12)

so that, from Lemma 2.1,

(6.13) liar ull= lll+llz.
OM

On the other hand, from Lemma 2.2,

M

For the dam problem, P is an upper triangular matrix with at most two nonzero
elements per row, and IIP"II 2. Thus,

(6.14) IIS" a"l12 llVa"ll=.
M

Combining these inequalities we obtain

lit2’ a’ll=-<- --[IIUIIz + 211va’llz],
oM

or, equivalently,

(6.15) II0 all 1[11+11 + 211vall].
OM

Using (6.8) and (6.9), we conclude that

(6.16) I’OM tM[IG2 I----[-O II’rMz -I[IG + 2IIvMIIG]OM

Next, we note that for the dam problem

(6.17)

where

(6.18) c + -’.055>14/256
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and

Thus, finally, for the dam problem,

ht=16.2-M.

(6.19) I[0M -aMI]o- I[-]]O + 2[]Vall

For example, for M 5 we obtain, using Table 6.1, that

(6.20)
10

IIO- oll/llrll "=< -[z(0.0383)+ 2(.0339)]/(5.9 103) --.000959;

the observed value quoted in Table 6.1 is .0000388.
In Table 6.2 we repeat the computations of Table 6.1 for the problem (5.3), (5.4).

TABLE 6.2

Solution of problem (5.3), (5.4) using PFMG.

M

3 4 5

Gt work units 6.75 5.672 5.414
Execution time (seconds) .101 .271 .861
Ila’ tgr’ll/llu I1 .000985 .000266 .0000645
Ila’ O’11/110’11 .00122 .000376 .0000956
llTfitll .241 .121 .0764
lily-1 [1 1.56 .509 .147

The error estimate (6.19) also holds for the problem (5.3), (5.4), since we are
using the Laplace operator on a rectangle with sides in the ratio 2:3. Applying (6.19)
we obtain

2lo

IIO- aSll/llOll --11/4(.147) + 2(.076)1/(1.2 104) .00115

the observed value quoted in Table 6.2 is .0000645.
The behavior of the global error tit-u can be checked using Tables 6.1 and

6.2. From Table 6.1 we have

From Table 6.2,

a-a=ll.1
/= [.0000532l’/=lit73-J .0--b- J 2782"

[lltTS-ullo] 1/:z

[.0000645]
1/: 1

t]la- u IIJ 00--- 2196"
These results strongly suggest that the global error is O(h ).

The behavior of the local error r can also be checked using Tables 6.1 and 6.2.
From Table 6.1,

[11, II/ll,= [1]/2 [.0383/.0771]a/ 1/2.50
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while, from Table 6.2,

[ll41l/llrzll]/= --[ 147/1 56]1/2-’ 1/21"7
so that r O(h’) with q (.50, 1.7). This explains why r-extrapolation with p 2 did
not reduce the computational effort for the dam problem. The essential difficulty is
of course that the irregularity of the discrete interface makes it difficult to obtain
accurate estimates for -.

Finally, in Table 6.3 we repeat the computations of Table 5.3 for a tolerance
M

e .0339, the value of IIVt7511 in Table 6.1. We are thus comparing the performance

TABLE 6.3

Solution of the dam problem for M 5 and e .0339 using PFASMD (modification
M6), PFMG, and projected SOR.

Method

PFMG PFASMD Projected SOR

Work units 6.41 9.64 60.0
[IVtitlle .0339 .0239 .0296
Execution time (seconds) .404 .447 2.07

of PFAS (with Modification M6), PFMG and projected SOR for comparable errors.
From Table 6.3, we see that PFMG is faster than projected SOR even when only low
accuracy is required. PFAS and PFMG require comparable times, but PFMG gives
much more information and is, therefore, preferable. PFMG also uses fewer work
units than PFAS. This is significant because the number of work units used is
independent of the computer. Furthermore, on the basis of experience with many
problems, it can be said that the number of work units used does not vary greatly
with the problem: for most operators f, FMG requires only 5.4 work units.

We conclude this section with some remarks on the implementation of PFMG.
1. From Table 6.3 we see that the execution time per work unit of PFMG is

greater than the comparable quantity for PFAS by a factor

.404/447
:--:/’ = 1 36
6.41/9.64

This additional overhead is probably due to the cubic interpolation used by J-l, and
could perhaps be reduced by better programming. When is complicated, the
additional overhead required by PFMG is relatively much less significant: it is only
with a very simple operator like the 5-point Laplacian that the additional overhead
is so expensive.

2. In PFMG one often need not have any storage for the finest grid Gtmnot
even external storage. The algorithm visits Gt only twice" at the beginning of the
last cycle and at the end of the last cycle.

At the beginning of the cycle, the following operations are performed" interpolate
(Jt-1); two Gt-projected sweeps; and residual transfer (I-1 and S-). All these
operations can be made in one passage over Gt in such a way that only four columns
of Gt are held in memory at one time. Each time a new column, say column i, is
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created (by interpolation), a relaxation can be made in column i- 1; then the second
relaxation can already be made in column i- 2 and the residuals from column i- 3
can be transferred back to the coarse grid. Column i-4 can simultaneously be
discarded (i.e., replaced by column i). After this visit to G, all the information is
available (in/M-1 and t7 t-1) to solve the Gt- problem to the truncation level of G.

The final return to G (which would require the storage of the previous values
of Ut) is made in order to obtain the solution on Gt rather than on GM-l, but it
does not improve its pointwise accuracy. If one is interested only in knowing some
functionals of the solution, these can be calculated without having the final solution
on G. To approximate a functional (U), for example, one computes
M-1 M-1 M) GM-Io’t where =(t7 -(Ii-a), a-o-u is the final solution on

and t7 is the last solution on G before switching back to Gt-1. Clearly,
can be calculated during the above-mentioned passage on Gt. Note that tr- is a

M-1relative truncation correction", similar to rM It makes the approximation
(t7t-) +r-1 correct to the Gt truncation level. need not be a linear functional.

7. Conclusions and recommendations.
1. Multigrid methods can easily be adapted to handle linear complementarity

problems arising from free boundary problems.
2. Multigrid methods are superior to projected SOR and modified block SOR

(see Tables 5.3 and 6.3).
3. For high accuracy solutions of the discrete LCP, one should use PFASMD

(see Tables 5.1 and 5.2).
4. For solutions which are accurate to within truncation error, one should use

PFMG with no modifications (see Tables 6.1, 6.2, and 6.3).
Finally, we conclude with some comments suggesting possible future applications

of multigrid methods to complementarity problems:
1. For equalities, experience has shown that multigrid methods are as efficient

for problems where is nonlinear as for problems where is linear.
2. Experience from equalities indicates that with similar efficiency (just a few

more work units), one can solve much more difficult problems, such as problems in
which the coefficients of vary by orders of magnitude (e.g., large variations in the
diffusivity of the dam). In such cases SOR and other methods converge very slowly.
See Alcouffe et al. [1980].

3. The truncation error near a discrete interface cannot be reduced by using
higher order approximations, because the second derivatives are usually discontinuous.
A good way to improve the approximation would be to use finer mesh sizes near the
discrete interface. This can be combined very effectively effectively with the multigrid
process (see Brandt [1979, 3]). In fact, a vast improvement is to be expected if
r-extrapolation is used together with local refinements. Fine levels will then be used
only near the interface.

4. It would be possible to use a parallel processor, in which case the Gauss-Seidel
iterations would be performed using the red-black ordering of the grid points (Brandt
[1980a], Foerster et al. [1980], Cryer et al. [1981]).

5. Although the numerical results for PFAS and PFMG are convincing, it would
be desirable to obtain a rigorous proof of convergence, such as is available for the
projected SOR method.
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