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ABSTRACT 

The full multigrid (FMG) method is applied to the two 
dimensional Poisson equation with Dirichlet boundary 
conditions. This has been chosen as a relatively simple 
test case for examining the efficiency of fully vectorizing 
of the multigrid method. Data structure and programming 

considerations and techniques are discussed, accompanied by 
performance details. 

April 1983 

1. INTRODUCTION 

The multigrid (MG) method has been shown to be a very efficient solver 
for discretized PDE boundary-valve problems on serial (scalar) computers. 
However, it was not clear how well can the MG approach be adapted to 
execute effectively and efficiently on a vector processor, such as the CDC 
CYBER 205, where considerations other than operations-count may play an 
important role. The purpose of this paper is to report our experience in 
implementing an MG code on the CDC CYBER 205. More specifically, the 
test-case considered is the two-dimensional Poisson equation with Dirichlet 

boundary conditions. It will be assumed here that the reader has some 
familiarity with the philosophy, the motivation and the basic computational 
processes of MG as a fast solver. These processes are described in detail 
in a number of papers in these proceedings and [I] and [2] and references 
therein. The algorithm described in this paper is basically the same as 
the one given in the appendix of [3], whose description is detailed in 

sections 8.1 and 6.4 of [3]. Therefore, no full description of the MG 
algorithm is given here, but the relevant details are included in the 
appropriate context. The main emphasis of this paper is the vectorization 
of these processes. Thus, we will not assume an in-depth knowledge or 
experience in applying MG solvers on a vector-processor type of a computer 
system. 

* Presented at the International Multigrid Conference, Copper Mountain, 

Colorado, April 6-8, 1983. 
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Consequently, Section 2 contains a brief summary of architectural and 
conceptual features of a vector processor (specific to the CDC CYBER 205), 
which are relevant to this application, as well as software tools available 
for a tight correlation between the hardware and the computational process. 
Sections 3, 4 and 5 are devoted to the description of the techniques used 
for vectorizing the procedures for the relaxation, the residual transfer 
calculation and the interpolation, respectively. The total full multigrid 
(FMG) process and various parameters and constraints are described in 
Section 6 interleaved with convergence and timings (performance) details. 
Finally, Section 7 contains some concluding remarks and comments regarding 
future plans. 

2. VECTOR PROCESSING; 

The most significant difference between a traditional, serial computer 
and a vector processor is the ability of the latter to produce a whole 
array ("vector") of results upon issuing a single hardware instruction. 
The input to such a vector-instruction may be one or two vectors, one or 
two elements ("scalars"), or a combination of the above. The instructions 
fall into two main categories--those that perform floating-point arithmetic 
(including square root, sum, dot-product, etc., as well as the basic 
operations), and those which may be collectively called "datamotion" 

instructions. These may be used, for example, to "gather" elements from 
one array into another using an arbitrary "index-list"; to "compress" or 
"expand" an array; to "merge" two arrays into one (with arbitrary 
"interleaving" patterns), etc. 

The need for vector data-motion instructions becomes apparent when one 
considers the definition of a vector on a CDC CYBER 205. A vector is a set 
(array) of elements occupying consecutive locations in memory. It means, 
by the way, that a vector may be represented in FORTRAN by a multi- 
dimensional array; i.e., a two- or three-dimensional array may be used in 
computations as a single vector. The reason for this vector definition is 
that when performing vector operations on the CDC CYBER 205 the input 
elements are streamed directly from memory to the vector pipes and the 
output is streamed directly back into memory without any intermediate 
registers. 

The timing formula for completing a vector instruction contains two 
components. One is fixed, i.e., independent of the number of elements to 
be computed, and is called "start-up" time. In fact, it amounts to 
start-up and shut-down; it involves fetching the pointers to the input and 
output streams, aligning the arrays so as to eliminate bank conflicts and 
getting the first pair of operands to the functional unit (the pipe-line) 
and the last one back to memory. Typical time for the "start-up" component 
is 1 microsecond, or about 50 cycles (clock periods). The other component 
of the timing formula is the "stream-time" which is proporational to the 
number of elements in the vector. The result rate for a Z-pipe CDC CYBER 
205 for an add or multiply is 2 results per cycle. It is apparent now that 
in order to offset the "wasted" cycles of start-up times it is beneficial 
to work with longer vectors. The system is better utilized if a single 
operation is performed on a long vector, rather than several operations to 

compute the same number of results. Given a vector length, N, one can 
evaluate the efficiency of the computation as the ratio between the number 
of cycles used to compute results and the total number of cycles the 
instruction has taken; i.e., (N/Z)/(N/Z + 50). The maximum vector length 
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the CDC CYBER 205 hardware allows is 65,535 elements. The start-up time 

becomes quite negligible long before that. 

The vector "arguments" for vector instructions are inserted through a 
construct called Descriptor. It is a quantity occupying 64 bits which 
fully describes a vector through two integer values: one is the virtual 
address of the starting location of the vector, the other is the number of 

elements, or the length, of the vector. An element may be a bit, a byte, a 
half-word (32-bits) or a word (64-bits) depending on the intruction and the 

argument within the instruction. The CDC CYBER 205 FORTRAN provides the 

ability to declare variables of "type" Descriptor and Bit, as well as, 
extensions for assigning Descriptors to arrays and syntax for coding vector 
instructions without such an explicit association. Bit arrays occupy 

exactly one bit per element, since the CDC CYBER 205 is bit-addressable. 
Bit vectors are used for creating a "mapping" between an array containing 
numerical values and a subset of it. A Bit vector may be used to control a 
vector floating-point operation (hence the term "control-vector" which is 
commonly used for a Bit vector) as follows: Take, for example, an add 
operation. All the elements of the two input arrays are added up, but only 
those result elements where the corresponding element of the control-vector 
is 1 will be stored into the results vector. The other elements will not 

be modified. Alternatively, one may specify storing on zeros in the 
control-vector, and discarding results corresponding to a 1. 

Another common use of bit vectors is associated with some of the data- 
motion instructions. Two examples will be given here: The "compress" 
instruction is used to create a vector which is a subset of another vector. 
This operation has two input descriptors--one points to a numeric vector, 

the other to a bit vector. Whenever a 1 is encountered in the bit-vector 
the corresponding numeric element is moved to the next location of the 
output vector, i.e., the input array is "compressed" (the reverse process 
may be accomplished with an "expand" instruction). A single bit-vector may 
also be used to "merge" two numeric vectors into one. The bit-vector is 
scanned and when a 1 is encountered the next element of the first input 
vector is put into the next location of the output vector, when a zero is 
found in the bit-vector the next element of the second input vector is 
moved into the next location of the output vector. The timing for both 
these instructions is dictated by the total length of the bit-vector. The 
result-rate is the same as that of vector arithmetic, i.e., on a two-pipe 
CYBER 205 it is two elemets per cycle (whether they are moved or not). It 
will be noted here that there are vector instructions for creating repeated 
bit patterns at a rate of 16 bits per cycle. 

Before concluding this section let us briefly mention the existence of 
an "average" instruction, which computes an average of two vectors, or 
adjacent means of a single vector, at the rate of a single floating-point 
operation. One can also "link", for example, an add and a multiply opera- 
tion, provided at least one of the three inputs is a "scalar", and perform 
the two operations as if it were only one. All the instructions mentioned 
above are directly available through Fortran in-line function calls. 

3. RFLAXATION 

Now we are ready to examine the ways in which to utilize the tools and 
the vector processing concepts discussed in the previous section for 

vectorizing the Multigrid application. The success of such an exercise 
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hinges, to a large extent, upon the efficiency with which the relaxation 
process may be accomplished. 

Discretization of the two-dimensational Poisson equation is achieved 
via the 5-points differencing scheme. Thus, assuming geometric interpreta- 
tion of the indices for the moment, the set of the simultaneous equations 
to be solved may be written as 

ui,j-I + ui-1,j + ui+l,j + ui,j+l - 4 * ui,j = h'Fi,j 

where u is the unknown function, h is the interval between two grid points 
(in either direction) and F is the right-hand side function. i varies from 
2 to Nl-I and j from 2 to N2-1, where N1 and N2 are the number of 
grid points along the two directions. 

One may want to consider the usual (lexicographic) Gauss-Seidel relaxa- 
tion procedure. This, however, will be in conflict with vectorization, as 
may be easily deduced. The Gauss-Seidel relaxation is characterized by the 
use of updated values as soon as they become available. Vectorization means 
processing many such values in parallel, i.e., not waiting for the previous 
element to be updated. The obvious alternative is the red-black or 

checker-board ordering, where all the four neighbors of each point belong 
to the other "color". The convention used here is that the "color" of the 
grid points at the corners of the rectangle is red. The grid may accord- 
ingly be divided into two vectors and the relaxation performed in two 
stages: first, the values at red points are updated using "old" values, 
then the values at black points are updated using the "new" red values. 
Throughout the code the two vectors of the unknown function (and of the RHS 
function) are stored consecutively following each other, where inside each 
vector the values are stored column-wise as shown in Figure 1. This 
storage applies, of course, to all the grids used. 

1,6,1(, i 
4, 9, 1 

I 
,40fYpJ 

2x 7, 12, I ‘70 22, 

5x ‘OX 1 15, 20, 25, 

3x1 w’3, ! h9,23, -J 

Figure 1. Mapping of the Lexicographic into the "Red-black" Ordering. The 
dotted line indicates the separations of the grid points into tW0 vectors. 
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The reader will notice that the vectors thus created are not confined 
to one column, but extend over the entire grid. It was done in order to 
achieve longer vectors in line with the desire expressed in Section 2. 
This, however, introduces the hazard of overwriting values residing on the 
boundary of the grid. To avoid this a bit control-vector was created for 
each grid, in a set-up routine, which contains zeros where boundary points 

exist and ones for interior points. We use this "boundary control vector" 
to assure storing new values only into the interior of the grid. 

The computation requires the sum of the 4 neighbors for each grid 
point. One can easily verify that, using vector add operations this can be 
done with two operations only. One to add a vector into itself, with some 

offset (e.g., start with elements 2 and 5 in Figure 1) and the second to 
add the resultant vector into itself (with some other appropriate offset). 
The remaining calculation involves subtracting the result from the RHS 
values and multiply by a constant (being -0.25), which is accomplished as a 
linked-triad operation; the result is then stored into place under the 
control of the boundary bit-vector. Thus, each of the two stages (two 

"colors") requires three floating-point operations using vector length of, 
approximately, (Nl * N2)/2 elements long. In fact, some more savings 
in the computations occur in the first relaxation sweep after moving to a 
coarser grid, since the sum of the "neighbors" need not be computed for the 
first "color," being known to be zero. This is because we are beginning to 
compute a correction-function whose first approximation is zero. The 

vector-operations count for this relaxation sweep is thus reduced from 6 to 
4. Also, when transferring a solution-function (not "correction") to a 
finer grid, as part of the FMG process, an interpolation can be used which 
will save the relaxation on the first "color" (see Sec. 5). 

In conclusion, the relaxation process can obviously be done extremely 
fast on the CYBER 205. Timing details will be given in Section 6. 

4. FINE TO COARSE RESIDUAL TRANSFER 

Residuals have to be computed at those fine-grid points which also 
belong to the coarser grid. These residuals are directly transferred to 
the corresponding coarse-grid points weighted by l/2 ("half injection"; the 
factor of l/2 is motivated by the fact that the fine-grid residual is zero 

at black fine-grid points, hence the other residuals should be multiplied 
by l/2 to represent the correct average). See Figure 2. 

The computation involves four floating-point operations (two of them 
are linked triads) for evaluating the residuals of the red points on the 
finer-grid and multiplying them by l/2. This, however, does not conclude 
the procedure. At this stage we need to apply the "compress" operation 
three times as follows: using a pre-defined bit-vector we extract the 
residual values corresponding to coarse-grid points, i.e, belonging to 
odd-numbered columns of the red section of the finer grid. (Note that we 
have thrown away half the calculated residuals. This procedure is both 
simpler and a little faster than having to perform all the compress 
operations needed for computing only the required residuals.) Now, as is 
evident from Figure 2, we have all the desired values for the coarser grid 
stored in lexicographic order. To separate them into "red" and "black" 
sections the "compress" instruction is applied twice (once for each color) 
using a pre-defined "picket fence" bit-vector. 'Are procedure as described 
here produces optimum performance even though some redundant operations are 
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performed. The alternatives are to perform different (more "costly") data 
motions or to operate on much shorter vectors. Finally, another vector 
operation is executed to zero out the unknown function of the coarser grid 
in preparation for evaluating the correction function. In total the proce- 
dure requires 8 vector "start-ups" associated with 5 operations of approxi- 
mate length of (Nl * N2)/2, and 3 operations of length (Nl * N2)/4, where 
Nl and N2 are the dimensions of the finer grid. 

Figure 2. Transfer to a Coarser Grid: The residual calculation. Each 
"Box" contains the fine grid points involved in the computation for the 
corresponding coarse grid point. 

5. INTERPOLATION 

Interpolation, in the context of this paper, is the process by which we 
transfer from a given grid to a finer one. Two types of interpolations are 
employed here: Type I interpolation is used when a correction is interpo- 
lated from the coarser grid and added to the finer grid. The Type II inter- 
polation is used to compute a first approximation on the finer grid, based 
on existing values on the coarser grid. The use of the red-black ordering, 
combined with the fact that a relaxation always follows an interpolation, 
implies that only one color of the finer-grid points need to be interpolated 
(the other color will be computed by a relaxation pass on that color). 

Type I interpolation is bilinear employing points as shown in Figure 3. 
Only interior black points on the finer grid need to be evaluated. Due to 
the required averaging of the coarse grid values it is convenient to first 
merge the red and black points of this grid using the "picket-fence" bit 

vector to produce the lexicographic ordering. Next, two averages are 
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computed. The average over the coarse grid, where the two input vectors 
are offset by a column, will produce the quantities to be added into black 
points on even-numbered columns on the fine grid. A second average, where 
the offset between the two vectors is one element, is executed for fine 
grid black points corresponding to odd numbered columns. This last opera- 
tion produces redundant values (at the end of each coarse grid column) 
which are thrown away using the "compress" operation with an appropriate 
pre-defined bit vector. The two resultant coarse grid "average-vectors" 
are then interleaved, using a "merge" instruction, under the control of the 
bit vector where the "l's" and "O's" correspond to odd and even columns, 
respectively. Finally, the merged values are added to "black" points of 
the finer grid under the control of the "boundary" bit-vector which inhibits 
storing values into the boundary of the grid. The whole procedure amounts 

to 3 floating-point operations, 2 "merges" and 1 "compress." The 6 vector 
operations may also be divided into 4 operations of length (Nl * N2)/4 
and 2 operations of length (Nl * N2)/2, approximately. (Nl and N2 
are the dimensions of the finer grid.) 

Figure 3. Type I Interpolation. It shows where averages of coarse grid 
values are added into "Black" points on the fine grid. 

Type II interpolation is a 4th order one, described, for example, in 
section 6.4 of [31. It produces new red unknown-function values on a finer 
grid using rotated difference operators. The values at the black points 
are produced by half a relaxation sweep, i.e., a relaxation pass over the 
fine-grid black points. (This pass may be regarded as part of the interpo- 
lation process. In the timing tables below, however, the time spent in 
this pass is counted as relaxation time.) The process is described picto- 

rially in Figure 4. All the interior coarse grid values are moved to occupy 
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the corresponding fine-grid points. The relaxation operator is applied to 

these values in order to compute interior red points of the even-numbered 
columns on the fine grid. The only difference between the relaxation here 
and the one described in Section 3 is that the operator is the "rotated" 
5-point Laplacian and the interval between each point and its neighbors is 
changed from h to fib. The RHS function values required for this relaxa- 
tion are available from the fine grid RHS array (a "compress" operation is 
performed to retrieve even-numbered column values). The whole procedure, 
thus, requires 2 "merges" (one for merging red-black values of the coarse 

grid, the other for merging the "transferred" and "relaxed" values of the 
red fine grid points); 3 floating-point operations for the relaxation; 2 
"compress" operations (one for throwing away redundant, incorrect averages 
and one for collecting RRS values); and, finally, one vector-move operation 
under the control of the boundary bit-vector for storing the new red fine 
grid values into place. Five out of the 8 vector operations have length of 
about (Nl * N2)/4, the other 3 are associated with a length of (Nl * N2)/2; 
Nl and N2 being the dimensions of the finer grid. 

Figure 4. Type II Interpolation. Coarse grid values are transferred to 
odd numbered columns on the fine grid. These values are used to compute, 

via the relaxation operator, the even numbered column values. 

6. PERFORMANCE AND CONVERGENCE 

The basic computational procedures, studied in the previous three 

sections, can now be linked together to form the FMG process. Figure 5 is 
a schematic description of the sequence of events which leads to an 
approximate solution of the difference equations. The finest grid (where a 

solution is sought) is assigned the highest level number. The example 
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depicted in Figure 5 describes an FMG with 5 levels where the process 
starts at level number 2. This may not be necessary, as will be argued 
below, and one may visualize the FMG starting at a higher level simply by 
deleting the left-hand-side of the figure. This starting level is a 

parameter controlled by the user. The FMG shown in Figure 5 is composed of 
what is known as "V" cycles. In each "Vu cycle one performs relaxation- 

residual calculation-relaxation . ..until reaching the coarsest grid, then a 

sequence of interpolation-relaxation is executed. The transfer from one 
"Vu cycle to the next is achieved via Type II interpolation. More 
specifically, the FMG we implemented may be characterized as 
FMG (M,L,Rl,R2,R3,R4), where M is the number of levels and L is the 

starting level; Rl and R2 indicate the number of relaxations before r3vfin; 
to a coarser grid and before moving to a finer grid, respectively. 
R4 have the same meaning and apply to the last "V" cycle only. All these 
parameters are provided by the user. The user may also specify the size of 
the coarsest grid to be used. It must have an even number of intervals in 

each direction. (In our experiments the coarsest grid had 3 by 3 points; 
i.e., 2 by 2 intervals.) The user also specifies the mesh size h (assumed 
to be the same in both directions) on the finest grid. 

LEVEL 

5 

4 

3 

2 

1 

Figure 5. The Full Multigrid (FMG) Process: FMG (5, 2, Kl, R2, R3, R4). 
The circles indicate the number of relaxations performed at a given level. 
Downwards arrow signifies residual calculation between relaxations, upwards 

arrow implies interpolation. (When a level is encountered for the first 
time the interpolation is of Type II, indicated by a double line above, 
otherwise it is of Type I.) When level 1 contains only one interior point 
only one relaxation sweep is performed thereon, regardless of the values 
given to Kl and R3. 

The process described above is deterministic, in the sense that the 

user defines the steps to be taken, based on prior knowledge of the 

characteristics and smoothness of the function to be solved. It is also 
known that if L=2 the FMG guarantees a solution error smaller than the 
truncation error (introduced by the differencing scheme), for L2 norm, 
for example. We have allowed, however, as a user-option, the evaluation of 
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the Ll, L2 and L,norms of the residual at various points. Testing was 
done for problems which have solution of the form: 

C*cos (k (x+Zy)) 

with and without the addition of a 6th degree polynomial which vanishes on 
the boundary. In all these cases the PMG process with L=2 indeed produced 
a solution with an algebraic error (error in solving the difference 
equations) much smaller than the truncation error, in the Ll, L2 and L, 

norms. 

Only "V(2,l)" cycles were used for the results and timings to be quoted 
here. This turns out to be the optimum combination for the Poisson 
equation. More relaxations at each stage do not improve the final result 
enough to justify the additional work, less relaxations may cause deteri- 
oration in the accuracy. (If full weighting were used instead of half 
injection, the optimal cycle would be "V(l,l)". This would, however, be 
less efficient than the present procedure since full weighting is substan- 
tially more costly than a relaxation sweep.) In the performance details 
which follow, we will give results for various values of L since, in many 
cases, in particular when a reasonable initial guess is available, high 
values of L, even L=M, may provide sufficient accuracy. This is, in 
particular, the situation when the Poisson solver is used within some 
external iterative process, or at each time step of an evolution problem. 

Before discussing the timings we should briefly mention some set-up 
procedures. A routine is provided for re-ordering the initial array (from 
lexicographic to red-black) if it is not so structured yet. This is done 

through two "picket-fence compress" operations and amounts to 0.185 msecs. 

for a 65 by 65 grid, for example. Putting the solution back into lexico- 

graphic order is done with a single "merge" instruction and takes half as 

long. Next, there is a routine which defines various pointers and lengths 

for all the grids used, as well as the bit-vectors discussed earlier. For 

many applications, where the solver is used many times with the same grid 

definition, this will be done only once. It will not, therefore, be 
included in the total times quoted below (it takes 0.29 msecs. for a 65 by 
65 grid with 6 levels). The last set-up routine is included in the timings 

information. This routine defines the boundary values and the Rhg for all 
the levels between L and M-l. It also sets the initial guess on the level 
L grid. 

The code was run with grid sizes of 33 by 33, 65 by 65 and 129 by 129 
(M = 5, 6 and 7, respectively) with L=2,...,M. Total execution times are 
given in Table 1. It shows, for example, that a 65 by 65 grid may be 
solved in as little as 1 msec., and, at most, in 2 msecs. By examining the 
processing time per grid-point one can see the effect of vector-instructions 
start-up times or the dependence of the performance upon vector lengths. 
On a serial processor the time per element would have been, approximately, 
a constant across each line in Table 1. We observe, however, that the 
processing of the 129 by 129 grid is roughly twice as efficient as that of 
the 33 by 33 grid. This is due to the fact that even though the number of 
vector "start-ups" remains nearly the same (across a given line), the 
number of elements solved for has increased by a factor of 16. Hence, more 
time is spent doing useful arithmetic in the vector pipelines. ’ 
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TABLE 1. Execution times for various parameters of the FMG. The entries 

on the left are total times in milliseconds. The entries enclosed in 

parenthesis are the execution times in microseconds per grid-point (only 
interior points are taken into account). 

I M-L+1 I 33 by 33 I 
1 (No. of "V"'s) I (M = 5) 

65 by 65 I 129 by 129 I 

; 
(M = 6) (M = 7) I 

I 1 1 0.360 (0.37) 1.006 (0.25) ; 3.293 (0.20) I 
I 2 I 0.604 (0.63) I 1.552 (0.39) I 4.910 (0.30) I 
I 3 I 0.729 (0.76) I 1.810 (0.46) I 5.440 (0.34) I 
I 4 1 0.801 (0.83) I 1.947 (0.49) I 5.687 (0.35) I 
I 5 I l 2.009 (0.51) I 5.807 (0.36) I 
I 6 I I ) 5.875 (0.36) I 

Tables 2 and 3 present a more detailed analysis of timings for a single 
example, namely for solving a 129 by 129 grid with 7 levels and starting at 
level 2. The entries in Table 2 show timings in msecs. by level and by 
procedure. One notices that the total time spent performing relaxations is 
less than 50% of the total time. This is to be compared against the 80-90% 
of total time used for relaxations on a serial processor. This is, of 
course, due to the fact that the vectorized relaxation is extremely 
efficient and does not involve any data-motion operations. The interpola- 
tion and the residual calculations, though fully vectorized, involve some 
data-motion operations, and, therefore, consume a relatively higher propor- 
tion of the execution time than they would on a "scalar" computer. Another 
observation worth mentioning is that the contributions to all the procedures 
arising from levels 2 to 4 is roughly the same, even though the amount of 
work differs by a factor of 4 between levels. This is a consequence of the 
relatively short vectors which characterize the coarser grids. It also 
explains the larger weight the coarse grids have in the vectorized code 
compared to that of the serial process. 

TABLE 2. Execution times in milliseconds for solving a 129 by 129 grid 
with starting level 2. Breakdown by procedure and by level. For the 
residual calculation and the interpolations the entry in the table 
corresponds to the finer grid involved. 

I I Grid I I Residual I I I 
I l Initiali- I Relaxa- I Calcula- 1 Interpolation I I 

I tion I tion I Type 1 I Type II I Total I 
I 0.010 I I I l 0.010 1 

I 2 (5x5) I 0.011 I 0.179 I 0.014 I 0.011 I I 0.215 I 
I 3 (9x9) I 0.015 I 0.160 I 0.060 I 0.049 I 0.024 I 0.308 I 
; 4 (17xi7) I 0.034 I 0.189 I 0.068 
I 5 (33x33) I 0.106 I 0.320 I 0.117 
I 6 (65x65) I 0.388 I 0.690 I 0.261 
I 7 (129x129) I I 1.257 I 0.497 

I I I I 
( TOTAL I 0.554 I 2.805 I 1.017 

I 
I 
I 
I 
I 

L 

0.053 I 0.028 I 0.372 I 
0.095 I 0.053 I 0.691 I 
0.194 I 0.141 I 1.674 I 
0.357 I 0.494 I 2.605 I 

I I I 
0.759 I 0.740 I 5.875 I 
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In Table 3 we have measured the time in microseconds for each time a 
procedure is executed for a given level, accompanied by the number of times 
the procedure is performed. It should be noted here that when level 1 is 
involved in any of the procedures a scalar code was used, since it has only 
one interior point. Again, the effect of vector lengths is such that the 
level 3 relaxation is comparable to that of level 2, for example. Only 
when we get to the finest grids do we observe timing ratios which 
correspond to the ratios of the number of elements processed. The reader 
should be reminded that the average time of the relaxation procedure is not 
fully accurate, since some relaxations are not quite "complete" as was 
explained in Section 3 (i.e., after Type II interpolation and after 
residual calculation). The residual calculation takes longer than the 
relaxation (in contrast to the scalar case), which is understandable from 
the discussion in Sections 3 and 4. 

TABLE 3. Procedure-calls count and average times in microseconds per 
call. Breakdown by levels for the 129 by 129 problem with starting level 2. 

Note: Some of the relaxations are not "complete." (See Section 3) 

I I I I Interpolation I 
I I Relaxation I Residual I Type I Type II I 
I Level I No. I Time I No. I Time l No. 1 Time No.1 Time I 
I 1 (3x3) 16 I 1.7 l I I I I I I 
I 2 (5x5) I 18 I 9.9 I 6 I 2.3 I 6 I 1.8 I I I 
I 3 (9x9) I 15 I 10.7 I 5 I 12.0 I 5 l 9.8 I 1 I 24.0 I 
I 4 (17x17) I 12 I 15.8 ( 4 I 17.0 I 4 I 13.3 I 1 I 28.0 I 
I 5 (33x33) I 9 I 35.6 I 3 I 39.0 I 3 I 31.7 I 1 1 53.0 I 
I 6 (65x65) I 6 I 115.0 I 2 I 130.5 I 2 l 97.0 I 1 I 141.0 I 
I 7 (129x129) I 3 I 419.0 I 1 l 497.0 l 1 I 357.0 ( 1 l 494.0 l 

To conclude the performance discussion we will mention that the vector- 
ized code executes about 15 times faster than the scalar version on the CDC 
CYBER 205, and roughly 500 times faster than the CDC CYBER 720. 

The lesson from what was said above is that relaxations are relatively 
"cheap" in terms of execution times, and computations on the coarser grids 
are realtively "costly" (compared with the ratios found on scalar 
processors). 

7. CONCLUDING REMARKS 

One important lesson, known very well to those involved in vector 
processing, is that it demands careful data structuring and analysis of the 
"mapping" between the data and the operations to be performed, if the 
vector capabilities of the processor are to be efficiently utilized. We 
have also demonstrated that the traditional operations-count as a measure 
of processing time is not sufficient. On a vector processor one has to 
take into account the number of vector operations (or the lengths of the 
vectors) and the data-motion operations (which occur on a serial processor, 
too, but are often ignored when algorithms are evaluated). The result of 
the above is that one may have to re-examine the various parameters of the 
algorithm when migrating the Multigrid application from a serial to a 
vector processor. This aspect requires further investigation. 
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We feel that the experiment with the model-case studied in this paper 
was successful and the performance achieved very pleasing. It certainly 
warrants continuation work. Some obvious areas we intend to engage in are 
the following: Extending the application to three-dimensional Poisson 
equations; code a similar application to cater for the, more general, 
Diffusion equation; and implement "full-weighting" residual calculation and 
cubic interpolation. In addition one may, of course, generalize this work 
in many directions. More general boundary conditions (Neumann, etc.) can 
be implemented. The solution of non-linear problems (using FAS multigrid 
version) and systems of equations can also be vectorized in a similar 
fashion. More difficult, but potentially important, is the extension to 
general domains, which will require a lot of thought about data structures 
and data motion. As a last comment, it will be noted that all the timings 
quoted here were achieved using 64-bit arithmetic. On the CDC CYBER 205 
one can use 32-bit arithmetic as well, and, thus, double the result rate 
for vector operations while halving the memory requirements. For the 
purpose of obtaining albebraic errors smaller than truncation errors in 
solving second order equations, the 32-bit arithmetic is indeed enough. We 
intend to examine this option. 
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