
APPLIED MATHEMATICS AND COMPUTATION 13:215-227(1983)

(c) Elsevier Science publishing Co., ti., 1983
52 Vanderbilt Ave., New York, NY 10017

215

0096-3003/83/$03.00

VECTORIZED MULTIGRID POISSON SOLVER
FOR THE CDC CYBER 205*

D. Barkai**, A. Brandt***
**Control Data Corporation, Institute for Computational Studies at Colorado
State University, PO Box 1852, Fort Collins, Colorado 80522; ***Weizmann

Institute, Department of Applied Mathematics, Rehovot, Israel 76100.

ABSTRACT

The full multigrid (FMG) method is applied to the two
dimensional Poisson equation with Dirichlet boundary
conditions. This has been chosen as a relatively simple
test case for examining the efficiency of fully vectorizing
of the multigrid method. Data structure and programming

considerations and techniques are discussed, accompanied by
performance details.

April 1983

1. INTRODUCTION

The multigrid (MG) method has been shown to be a very efficient solver
for discretized PDE boundary-valve problems on serial (scalar) computers.
However, it was not clear how well can the MG approach be adapted to
execute effectively and efficiently on a vector processor, such as the CDC
CYBER 205, where considerations other than operations-count may play an
important role. The purpose of this paper is to report our experience in
implementing an MG code on the CDC CYBER 205. More specifically, the
test-case considered is the two-dimensional Poisson equation with Dirichlet

boundary conditions. It will be assumed here that the reader has some
familiarity with the philosophy, the motivation and the basic computational
processes of MG as a fast solver. These processes are described in detail
in a number of papers in these proceedings and [I] and [2] and references
therein. The algorithm described in this paper is basically the same as
the one given in the appendix of [3], whose description is detailed in

sections 8.1 and 6.4 of [3]. Therefore, no full description of the MG
algorithm is given here, but the relevant details are included in the
appropriate context. The main emphasis of this paper is the vectorization
of these processes. Thus, we will not assume an in-depth knowledge or
experience in applying MG solvers on a vector-processor type of a computer
system.

* Presented at the International Multigrid Conference, Copper Mountain,

Colorado, April 6-8, 1983.

216

Consequently, Section 2 contains a brief summary of architectural and
conceptual features of a vector processor (specific to the CDC CYBER 205),
which are relevant to this application, as well as software tools available
for a tight correlation between the hardware and the computational process.
Sections 3, 4 and 5 are devoted to the description of the techniques used
for vectorizing the procedures for the relaxation, the residual transfer
calculation and the interpolation, respectively. The total full multigrid
(FMG) process and various parameters and constraints are described in
Section 6 interleaved with convergence and timings (performance) details.
Finally, Section 7 contains some concluding remarks and comments regarding
future plans.

2. VECTOR PROCESSING;

The most significant difference between a traditional, serial computer
and a vector processor is the ability of the latter to produce a whole
array ("vector") of results upon issuing a single hardware instruction.
The input to such a vector-instruction may be one or two vectors, one or
two elements ("scalars"), or a combination of the above. The instructions
fall into two main categories--those that perform floating-point arithmetic
(including square root, sum, dot-product, etc., as well as the basic
operations), and those which may be collectively called "datamotion"

instructions. These may be used, for example, to "gather" elements from
one array into another using an arbitrary "index-list"; to "compress" or
"expand" an array; to "merge" two arrays into one (with arbitrary
"interleaving" patterns), etc.

The need for vector data-motion instructions becomes apparent when one
considers the definition of a vector on a CDC CYBER 205. A vector is a set
(array) of elements occupying consecutive locations in memory. It means,
by the way, that a vector may be represented in FORTRAN by a multi-
dimensional array; i.e., a two- or three-dimensional array may be used in
computations as a single vector. The reason for this vector definition is
that when performing vector operations on the CDC CYBER 205 the input
elements are streamed directly from memory to the vector pipes and the
output is streamed directly back into memory without any intermediate
registers.

The timing formula for completing a vector instruction contains two
components. One is fixed, i.e., independent of the number of elements to
be computed, and is called "start-up" time. In fact, it amounts to
start-up and shut-down; it involves fetching the pointers to the input and
output streams, aligning the arrays so as to eliminate bank conflicts and
getting the first pair of operands to the functional unit (the pipe-line)
and the last one back to memory. Typical time for the "start-up" component
is 1 microsecond, or about 50 cycles (clock periods). The other component
of the timing formula is the "stream-time" which is proporational to the
number of elements in the vector. The result rate for a Z-pipe CDC CYBER
205 for an add or multiply is 2 results per cycle. It is apparent now that
in order to offset the "wasted" cycles of start-up times it is beneficial
to work with longer vectors. The system is better utilized if a single
operation is performed on a long vector, rather than several operations to

compute the same number of results. Given a vector length, N, one can
evaluate the efficiency of the computation as the ratio between the number
of cycles used to compute results and the total number of cycles the
instruction has taken; i.e., (N/Z)/(N/Z + 50). The maximum vector length

217

the CDC CYBER 205 hardware allows is 65,535 elements. The start-up time

becomes quite negligible long before that.

The vector "arguments" for vector instructions are inserted through a
construct called Descriptor. It is a quantity occupying 64 bits which
fully describes a vector through two integer values: one is the virtual
address of the starting location of the vector, the other is the number of

elements, or the length, of the vector. An element may be a bit, a byte, a
half-word (32-bits) or a word (64-bits) depending on the intruction and the

argument within the instruction. The CDC CYBER 205 FORTRAN provides the

ability to declare variables of "type" Descriptor and Bit, as well as,
extensions for assigning Descriptors to arrays and syntax for coding vector
instructions without such an explicit association. Bit arrays occupy

exactly one bit per element, since the CDC CYBER 205 is bit-addressable.
Bit vectors are used for creating a "mapping" between an array containing
numerical values and a subset of it. A Bit vector may be used to control a
vector floating-point operation (hence the term "control-vector" which is
commonly used for a Bit vector) as follows: Take, for example, an add
operation. All the elements of the two input arrays are added up, but only
those result elements where the corresponding element of the control-vector
is 1 will be stored into the results vector. The other elements will not

be modified. Alternatively, one may specify storing on zeros in the
control-vector, and discarding results corresponding to a 1.

Another common use of bit vectors is associated with some of the data-
motion instructions. Two examples will be given here: The "compress"
instruction is used to create a vector which is a subset of another vector.
This operation has two input descriptors--one points to a numeric vector,

the other to a bit vector. Whenever a 1 is encountered in the bit-vector
the corresponding numeric element is moved to the next location of the
output vector, i.e., the input array is "compressed" (the reverse process
may be accomplished with an "expand" instruction). A single bit-vector may
also be used to "merge" two numeric vectors into one. The bit-vector is
scanned and when a 1 is encountered the next element of the first input
vector is put into the next location of the output vector, when a zero is
found in the bit-vector the next element of the second input vector is
moved into the next location of the output vector. The timing for both
these instructions is dictated by the total length of the bit-vector. The
result-rate is the same as that of vector arithmetic, i.e., on a two-pipe
CYBER 205 it is two elemets per cycle (whether they are moved or not). It
will be noted here that there are vector instructions for creating repeated
bit patterns at a rate of 16 bits per cycle.

Before concluding this section let us briefly mention the existence of
an "average" instruction, which computes an average of two vectors, or
adjacent means of a single vector, at the rate of a single floating-point
operation. One can also "link", for example, an add and a multiply opera-
tion, provided at least one of the three inputs is a "scalar", and perform
the two operations as if it were only one. All the instructions mentioned
above are directly available through Fortran in-line function calls.

3. RFLAXATION

Now we are ready to examine the ways in which to utilize the tools and
the vector processing concepts discussed in the previous section for

vectorizing the Multigrid application. The success of such an exercise

218

hinges, to a large extent, upon the efficiency with which the relaxation
process may be accomplished.

Discretization of the two-dimensational Poisson equation is achieved
via the 5-points differencing scheme. Thus, assuming geometric interpreta-
tion of the indices for the moment, the set of the simultaneous equations
to be solved may be written as

ui,j-I + ui-1,j + ui+l,j + ui,j+l - 4 * ui,j = h'Fi,j

where u is the unknown function, h is the interval between two grid points
(in either direction) and F is the right-hand side function. i varies from
2 to Nl-I and j from 2 to N2-1, where N1 and N2 are the number of
grid points along the two directions.

One may want to consider the usual (lexicographic) Gauss-Seidel relaxa-
tion procedure. This, however, will be in conflict with vectorization, as
may be easily deduced. The Gauss-Seidel relaxation is characterized by the
use of updated values as soon as they become available. Vectorization means
processing many such values in parallel, i.e., not waiting for the previous
element to be updated. The obvious alternative is the red-black or

checker-board ordering, where all the four neighbors of each point belong
to the other "color". The convention used here is that the "color" of the
grid points at the corners of the rectangle is red. The grid may accord-
ingly be divided into two vectors and the relaxation performed in two
stages: first, the values at red points are updated using "old" values,
then the values at black points are updated using the "new" red values.
Throughout the code the two vectors of the unknown function (and of the RHS
function) are stored consecutively following each other, where inside each
vector the values are stored column-wise as shown in Figure 1. This
storage applies, of course, to all the grids used.

1,6,1(, i
4, 9, 1

I
,40fYpJ

2x 7, 12, I ‘70 22,

5x ‘OX 1 15, 20, 25,

3x1 w’3, ! h9,23, -J

Figure 1. Mapping of the Lexicographic into the "Red-black" Ordering. The
dotted line indicates the separations of the grid points into tW0 vectors.

219

The reader will notice that the vectors thus created are not confined
to one column, but extend over the entire grid. It was done in order to
achieve longer vectors in line with the desire expressed in Section 2.
This, however, introduces the hazard of overwriting values residing on the
boundary of the grid. To avoid this a bit control-vector was created for
each grid, in a set-up routine, which contains zeros where boundary points

exist and ones for interior points. We use this "boundary control vector"
to assure storing new values only into the interior of the grid.

The computation requires the sum of the 4 neighbors for each grid
point. One can easily verify that, using vector add operations this can be
done with two operations only. One to add a vector into itself, with some

offset (e.g., start with elements 2 and 5 in Figure 1) and the second to
add the resultant vector into itself (with some other appropriate offset).
The remaining calculation involves subtracting the result from the RHS
values and multiply by a constant (being -0.25), which is accomplished as a
linked-triad operation; the result is then stored into place under the
control of the boundary bit-vector. Thus, each of the two stages (two

"colors") requires three floating-point operations using vector length of,
approximately, (Nl * N2)/2 elements long. In fact, some more savings
in the computations occur in the first relaxation sweep after moving to a
coarser grid, since the sum of the "neighbors" need not be computed for the
first "color," being known to be zero. This is because we are beginning to
compute a correction-function whose first approximation is zero. The

vector-operations count for this relaxation sweep is thus reduced from 6 to
4. Also, when transferring a solution-function (not "correction") to a
finer grid, as part of the FMG process, an interpolation can be used which
will save the relaxation on the first "color" (see Sec. 5).

In conclusion, the relaxation process can obviously be done extremely
fast on the CYBER 205. Timing details will be given in Section 6.

4. FINE TO COARSE RESIDUAL TRANSFER

Residuals have to be computed at those fine-grid points which also
belong to the coarser grid. These residuals are directly transferred to
the corresponding coarse-grid points weighted by l/2 ("half injection"; the
factor of l/2 is motivated by the fact that the fine-grid residual is zero

at black fine-grid points, hence the other residuals should be multiplied
by l/2 to represent the correct average). See Figure 2.

The computation involves four floating-point operations (two of them
are linked triads) for evaluating the residuals of the red points on the
finer-grid and multiplying them by l/2. This, however, does not conclude
the procedure. At this stage we need to apply the "compress" operation
three times as follows: using a pre-defined bit-vector we extract the
residual values corresponding to coarse-grid points, i.e, belonging to
odd-numbered columns of the red section of the finer grid. (Note that we
have thrown away half the calculated residuals. This procedure is both
simpler and a little faster than having to perform all the compress
operations needed for computing only the required residuals.) Now, as is
evident from Figure 2, we have all the desired values for the coarser grid
stored in lexicographic order. To separate them into "red" and "black"
sections the "compress" instruction is applied twice (once for each color)
using a pre-defined "picket fence" bit-vector. 'Are procedure as described
here produces optimum performance even though some redundant operations are

220

performed. The alternatives are to perform different (more "costly") data
motions or to operate on much shorter vectors. Finally, another vector
operation is executed to zero out the unknown function of the coarser grid
in preparation for evaluating the correction function. In total the proce-
dure requires 8 vector "start-ups" associated with 5 operations of approxi-
mate length of (Nl * N2)/2, and 3 operations of length (Nl * N2)/4, where
Nl and N2 are the dimensions of the finer grid.

Figure 2. Transfer to a Coarser Grid: The residual calculation. Each
"Box" contains the fine grid points involved in the computation for the
corresponding coarse grid point.

5. INTERPOLATION

Interpolation, in the context of this paper, is the process by which we
transfer from a given grid to a finer one. Two types of interpolations are
employed here: Type I interpolation is used when a correction is interpo-
lated from the coarser grid and added to the finer grid. The Type II inter-
polation is used to compute a first approximation on the finer grid, based
on existing values on the coarser grid. The use of the red-black ordering,
combined with the fact that a relaxation always follows an interpolation,
implies that only one color of the finer-grid points need to be interpolated
(the other color will be computed by a relaxation pass on that color).

Type I interpolation is bilinear employing points as shown in Figure 3.
Only interior black points on the finer grid need to be evaluated. Due to
the required averaging of the coarse grid values it is convenient to first
merge the red and black points of this grid using the "picket-fence" bit

vector to produce the lexicographic ordering. Next, two averages are

221

computed. The average over the coarse grid, where the two input vectors
are offset by a column, will produce the quantities to be added into black
points on even-numbered columns on the fine grid. A second average, where
the offset between the two vectors is one element, is executed for fine
grid black points corresponding to odd numbered columns. This last opera-
tion produces redundant values (at the end of each coarse grid column)
which are thrown away using the "compress" operation with an appropriate
pre-defined bit vector. The two resultant coarse grid "average-vectors"
are then interleaved, using a "merge" instruction, under the control of the
bit vector where the "l's" and "O's" correspond to odd and even columns,
respectively. Finally, the merged values are added to "black" points of
the finer grid under the control of the "boundary" bit-vector which inhibits
storing values into the boundary of the grid. The whole procedure amounts

to 3 floating-point operations, 2 "merges" and 1 "compress." The 6 vector
operations may also be divided into 4 operations of length (Nl * N2)/4
and 2 operations of length (Nl * N2)/2, approximately. (Nl and N2
are the dimensions of the finer grid.)

Figure 3. Type I Interpolation. It shows where averages of coarse grid
values are added into "Black" points on the fine grid.

Type II interpolation is a 4th order one, described, for example, in
section 6.4 of [31. It produces new red unknown-function values on a finer
grid using rotated difference operators. The values at the black points
are produced by half a relaxation sweep, i.e., a relaxation pass over the
fine-grid black points. (This pass may be regarded as part of the interpo-
lation process. In the timing tables below, however, the time spent in
this pass is counted as relaxation time.) The process is described picto-

rially in Figure 4. All the interior coarse grid values are moved to occupy

222

the corresponding fine-grid points. The relaxation operator is applied to

these values in order to compute interior red points of the even-numbered
columns on the fine grid. The only difference between the relaxation here
and the one described in Section 3 is that the operator is the "rotated"
5-point Laplacian and the interval between each point and its neighbors is
changed from h to fib. The RHS function values required for this relaxa-
tion are available from the fine grid RHS array (a "compress" operation is
performed to retrieve even-numbered column values). The whole procedure,
thus, requires 2 "merges" (one for merging red-black values of the coarse

grid, the other for merging the "transferred" and "relaxed" values of the
red fine grid points); 3 floating-point operations for the relaxation; 2
"compress" operations (one for throwing away redundant, incorrect averages
and one for collecting RRS values); and, finally, one vector-move operation
under the control of the boundary bit-vector for storing the new red fine
grid values into place. Five out of the 8 vector operations have length of
about (Nl * N2)/4, the other 3 are associated with a length of (Nl * N2)/2;
Nl and N2 being the dimensions of the finer grid.

Figure 4. Type II Interpolation. Coarse grid values are transferred to
odd numbered columns on the fine grid. These values are used to compute,

via the relaxation operator, the even numbered column values.

6. PERFORMANCE AND CONVERGENCE

The basic computational procedures, studied in the previous three

sections, can now be linked together to form the FMG process. Figure 5 is
a schematic description of the sequence of events which leads to an
approximate solution of the difference equations. The finest grid (where a

solution is sought) is assigned the highest level number. The example

223

depicted in Figure 5 describes an FMG with 5 levels where the process
starts at level number 2. This may not be necessary, as will be argued
below, and one may visualize the FMG starting at a higher level simply by
deleting the left-hand-side of the figure. This starting level is a

parameter controlled by the user. The FMG shown in Figure 5 is composed of
what is known as "V" cycles. In each "Vu cycle one performs relaxation-

residual calculation-relaxation . ..until reaching the coarsest grid, then a

sequence of interpolation-relaxation is executed. The transfer from one
"Vu cycle to the next is achieved via Type II interpolation. More
specifically, the FMG we implemented may be characterized as
FMG (M,L,Rl,R2,R3,R4), where M is the number of levels and L is the

starting level; Rl and R2 indicate the number of relaxations before r3vfin;
to a coarser grid and before moving to a finer grid, respectively.
R4 have the same meaning and apply to the last "V" cycle only. All these
parameters are provided by the user. The user may also specify the size of
the coarsest grid to be used. It must have an even number of intervals in

each direction. (In our experiments the coarsest grid had 3 by 3 points;
i.e., 2 by 2 intervals.) The user also specifies the mesh size h (assumed
to be the same in both directions) on the finest grid.

LEVEL

5

4

3

2

1

Figure 5. The Full Multigrid (FMG) Process: FMG (5, 2, Kl, R2, R3, R4).
The circles indicate the number of relaxations performed at a given level.
Downwards arrow signifies residual calculation between relaxations, upwards

arrow implies interpolation. (When a level is encountered for the first
time the interpolation is of Type II, indicated by a double line above,
otherwise it is of Type I.) When level 1 contains only one interior point
only one relaxation sweep is performed thereon, regardless of the values
given to Kl and R3.

The process described above is deterministic, in the sense that the

user defines the steps to be taken, based on prior knowledge of the

characteristics and smoothness of the function to be solved. It is also
known that if L=2 the FMG guarantees a solution error smaller than the
truncation error (introduced by the differencing scheme), for L2 norm,
for example. We have allowed, however, as a user-option, the evaluation of

224

the Ll, L2 and L,norms of the residual at various points. Testing was
done for problems which have solution of the form:

C*cos (k (x+Zy))

with and without the addition of a 6th degree polynomial which vanishes on
the boundary. In all these cases the PMG process with L=2 indeed produced
a solution with an algebraic error (error in solving the difference
equations) much smaller than the truncation error, in the Ll, L2 and L,

norms.

Only "V(2,l)" cycles were used for the results and timings to be quoted
here. This turns out to be the optimum combination for the Poisson
equation. More relaxations at each stage do not improve the final result
enough to justify the additional work, less relaxations may cause deteri-
oration in the accuracy. (If full weighting were used instead of half
injection, the optimal cycle would be "V(l,l)". This would, however, be
less efficient than the present procedure since full weighting is substan-
tially more costly than a relaxation sweep.) In the performance details
which follow, we will give results for various values of L since, in many
cases, in particular when a reasonable initial guess is available, high
values of L, even L=M, may provide sufficient accuracy. This is, in
particular, the situation when the Poisson solver is used within some
external iterative process, or at each time step of an evolution problem.

Before discussing the timings we should briefly mention some set-up
procedures. A routine is provided for re-ordering the initial array (from
lexicographic to red-black) if it is not so structured yet. This is done

through two "picket-fence compress" operations and amounts to 0.185 msecs.

for a 65 by 65 grid, for example. Putting the solution back into lexico-

graphic order is done with a single "merge" instruction and takes half as

long. Next, there is a routine which defines various pointers and lengths

for all the grids used, as well as the bit-vectors discussed earlier. For

many applications, where the solver is used many times with the same grid

definition, this will be done only once. It will not, therefore, be
included in the total times quoted below (it takes 0.29 msecs. for a 65 by
65 grid with 6 levels). The last set-up routine is included in the timings

information. This routine defines the boundary values and the Rhg for all
the levels between L and M-l. It also sets the initial guess on the level
L grid.

The code was run with grid sizes of 33 by 33, 65 by 65 and 129 by 129
(M = 5, 6 and 7, respectively) with L=2,...,M. Total execution times are
given in Table 1. It shows, for example, that a 65 by 65 grid may be
solved in as little as 1 msec., and, at most, in 2 msecs. By examining the
processing time per grid-point one can see the effect of vector-instructions
start-up times or the dependence of the performance upon vector lengths.
On a serial processor the time per element would have been, approximately,
a constant across each line in Table 1. We observe, however, that the
processing of the 129 by 129 grid is roughly twice as efficient as that of
the 33 by 33 grid. This is due to the fact that even though the number of
vector "start-ups" remains nearly the same (across a given line), the
number of elements solved for has increased by a factor of 16. Hence, more
time is spent doing useful arithmetic in the vector pipelines. ’

225

TABLE 1. Execution times for various parameters of the FMG. The entries

on the left are total times in milliseconds. The entries enclosed in

parenthesis are the execution times in microseconds per grid-point (only
interior points are taken into account).

I M-L+1 I 33 by 33 I
1 (No. of "V"'s) I (M = 5)

65 by 65 I 129 by 129 I

;
(M = 6) (M = 7) I

I 1 1 0.360 (0.37) 1.006 (0.25) ; 3.293 (0.20) I
I 2 I 0.604 (0.63) I 1.552 (0.39) I 4.910 (0.30) I
I 3 I 0.729 (0.76) I 1.810 (0.46) I 5.440 (0.34) I
I 4 1 0.801 (0.83) I 1.947 (0.49) I 5.687 (0.35) I
I 5 I l 2.009 (0.51) I 5.807 (0.36) I
I 6 I I) 5.875 (0.36) I

Tables 2 and 3 present a more detailed analysis of timings for a single
example, namely for solving a 129 by 129 grid with 7 levels and starting at
level 2. The entries in Table 2 show timings in msecs. by level and by
procedure. One notices that the total time spent performing relaxations is
less than 50% of the total time. This is to be compared against the 80-90%
of total time used for relaxations on a serial processor. This is, of
course, due to the fact that the vectorized relaxation is extremely
efficient and does not involve any data-motion operations. The interpola-
tion and the residual calculations, though fully vectorized, involve some
data-motion operations, and, therefore, consume a relatively higher propor-
tion of the execution time than they would on a "scalar" computer. Another
observation worth mentioning is that the contributions to all the procedures
arising from levels 2 to 4 is roughly the same, even though the amount of
work differs by a factor of 4 between levels. This is a consequence of the
relatively short vectors which characterize the coarser grids. It also
explains the larger weight the coarse grids have in the vectorized code
compared to that of the serial process.

TABLE 2. Execution times in milliseconds for solving a 129 by 129 grid
with starting level 2. Breakdown by procedure and by level. For the
residual calculation and the interpolations the entry in the table
corresponds to the finer grid involved.

I I Grid I I Residual I I I
I l Initiali- I Relaxa- I Calcula- 1 Interpolation I I

I tion I tion I Type 1 I Type II I Total I
I 0.010 I I I l 0.010 1

I 2 (5x5) I 0.011 I 0.179 I 0.014 I 0.011 I I 0.215 I
I 3 (9x9) I 0.015 I 0.160 I 0.060 I 0.049 I 0.024 I 0.308 I
; 4 (17xi7) I 0.034 I 0.189 I 0.068
I 5 (33x33) I 0.106 I 0.320 I 0.117
I 6 (65x65) I 0.388 I 0.690 I 0.261
I 7 (129x129) I I 1.257 I 0.497

I I I I
(TOTAL I 0.554 I 2.805 I 1.017

I
I
I
I
I

L

0.053 I 0.028 I 0.372 I
0.095 I 0.053 I 0.691 I
0.194 I 0.141 I 1.674 I
0.357 I 0.494 I 2.605 I

I I I
0.759 I 0.740 I 5.875 I

226

In Table 3 we have measured the time in microseconds for each time a
procedure is executed for a given level, accompanied by the number of times
the procedure is performed. It should be noted here that when level 1 is
involved in any of the procedures a scalar code was used, since it has only
one interior point. Again, the effect of vector lengths is such that the
level 3 relaxation is comparable to that of level 2, for example. Only
when we get to the finest grids do we observe timing ratios which
correspond to the ratios of the number of elements processed. The reader
should be reminded that the average time of the relaxation procedure is not
fully accurate, since some relaxations are not quite "complete" as was
explained in Section 3 (i.e., after Type II interpolation and after
residual calculation). The residual calculation takes longer than the
relaxation (in contrast to the scalar case), which is understandable from
the discussion in Sections 3 and 4.

TABLE 3. Procedure-calls count and average times in microseconds per
call. Breakdown by levels for the 129 by 129 problem with starting level 2.

Note: Some of the relaxations are not "complete." (See Section 3)

I I I I Interpolation I
I I Relaxation I Residual I Type I Type II I
I Level I No. I Time I No. I Time l No. 1 Time No.1 Time I
I 1 (3x3) 16 I 1.7 l I I I I I I
I 2 (5x5) I 18 I 9.9 I 6 I 2.3 I 6 I 1.8 I I I
I 3 (9x9) I 15 I 10.7 I 5 I 12.0 I 5 l 9.8 I 1 I 24.0 I
I 4 (17x17) I 12 I 15.8 (4 I 17.0 I 4 I 13.3 I 1 I 28.0 I
I 5 (33x33) I 9 I 35.6 I 3 I 39.0 I 3 I 31.7 I 1 1 53.0 I
I 6 (65x65) I 6 I 115.0 I 2 I 130.5 I 2 l 97.0 I 1 I 141.0 I
I 7 (129x129) I 3 I 419.0 I 1 l 497.0 l 1 I 357.0 (1 l 494.0 l

To conclude the performance discussion we will mention that the vector-
ized code executes about 15 times faster than the scalar version on the CDC
CYBER 205, and roughly 500 times faster than the CDC CYBER 720.

The lesson from what was said above is that relaxations are relatively
"cheap" in terms of execution times, and computations on the coarser grids
are realtively "costly" (compared with the ratios found on scalar
processors).

7. CONCLUDING REMARKS

One important lesson, known very well to those involved in vector
processing, is that it demands careful data structuring and analysis of the
"mapping" between the data and the operations to be performed, if the
vector capabilities of the processor are to be efficiently utilized. We
have also demonstrated that the traditional operations-count as a measure
of processing time is not sufficient. On a vector processor one has to
take into account the number of vector operations (or the lengths of the
vectors) and the data-motion operations (which occur on a serial processor,
too, but are often ignored when algorithms are evaluated). The result of
the above is that one may have to re-examine the various parameters of the
algorithm when migrating the Multigrid application from a serial to a
vector processor. This aspect requires further investigation.

227

We feel that the experiment with the model-case studied in this paper
was successful and the performance achieved very pleasing. It certainly
warrants continuation work. Some obvious areas we intend to engage in are
the following: Extending the application to three-dimensional Poisson
equations; code a similar application to cater for the, more general,
Diffusion equation; and implement "full-weighting" residual calculation and
cubic interpolation. In addition one may, of course, generalize this work
in many directions. More general boundary conditions (Neumann, etc.) can
be implemented. The solution of non-linear problems (using FAS multigrid
version) and systems of equations can also be vectorized in a similar
fashion. More difficult, but potentially important, is the extension to
general domains, which will require a lot of thought about data structures
and data motion. As a last comment, it will be noted that all the timings
quoted here were achieved using 64-bit arithmetic. On the CDC CYBER 205
one can use 32-bit arithmetic as well, and, thus, double the result rate
for vector operations while halving the memory requirements. For the
purpose of obtaining albebraic errors smaller than truncation errors in
solving second order equations, the 32-bit arithmetic is indeed enough. We
intend to examine this option.

REFERENCES

il.1 A. Brandt, "Multi-level adaptive solutions to boundary-value
problems", Math. Comp. 31, (19771, 333-390.

L2.1 W. Hackbusch and U. Trottenberg, ed., "Multigrid Methods",
Proceedings of a Conference (Koln-Pars, Nov. 19811, Springer-Verlag,
1982.

t3.1 K. Stuben, K. Trottenberg, "Multigrid Methods: Fundamental
algorithms, model problem analysis and applications". In [21 pp.
1-176.

