Local and Multi-Level Parallel Processing Mill

Achi Brandt
Dept. of Applied Mathematics & Computer Science
Weizmann Institute of Science
Rehovot 76100, Israel

(General Statement

Many, perhaps most, of the massive computational tasks facing us today have
a certain feature in common: they are local-relation problems, usually formulated
on a low-dimensional grid. This feature can be exploited by a certain type of
algorithms, which combine local processing with inter-scale transfers. These algo-
rithms are generally more efficient than any. The efficiency can be much further
enhanced if a special hardware is built with some orientation toward such algo-
rithms, taking full advantage of their inherent parallelism. Moreover, we shall see
that such hardware, and corresponding software, can be constructed modularly,
and that most of it can very effectively serve general-purpose large-scale parallel
processing as part of an open-ended, scalable enterprise.

Local-relation grid problems

The feature common to many large-scale problems is that they have many
variables, or unknowns, and that these variables are nicely ordered geometrically.
A multitude of unknowns is seldom arbitrary: It is usually produced in an orderly
fashion, and most often it arises as some discretization of a continuum. This con-
tinuum is either two dimensional, or, in the more massive problems, three and
even four dimensional. (Still higher-dimensional problems loom, e.g. in quantum
mechanics, waiting further computational breakthroughs). Each unknown is there-
fore most often naturally assigned with a position in a d-dimensional space, with
2 < d < 4, such that the equations relating the unknowns to each other are based
on their positions: Usually (e.g., in discretized partial-differential systems) each
equation is a local equation, connecting just a few neighboring unknowns, except
possibly for a few special equations which have a more global nature (“global con-
ditions”). In other cases (e.g., in many discretized integral or integro-differential
systems) each equation may connect many, even all unknowns, but the connection
to unknowns far from the “center” of the equation is in a certain sense very weak
(or very smooth—which would computationally amount to the same thing).

The list of problems falling into the above category is very long. It includes
all flow problems, most structural problems, electromagnetism, magnetohydro-
dynamics, quantum mechanics, statistical physics, image reconstruction, pattern



recognition, some tomography problems, etc., etc. Their fast solution will funda-
mentally have an impact on many fields of science and technology. We briefly call
them local-relation problems.

Ordinarily, the positioning of the unknowns in the d-dimensional space can
be considered (or chosen) to form a rectangular grid, that is, a subset of an ar-
ray of m rows by n columns (if d = 2; and analogously in higher dimensions).
Even a non-uniform grid, whose meshsize varies in space, can normally be formed
either as a rectangular grid, with non-uniformity being created through coordi-
nate transformation, or as a union of rectangular grids. Indeed, one very effective
way of creating flexible non-uniform discretizations is to place uniform grids one
on top of the other, with finer grids covering smaller subdomains, some of them
possibly also using local coordinate transformations. This approach is especially
suitable for operating with the fast solvers described below. It is at any rate only
rarely that the continuum contains so much forced structure as to be much bet-
ter discretized by finite elements which are not, at least piecewise, arranged in
rectangular grids.

Local processing and inter-scale transfers

Fast solvers of local-relation problems must generally include two types of
processes: Local processing and long-range transfers.

Local processing or “relaxation”, is the classical way for improving any given
approximate solution: The equations are taken one by one, or block by block,
in some order. Each equation (or block of equations) in its turn is individually
solved (or advanced toward its solution) by changing the current value of some
neighboring unknowns. Since the equations are not really individual, but rather
coupled to each other, one such sweep through all the equations does not solve the
system as a whole. However, if a proper relaxation method is chosen, an infinite
sequence of such sweeps will give a sequence of approximations converging to the
solution, and to obtain some prescribed accuracy a finite number of sweeps will
do.

The required number of sweeps may be very large, however. It will normally
increase at least linearly, and often much faster, with the number of unknowns
per row or column. The general reason is that, since processing at each sweep is
local, it must take many sweeps for information to propagate across the array of
unknowns, and it must so propagate back and forth several (often many) times
before the inter-dependence between far unknowns can properly be accounted
for to the prescribed accuracy. Indeed, the normal behavior of the relaxation
process is that in the first few sweeps it exhibits fast convergence, which is the fast
convergence of local errors, i.e., errors which yield large residuals (discrepancies)
in the local equations; but then the convergence becomes very slow, because the
remaining errors are no longer local: They are much larger than the small residuals
they show in the local equations. Such small residuals can breed such large errors

- 92 —



only because they reinforce each other (e.g., they have the same sign) over some
larger subdomains. The typical size of these subdomains is called the scale of the
error function. The larger the scale the more global, and the less local, is the error
function, and the slower is the convergence of any strictly local processing.

A general way around this slowness of relaxation is the multi-level, or multi-
grid, method. As soon as the local processing shows signs of slow convergence, the
scale of the error function must be large enough for that function to be approx-
imable on a coarser grid. So the method is to formulate at this point a residual
problem on a coarser grid, whose solution, when interpolated to the original grid,
will give a good approximation to the error. Introducing then this approximation
as a correction to the solution, a much smaller error is obtained. Moreover, this
new error is again mostly local and can efficiently further be reduced by relax-
ation. When relaxation again slows down, another transfer to the coarser grid
is performed, and so on. Each coarse-grid problem is itself solved in a similar
manner, that is, by a combination of relaxation sweeps (on that coarser grid) with
transfers to a still coarser grid which supplies still longer-scale corrections. The
method thus recursively uses a sequence of increasingly coarser grids. The coars-
est grid includes just few unknowns, and its equations are therefore inexpensively
solved by any method.

There is a number of ways to define at each stage the next coarser grid, and
to formulate the residual problem on it. In case of two-dimensional rectangular
grids, for example, the coarser grids are also rectangular, each typically obtained
by omitting every other row and every other column from the previous grid, so
that the number of unknowns is typically reduced by a factor of about 1:4. As for
the equations on these coarser grids, in simple linear cases they look the same as
the original equations, except that the right-hand side of each coarse-grid equation
is formed as some accumulation (e.g., averaging) of neighboring residuals of the
next finer grid. In non-linear cases another version (FAS) is used, but the linear
case is enough to represent here all the interesting computer processes.

Thus, all in all, multi-level algorithms include relaxation processes on a se-
quence of grids, as well as fine-grid-to-coarse-grid transfers of residuals, and coarse-
to-fine interpolations of corrections. This solution process is very efficient because
information can propagate quickly on all levels.

In fact, for many (conjecturally for nearly all) local-relation problems the effi-
ciency of suitable multi-level algorithms is essentially as high as it can conceivably
be. Namely, the amount of computational work needed to solve the problem to
its meaningful accuracy (e.g., to the accuracy of the discretization errors) is just
a small (less than 10) multiple of the amount of arithmetic operations involved in
simply writing out all the participating equations.

Moreover, concurrently with their role in obtaining fast solutions, multilevel
processes can be very useful in many other ways. They provide very efficient,
and completely local, grid adaptation capabilities, by allowing at any desired so-
lution stage the addition of new finer local levels, each possibly with its own local

- 8 —



coordinate system. the inter-level interactions also supply natural criteria for de-
ciding when and where further grid adaptation is actually needed. Additionally,
the distinction between local processing and global corrections gives a straightfor-
ward way to overcome a conflict often encountered between accuracy and stability.
Furthermore, in problems which have to be re-solved many times over for some
changing data, multi-level techniques can most often save the bulk of reprocessing;:
For example, relaxation on the finer grids can often be limited to the neighbor-
hood of the changed data. Continuation processes, for treating difficult nonlinear
problems, can mainly be done at the coarser levels, with rare visits to finer ones.
And so on.

The needed computer processes

We now summarize the kinds of computer processes needed in the multilevel
solution of local-relation problems. The discussion will mainly be in terms of uni-
form grids (e.g., rectangular grids in two dimensions), which is the most common
case.

From an implementation point of view, we can classify the processes into
interior local processing, boundary local processing, inter-grid transfers, including
perhaps grid transformations, and input-output and control operations.

The main computational effort is usually invested in interior local processes,
especially on the finer grids. These include the relaxation sweeps as well as calcu-
lation of averaged residuals destined to be transfered to coarser grids. Fortunately,
each of these processes can simultaneously be performed either at all gridpoints
or at least at every other one (red-black relaxation): Although processing the
equation at a gridpoint requires using solution values at some neighboring points,
these values can be old ones, obtained at the previous iteration, hence full use
can be made of systolic systems with as many (or at least half as many) parallel
processors as gridpoints. Fach processor should then have access to the results
of several neighboring processors. Note that the notion of neighborhood, or the
“topology” , changes with the dimension d, and that d = 3 is likely to be the most
important case. The topology is also strongly affected by the grid structure and
by other, less fundamental factors, such as periodicity of boundary conditions and
size of the discretization stencil.

On the other hand it does not seem generally possible to parallelize two dif-
ferent stages of the algorithm, such as the relaxation sweeps on two different grids:

While the coarser grid operates on the fine-grid residuals, the latter must remain
fixed.

The local processing needed near the boundary of a problem is often very
different from the interior one. It tends to be much less systematic, much less
uniform. The location of the boundary itself is not uniform, and the equations de-
fined on it or near it may depend sensitively on its geometry. There usually appear
many more external data and arithmetic operations at each boundary equation

_4_



that at any interior one. This greater complexity per equation is not of much
concern when conventional computers are used, because the number of equations
near the boundary is ordinarily much smaller than at the interior. With the high
degree of parallelism mentioned above, however, the boundary processing may
easily become the bottleneck, even though it is itself as parallelizable. Normally
it is possible to relax on the boundary in parallel to the interior relaxation.

As explained above, to facilitate fast convergence of long-range interactions,
local processing must be supplemented with inter-grid transfers. These include
coarsening, refinement and shear transfers. It is often enough to have full-coarsening
transfers, e.g., transfers between any rectangular grid and the grid obtained from
it by omitting every other row and every other column. But sometimes semi-
coarsening is also desired, i.e., a coarser grid obtained by omitting only every
other row (or every other column, but not both). Or vice versa: Sometimes it is
desired to create, and interact with, a new grid which is the refinement of a given
grid, in the sense that between any two rows, and/or between any two columns, an
additional line is introduced. Sometimes such a refinement is needed only locally,
at some part (a proper subdomain) of the given grid.

The minimal processing capability required for implementing fast and suffi-
ciently general local coordinate transformations is to have fast shear transfers. In
a shear transfer all grid values, or part of them, are shifted in the same grid direc-
tion, e.g., to a new position in the same row. The distance each value is shifted
is constant in each row, but may change from one row to another. Such shears,
employed also in columns, and applied to the local refinement grids mentioned
above, can efficiently provide for almost all desired discretization patterns.

It should be remarked that inter-grid transfers are inherently sequential to
each other and to any of the local processing. Moreover, a transfer (coarsening,
refinement or shear) is usually needed once per quite many (typically 10 to 100)
local-processing operations. There therefore seems little to gain in parallelizing
transfers with local processing.

The amount of input and output varies substantially. Most large-scale prob-
lems are “autonomous”, i.e., the local equations at interior points include no ex-
ternal data, or the data are specified by a general rule, not by inputting lists with
one or more item per gridpoint. Data lists are then only applied at the boundary,
supplying geometrical information (location of the boundary) as well as boundary
conditions (conditions the solution must satisfy at or near the boundary). Some
problems, however, are not autonomous, requiring input data at every gridpoint.

Similarly, in many problems it is not required to output the full solution; of
real interest are only some solution functionals, such as its values at some specific
points, its integral along some curves, or its overall performance in some sense,
its maxima, etc. Often, however, a user would like to have the whole solution
displayed in a variety of ways.

Fast solvers are often employed because a sequence of many similar problems

— 5 -



need to be solved, with some data changes in between subsequent problems. The
data change per problem is often limited to just few parameters, so the input per
problem may be very small. As for the output, however, users may often like to
see the full evolution of the sequence of solutions displayed as vividly as possible.

The control needed for the interior local processing is often very simple, since
the same sequence of operations is usually needed at all gridpoints. A SIMD
machine would then do. But the processing near the boundary is likely to be much
less uniform, and at some particular points or curves (which may formally be all
treated as boundary, even when some of them are in the interior) the execution of
special routines may be required.

Add to all this the unpredictable, and you get some idea about the challenge
which should be met by future hardware and software design.

Hardware development: Preliminary outlook

To solve many pressing scientific and technological problems, computational
power of several orders of magnitude beyond present-day capacity is required. To
obtain this power, very large scale parallelism is mandatory: The number of par-
allel processors should not in principle be bounded. An overall design is therefore
needed which will be open-ended and scalable. Even though fewer processors may
presently be projected, the overall system should not be saturated. It should be
extendable, and not just in scale, not only in terms of storage size and processors
number, but also in concept. That is, it should accommodate future variations
in problems, in algorithms, and even in computer technologies. On the other
hand the design should also allow full efficiency, i.e., taking full advantage of the
inherent simplicity (the simple geometry and the SIMD nature) of interior local
processing, matching it with compatible efficiency of boundary procressing and
inter-scale transfers.

It seems indeed doubtful that a multitude of processors can be put to work ef-
fectively on local-relation problems without taking advantage of their local nature.
Complete generality of multi processing is limited by the technical fact that each
processor can be directly connected to only few others. Without a close relation
between these hardware connections and the inter-processor transfers required by
the algorithm, the whole operation will be jammed by the traffic. Another al-
ternative of course is to be content with a lower degree of parallelism, e.g., with
many gridpoints per processor (“coarse graining”), in which case the efficiency
of inter-processor communications is less critical. We may use this alternative in
our system, but we do not want the system to be for ever handicapped by this
limitation.

Various architectures are proposed which can very effectively perform both
local processing and inter-level transfers. These include for example processor
arrays with nearest-neighbors plus perfect-shuffle connections; the pyramid-like

- 6 —



connected arrays, exactly corresponding to a two-dimensional multigrid struc-
ture; binary-tree arrangement of processors, which nicely corresponds to a possible
multigrid hierarchy, and is useful in many other ways, but is not fully effective in
performing local processing; etc. Each such design may be very useful for some
problems, but by itself is too narrow: Its performance will be degraded very much
for any problem with different topology, e.g., different dimension or different peri-
odicity, or for any problem with excessive amount of processing near boundaries,
or with too many levels of local refinement, or with different topology of intergrid
transfers, or with another graining, or any other variation.

The design tentatively proposed here takes advantage not only of the vast
parallelism inherent in every stage of the multi-level algorithms, but also of the
sequential nature of these stages with respect to each other. The basic idea is that
these different stages need not all use the same parallel-processing “engine”. An
open-ended set of engines should be constructed. One kind of engine will specially
be suited for interior local processing, using for instance SIMD or systolic arrays,
without being plagued by excessive processing near boundaries or by the need
to implement inter-grid transfers. The latter can be carried out by other engines,
special “transfer engines”. Moreover, different transfer engines can be used in order
to re-arrange grids in various ways, which effectively create the desired topology
for the work of the interior-processing engine. A separate, presumably MIMD-
type engine with fewer but more powerful processors, will perform boundary local
processing (usually in parallel to the interior processing on the SIMD engine).
On sufficiently coarse grids, lighter (i.e., with fewer processors) engines can be
employed for both interior and boundary processing, freeing the heavier engines
for concurrent utilization by other jobs.

Is all this possible? All that seems to be required as a basis for this design is
a set of basic memories, with fast bulk rate of copying one into the other. Each
of the engines can then be attached to one such memory. Thus, for example, an
interior-relaxation SIMD engine can have one such memory serving it by being
divided into “memory elements”, each accessible to one or several of the engine’s
processing elements. Having processed in this memory a certain step of relaxation
or residual calculation, its data can then be copied into the memory of a transfer
engine which would rearrange the data. Depending on the transfer engine used,
or on its program, this rearrangement may represent either an inter-grid transfer
or some transformation between the topology of the problem and that of the
interior-relaxation engine. In fact, with a suitable collection of transfer engines,
an interior-relaxation engine can be used which have no topology at all, that is,
its processing elements can be disconnected from each other, with each memory
element being accessible to only one of them. The transfer engine should then
fully represent the topology of the problem by transferring each computed result
to several suitable new locations.

The required speed of copying these memories into each other seems to be
fully within technological reach. A bulk rate of one gigabyte per second, which

-1 -



is already produced today, can for example support an interior-relaxation engine
with several giga-FLOPS. Much higher speeds are conceivable because of the large
amount of data to be copied each time, the fully parallel nature of this operation,
and the possible standardization of the basic memories. It is also conceivable to
base some of the engines on two such basic memories, one being in a state of
preparation (output then input) while the other is used by the engine.

The transfer engines can also attain the required speeds, since each of them
can be wired to one particular mode of data rearrangement. All transfer operations
of interest can be generated by a rather small collection of such engines, working
sequentially to each other. If this collection is not rich enough, some complicated
transfers may take longer, but the heavy relaxation engines need not wait: They
can at the same time execute a relaxation step of another job.

An attractive feature of this overall design is its modularity. Different engines
can be developed, including software, by different research groups. New engines
can always be added, either heavier in processing power, with finer graining, or
more specialized to some specific problems of particular interest. Various “display
engines” can be constructed. One of them, for example, can directly display the
values in its memory as greyness levels and colors on a screen, so that repeated
copying into this memory would create a movie history of an evolving solution.
And so on.

Moreover, engines can be added which serve purposes other than those de-
scribed above: Fast Fourier transforms, sorting and other data processing, matrix
multiplication, elimination, etc. some of these operations can very efficiently be
programmed on the same systolic engine used for interior relaxation. This whole
project can thus become part of a more general development, combining the sim-
plicity and high efficiency of SIMD and special transfer engines, with the versatility
of MIMD machines in a generalized, open-ended and scalable environment, which
may be called a “parallel processing mill’. To establish such mills all that seems
to be needed is to decide on some common specifications for the basic set of mem-
ories, and then to coordinate the manufacturing of various engines by different
research groups and, eventually, companies.



