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Open your eyes and you see multi-level processes all around. They have
always been here. The organization and operation of military forces is an obvious
example: soldiers are grouped in squads, which in turn are grouped in sections,
grouped in platoons, then in companies, battalions, regiments, brigades, divisions,
corps and armies. Civil society, less strict and more complicated, still operates in
a variety of hierarchical structures: geographical, economical, political, judicial,
educational, and so forth.

Such hierarchies are necessary because there are very many, sometimes mil-
lions, interdependent decisions to be made: they cannot be made by one governor,
because of their multitude and their complicated interdependence, nor can they be
decided by many independent administrators without being coordinated with each
other. The hierarchical structure effectively deals with this situation by exploiting
the fact that each decision has a certain “scale”. The location of a new hospital,
for example, is a decision which has the scale of a district: It strongly affects
the district served by it, marginally affects neighboring districts, and very weakly
affects others. The decision can therefore be made by a certain administration
assigned to the district, in some coordination with neighboring administrations.
The decision cannot effectively be negotiated at a too low administrative level, e.g.,
at the level of individual families living in the district; the relevant information
(concerning needs, constraints, etc.) must be gathered into one point of decision.
Similarly, the general outline of principal throughways should be decided at the
inter-state level, while local back roads should be regulated at the district or town
levels.

The two kinds of roads should be connected, of course. The effective way
to manage the inter-dependence between the different levels is based on the as-
sumption that global decisions should only marginally be affected by local ones
(otherwise the latter would not be local). Thus, ideally, a two-level hierarchical
structure should operate in the following way: The global government first gathers
some general figures summarized at the local level, representing sum totals of local
needs, important overall constraints, etc. Based on these it prepares preliminary
global plans. These global plans give the local governments the framework for
devising their own, more detailed, plans. In the course of doing that, the local



government may realize that some, usually marginal, aspects of the global plans
do not quite fit the local situation and therefore need some adjustments or cor-
rections. So, at a second round, the global government again gathers information
summarized at the local level, now representing sum totals of remaining needs
(“residuals”, in the language of numerical analysts). Since in practice this process
is seldom fully recognized, let alone fully effectively organized, more such rounds
may be needed. When more levels of government are involved, the process is
applied recursively, in a variety of manners.

For very much similar reasons, iterative hierarchical procedures, similar to the
process we have just described, are very efficient in solving large and complicated
problems on computers. Such procedures were naturally introduced to solve prob-
lems where the hierarchical structure was already explicit in the problem itself.
A good example is the field of production planning, notably in the Soviet Union,
where hierarchic divisions into sectors and pyramidal management naturally led
to the introduction of iterative “aggregation/disaggregation” (a/d) algorithms,
starting in the mid sixties [10] and growing in the seventies into extensive Russian
literature on iterative a/d procedures for large linear programming problems (see
[21] ). Multi-level approaches have in fact quite naturally emerged in all branches
of computer technology, as in the structured organization of computer hardware
(see for example [16] ), the top-down structured design of software ([23] ,[17] ), the
pyramidal data structures (trees, heaps, etc.) and many of the most efficient algo-
rithms in computer science, such as fast sorting (sorting n numbers in O(nlogn)
operations) the “divide and conquer” class of algorithms, etc. (See, e.g., [1] . Most
of these procedures are not iterative, though.)

Also for very much the same reasons, multi-level algorithms have come forth
as the most efficient algorithms in solving the very large algebraic systems arising
in discretizing partial differential boundary value problems, especially those de-
scribing steady-state physical systems. Here the fully hierarchical structure is not
at all generally explicit in the problem itself, so it took some effort, and interesting
historical development, to realize it. Fully effective multi-level algorithms were first
developed as direct, not iterative, solvers, treating very special situations where
it was algebraically clear enough how to recursively construct hierarchical solvers.
I refer here to the fast solvers based on fast Fourier transforms (FFT) and/or
reduction methods, especially the cyclic odd-even reduction, both of which are
clearly recursive, but non-iterative, multi-level processes (see [8] ,[13] and [18] ).
The total reduction method also belongs to this class (see [20] ). The solution
of n equations by this kind of solvers requires at most O(nlogn) computer time
and storage, but the class of problems for which this full efficiency is attained is
quite limited: separable problems, essentially meaning constant-coefficient elliptic
equations with constant-coefficient boundary conditions on rectangular domains.
This class has been substantially enlarged by using these fast solvers, and various
combinations of them, iteratively. Thus, for example, if the coefficients are not
constant but sufficiently uniform, the iterative application of a constant-coefficient
fast solver can be very effective (the number of iterations depending on the uni-
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formity of the coefficients, but not on the meshsize). Extensions to domains of
arbitrary shapes have been obtained by “capacitance matrix methods”, using the
fast direct solvers iteratively, with conjugate-gradient acceleration, each solution
typically costing the equivalent of some 15 applications of the fast solver (see
e.g. [14] ). The nested-dissection approach to elimination ordering [11] is another
powerful multi-level approach, more general but less efficient than the FFT and
reduction solvers.

Meanwhile, steady-state PDE problems and the solution of their discretized
equations were examined from two other points of view, which jointly led to the
realization that each such problem contains a natural hierarchy of levels, not im-
mediately explicit, but very powerful and much more general than the mechanical
hierarchy exploited by the above methods. First, studying the reasons for slow con-
vergence of various relaxation solvers, it became clear that relaxation is a “local”
process which cannot efficiently treat “global” or “smooth” solution components:
A smooth error component shows relatively small “residuals”, i.e., small errors in
the individual difference equations. (For smooth components such small residuals
have the same sign throughout a large region, and their effect can therefore be ac-
cumulated and produce a large error.) Since the relaxation corrections are based
on the individual residuals, they are necessarily small compared with the actual
error, if the latter is smooth. Thus, in order to get a correction comparable to
a smooth error, information concerning the residuals throughout sufficiently large
regions must be summed up to one point of decision, very much as in the case
of global social decisions mentioned above. The size of the regions over which
residuals should be summed up—so that a correct picture about the error magni-
tude is obtained—must be comparable to the scale of the error, i.e., to the typical
distance over which the error substantially changes. As long as each relaxation
step (each step of correction) works on a much smaller scale, convergence must be
slow.

A second, complementary viewpoint evolved from examining the nature of
the discretization error, i.e., the difference between the true solution of the differ-
ential problem and the exact solution of the discretized equations. The relative
magnitude of this error is clearly determined by the relative magnitudes of the
discretization meshsize and the solution scale. A smooth solution, which is a
large-scale solution, can thus be approximated on a coarse grid. The same is ob-
viously also true for a smooth error. Thus, it became clear, exactly those errors
that are slow to converge by relaxation processes on some fine grid can be ap-
proximated on a coarser grid, where the meshsize is comparable to their scale and
hence their convergence need not be slow.

A natural hierarchy of levels emerges, based on viewing the solution to each
boundary value problem as a linear combination of components with different
scales: Each component is most effectively controlled by grids with meshsize com-
parable to its scale, and efficient multi-level control can thus be realized as a
multi-grid processing.



A two-grid process, for example, is fully analog to the ideal operation of the
two-level hierarchical government described above: The problem is first repre-
sented on the coarser grid, e.g., by averaging its equations to the scale of that
grid. The (approximate) solution to the resulting coarse-grid problem, once com-
puted, is then interpolated to the fine grid, serving there as a first approximation,
a framework, to be next improved by fine-grid processes, such as relaxation. This
fine-grid processing finds the fine features of the solution which were invisible to
the coarser grid, and also, as a result, encounter some residuals of global (smooth)
errors, which it cannot efficiently reduce. (These are smooth errors caused by
aliasing, i.e., by the previous coarse-grid processing having misinterpreted coarse-
grid traces of the fine features. Now that those fine features have been removed
from the error by the fine processing, that aliasing error becomes the dominant
one.) So, in the next round, the residual problem is approximately transferred,
by some averaging, to the coarse grid, where it can efficiently be solved, and its
solution is then interpolated back to the fine grid and added as a correction to the
previous fine-grid solution.

The process just described is the two-level “full multigrid” (FMG) algorithm.
It can be used recursively in a variety of manners in case more levels are involved.

The number of levels that should be used depends on the ratio between the size
of the domain and the finest scale one wants to see in the solution. Between these
two scales as many scales should be introduced as practical. Namely, the ratio
between successive scales (successive meshsizes) should be as small as possible,
as long as this does not substantially increase the total number of gridpoints.
The ratio 2:1 between successive meshsizes is very convenient: the total number of
gridpoints is still dominated by their given number on the finest grid, but successive
meshsizes are close enough to effectively treat any solution component. In fact,
with such a ratio, the experience so far showed that suitable FMG algorithms
could solve all test problems “to the level of truncation error” (i.e., to the point
where the error in approximating the differential solution is dominated by the
discretization error, not by the error in solving the discrete system) in just few
(less than 10) “work units”, where the work unit is the amount of operations
involved in expressing the given (finest-grid) system of discrete equations. The 2:1
ratio is also most convenient in programming the inter-grid transfers. Note that in
this respect the multigrid processing is different from multi-level social structures:
Its levels are chosen much more tightly, to achieve maximum efficiency.

Note also that the decomposition of the PDE solution into components of
different scales is only implicit; it is used above to motivate and explain the validity
and strength of the multigrid process; but the actual multigrid algorithm does not
use any such decomposition: It only transfers equations (or residual equations)
from fine grids to coarse grids, and solutions (or corrections) from coarse to fine.
Decomposition in terms of Fourier components, in particular, can be used as a
powerful tool to analyze, and even exactly predict, the performance of multigrid
algorithms, but the algorithms themselves do not employ such decompositions, and
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their efficiency extends far beyond the cases where the Fourier analysis is rigorously
valid. (Incidentally, it is important to realize that in some cases Fourier analysis
is the wrong tool to separate local effects from global ones. For example: A local
discontinuity gives rise to global high-frequency Fourier components. Other tools
should then be used to understand quantitatively, and optimize, the multigrid
performance.)

The FMG solvers (solving discretized PDEs to the level of truncation errors)
have been developed to the point that they are today even faster than the FFT and
reduction solvers mentioned before. (The multigrid Poisson solver described in [3]
is the fastest we know.) More importantly, of course, these FMG solvers are much
more general. They solve with the same efficiency (i.e., in few work units) compli-
cated nonlinear systems on general domains. Moreover, it is possible to integrate
into each application of an FMG solver, for small extra computer work, various
processes of local mesh refinement, mesh optimization and local coordinate trans-
formations, making it very effectual in treating singularities, unbounded domains,
curved boundaries, boundary layers, discontinuities, etc.

Furthermore, multigrid solvers can directly be applied to “higher” problems—
such as optimization, optimal design and optimal control problems, or system
identification problems—whose solution would normally be accomplished through
solving a sequence of boundary value sub problems. An important principle indeed
is always to try to multigrid the given, original problem, instead of merely using
fast multigrid solvers to a sequence of intermediate subproblems. The original
problem (e.g., the optimization problem itself) should first be solved on a coarser
grid, then relaxed on the finer grid (including for example local optimization of
parameters, in case some of the functions to be optimized do have local scales),
then brought back to the coarser grid, etc. The entire solution of the original
problem may thus cost only few work units. Multigridding the original problem is
especially advantageous in case that problem is autonomous (i.e., having solution-
dependent but not directly space-dependent coefficients, as for example most fluid
dynamic problems) while the subproblems are non-autonomous (having coefficients
spatially depending on the solution of a previous subproblem).

Sometimes it is still required to solve a sequence of subproblems. A typical
example is the interactive design of a certain structure, where between two solu-
tions of the system the structure is changed in some specific parts and/or in some
of its global parameters. The new solution can then be obtained from the old one
by a remarkably short multigrid processing, in which the finer grids are relaxed
only around the changed parts. This technique may allow the design of a large
structure to be done mostly in core memory, since for several design steps only
the currently designed parts, and some neighboring parts, should fully be kept
in memory while the rest of the structure may be represented by coarser grids
(using the FAS version of multigrid). Re-solving by such techniques should be so
efficient as to allow the designer to introduce some changes to a large structure
and immediately view the new solution on the screen.
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Similarly, in evolution problems with implicit time differencing, the solution
of a new system of equations seems to be required at each time step. Each of
these systems could be solved very efficiently by an FMG algorithm, costing the
equivalent of just few explicit time steps. But, here again, multigrid techniques
may even be more effective if they are designed in terms of the original evolution
problem itself. For example, one can often drastically reduce the overall work
by exploiting the fact that the solution is a superposition of pure convection and
smooth changes, or changes which are smooth throughout most of the domain,
hence requiring fine-grid interactions only at some small subdomains.

The full efficiency of multigrid solvers, as described here, is not easy to obtain,
though. It sometimes depends on the correct treatment of each feature of the
problem at each multigrid stage. Many things can easily go wrong, such as relaxing
a certain boundary condition in a way which conflicts with the interior smoothing;
or improper fine-to-coarse transfers of boundary conditions and their residuals; or
treating at relaxation conditions which seem local but are not; or using a relaxation
scheme which is not as powerful a smoother as it should, and can, be; or wrong
order or type of interpolations; or any inadequate treatment of any difficulty, from
structural singularities (e.g., reentrant corners) to discontinuities in the solution
or in the equations, anisotropies, non-ellipticity, etc., etc. A single mistake at any
of these may substantially degrade the whole performance, not to mention plain
programming bugs, which, due to the corrective nature of the algorithm, may
well disguise themselves in the innocent form of slow convergence. To obtain full
efficiency it is therefore necessary to construct the algorithmic concepts and the
actual programs in a gradual, systematic way, using available knowhow (see [12]

[4])-

The class of partial differential equations that can be solved by multigrid
solvers has been ever extending, from second order equations to arbitrary orders,
from linear to nonlinear, from smooth coefficients to strongly discontinuous ones
[2] , from definite to indefinite problems, from scalar equations to general systems
[4, §3.8], and from elliptic type to other types.

Unlike evolution problems, where properties like hyperbolicity and parabol-
icity are all important, the only feature that matters concerning the type of the
differential operator in (stationary) boundary value problems is whether it is nicely
(isotropically) elliptic or not. If it does not have a good ellipticity measure, it does
not make any difference whether it is anisotropic elliptic (like €02/0x2 + 02/0y2)
or semi-elliptic, weakly elliptic (e.g., having elliptic singular perturbation), hyper-
bolic or any other non-elliptic type: All these types have the same basic difficulty
and can be treated essentially by the same approach. The difficulty is that the
solution scales discussed above are not isotropic. (Incidentally: One dimensional
problems, such as du/dz = f, are elliptic, unlike their two-dimensional counter-
parts. Their use as models for treating non-ellipticity is thus erroneous.) In other
words, at each point in the domain of the problem there passes a “characteristic
line” (sometimes just a characteristic surface; and in case of non-scalar PDEs there
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may pass several such lines or surfaces at each point, corresponding to different
solution components) such that a “global” error component (in the sense that its
residuals are small compared with its size) can change rapidly in directions perpen-
dicular to the characteristic lines. Such global but rapidly changing components
are called characteristic components. As global components, their convergence by
relaxation is inefficient, but as rapidly changing components they cannot be well
approximated by coarser grids.

The key for efficient multigrid treatment of such anisotropic problems is to
clearly distinguish between two very different situations, depending on whether
or not one wishes to approximate characteristic components far from boundaries,
where “far” is meant relative to the component’s smaller scale, i.e., the scale of its
rapid change perpendicular to the characteristic. To so approximate characteristic
components by the discrete system, the grid must (roughly) be aligned with the
characteristic lines throughout the domain. Fast multigrid solvers can then be
based on these aligned gridlines, either by relaxing these gridlines simultaneously,
or by coarsening the grid only along these lines and not in the perpendicular direc-
tions. (The latter approach is preferred when the characteristics are surfaces rather
than lines.) If, on the other hand, the grid is not consistently aligned with the
characteristics, then characteristic components cannot be approximated far from
boundaries (except accidentally, in some regions of accidental alignment), and it
is then unwise to attempt to have fast algebraic convergence for such components:
This convergence, which is meaningless in terms of approximating the differential
solution, is harder to obtain: costlier and more complicated relaxation schemes
and/or inter-grid transfers must be developed, and even then fast convergence is
not always guaranteed. It is absurd, we believe, to invest most of your computer
resources and programming effort to get fast algebraic convergence exactly for
those components whose algebraic solution is generally (outside accidental regions
of alignment) no approximation to the differential solution.

This fashion in treating anisotropy, as well as some other developments, have
led to the recognition that fast algebraic convergence should not be the main ob-
jective of multigrid solvers. The objective is of course to get the desired accuracy,
in terms of solving the differential problem, for minimal computer (and also hu-
man) resources. This is obtained by FMG solvers which, especially in cases of
anisotropic equations without corresponding grid alignment, do not necessarily
employ uniformly good smoothers, hence nor do they attain uniformly good al-
gebraic convergence rates. Working with such solvers requires of course certain
modifications in the traditional “smoothing factor” approach for measuring the
effectiveness of relaxation (see [4, §20.3.1] ), as well as new approaches for apriori
predicting, and aposteriori judging, the overall success of the FMG solver (see [4,
§7.4,87.5 and §1.6] .) An important advantage of these approaches for performance
evaluation is that the performance becomes less sensitive to the precise treatment
of all problem features at all algorithmic stages.

These approaches also allow the evaluation of important schemes which de-
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liberately avoid any algebraic convergence. Such for example is the “double dis-
cretization” scheme [4, §10.2] , which employs less accurate, stable discretizations
in relaxation processes, and others, more accurate but not necessarily stable ones,
in the fine-to-coarse transfers of residuals, thus combining easier local stability
with higher global accuracy.

Another interesting development has recently led to the extension of multigrid-
like techniques to cases where no grid is actually present. It started, in a way, with
the development of usual multigrid algorithms for diffusion problems which were
isotropically elliptic but in which the diffusion coefficients were strongly discontin-
uous. It turned out [2] that to obtain the usual multigrid efficiency in such cases,
the coarse-to-fine interpolation of corrections should be based on the difference
equations themselves, rather than being the standard polynomial interpolation.
This later led to the recognition that interpolation can be based solely on the
algebraic equations, without even using the geometry of the grid. In a similar
manner, the fine-to-coarse transfer of residual equations can completely be based
on the adjoint (transposed) algebraic system. Since these intergrid transfers are
what give the coarse grid a definite meaning, it was further realized that even
the choice of the coarse-grid variables can be freed from its traditional geometric
context, and purely “algebraic multigrid” (AMG) schemes were introduced [5] ,
[4, §13.1] , [6] , [15] . In these schemes the selection of coarser levels is based
on the principle that each variable of any level should have a sufficiently strong
total “algebraic connection” to variables of the next-coarser level. The entire pro-
cessing is thus made in terms of the given (sparse) algebraic system of equations,
with no reference to their geometric origin. AMG algorithms can thus be used
as very efficient “black box” solvers for important classes of matrix equations.
(For some other classes the current AMG solvers are not suitable.) The typical
multigrid efficiency is obtained by AMG even for cases where it would be very
difficult to construct conventional (geometric) multigrid algorithms, such as cases
of finite element discretization on arbitrary, irregular triangulations, or even cases
where topologically rectangular grids are used, but with highly and non-uniformly
stretched coordinates (Lagrangian discretizations in particular) or with peculiarly
distributed physical coefficients. In addition, AMG solvers can be applied to many
large algebraic systems which are not at all derived from continuous problems, such
as the geodetic problem treated in [7] .

The scope of multi-level computations has thus been extended very much. To
state it most broadly, consider any matrix equation Az = b. (That the system is
linear is not really essential; but it simplifies the following statements.) Denote by
Z the evolving computed approximation to z, and define the error vector e = x —
and the normalized residual vector r = (r;) = (ase/ || a; ||), where a; is the i-th

row of A and || - || is the 2 norm. For a suitable relaxation scheme it can be
shown [5, Theorem 3.4] that the decrease in || e || per sweep can be slow only
when || 7 ||<]|| e ||. Since r is properly normalized, for most error components

|| 7 || is comparable to || e ||. Hence, convergence can be slow only for special types
of error components. Slowly converging errors can therefore be approximated by

- 8 -



far fewer parameters, that is, by a much smaller algebraic system—a coarser level.
To exploit this fact one of course needs some characterization for those vectors e
for which || 7 ||<|| e |- In case the matrix A approximates a differential operator
L, those vectors e approximate functions v for which || Lv ||[<| L || v ||. This
usually implies smoothness of v, or, when L is anisotropic, at least smoothness in
characteristic directions. In other cases other characterizations can be found, so
the general rule which emerges is that slow convergence should always be avoidable.

This corresponds, more or less, to the “golden rule of computational physics”,
which states that the amount of computational work should be proportional to
the amount of real physical changes in the computed system: Stalling numerical
processes must be wrong. Indeed, multi-level processing is a general vehicle to
effect this rule. So, whenever you have stalling computations—either in the form
of slowly converging iterative procedures, or in the form of computational grids,
in space and/or in time, which almost everywhere tend to excessively over-resolve
the scales of real physical changes—try to think in terms of multi-level techniques.

Multi-level methods are now in the process of being introduced into a vari-
ety of new fields, including various systems of tomography, image processing and
pattern recognition; statistical physics; queuing theory; network simulation and
design; geodesy; multivariate interpolation; large transportation problems and lin-
ear programming. The aggregation/disaggregation methods developed earlier for
linear programming can now be improved by an AMG-type approach, because the
latter provides a more mathematical basis for defining the levels, hence “tighter”
hierarchies, exploiting implicit levels not necessarily recognized by the real-life sys-
tems. Applications to image processing and pattern recognition are in a sense not
quite new, either: There is a strong evidence (see [9] , [19] , [22] ) that the human
vision processes themselves, in our brain, are multilevelled. Thus indeed, when
you open your eyes, you see multi-level processes all around—social, biological as
well as physical (hierarchical structure of matter—resulting from some primordial
evolution toward “efficiency”?), and your seeing itself is multilevelled. Which is
fine, of coarse.
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