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1. Introduction

Quasi-elliptic schemes arise, for example, when central differencing is used to
approximate odd-order derivatives in elliptic systems of partial differential equa-
tions, such as the Cauchy-Riemann, Stokes and Navier-Stokes systems. Usual
finite element approximations to such systems also lead to quasi-elliptic schemes.
Such schemes are in some sense unstable: certain highly-oscillating components are
amplified in the discretized solution much more than in the differential solution.

Instead of the quasi-elliptic schemes, other discretizations of the same system
can usually be constructed which are h-elliptic, hence fully stable, and which are
also more accurate than the quasi-elliptic schemes. Sometimes, however, these
fully elliptic schemes are inconvenient to use. In case of elliptic systems with odd-
order derivatives, for example, full ellipticity is obtained by grid staggering, i.e.,
by approximating different functions on different grids (cf. [3] and [8]). This is
inconvenient, especially near curved boundaries. Also, the instability of quasi-
elliptic approximations seldom really hurts, since the unstable components have
very small amplitudes, which are still small even in the discrete solution. The
inaccuracy is modest: The error in the quasi-elliptic solution is typically twice to
four times larger than the error in an elliptic solution using the same grid size.
Thus, quasi-elliptic schemes are often preferred and are widely used.

The instability of quasi-elliptic schemes does seem to hurt when multigrid
solvers are applied: The asymptotic convergence turns out to be slow, and a
simple mode analysis traces this slowness to the unstable modes. One approach,
perhaps the best, to deal with this difficulty is simply to ignore it: the algebraic
slowness does not matter because it occurs in modes whose amplitudes in the
algebraic solution are erroneous anyway, bearing no relation to their amplitudes
in the true differential solution. One should only take care not to initially admit
large unstable amplitudes, and to average them out in case they must latter enter.
We show, by mode analyses and numerical experiments, that the usual FMG
algorithm is very effective in solving quasi-elliptic problems to truncation level
(i.e., to the point where algebraic errors are dominated by discretization errors).
Sometimes the FMG solution may even be better than the exact solution of the
discrete equations, because the unstable components of the latter are slow to enter.

Although this is the easiest approach for obtaining fast differential conver-
gence (convergence to the differential solution, through a sequence of grids), an-
other algorithm is presented below which does provide fast algebraic convergence
for quasi-elliptic schemes. This algorithm, based on multiple coarse-grid correc-
tions, is interesting in its own right, since it is the simplest example of a new
kind of algorithms for solving problems with highly-oscillating solutions, including
highly indefinite problems (see [1, §3.2], [8] and a subsequent article). Smoothing
rate analysis, for one quasi-elliptic example, suitably modified to account for the
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multiple coarse-grid corrections, shows that the new algorithm should algebraically
be as efficient as usual multigrid cycles are for fully elliptic schemes. Numerical
experiments exactly yield these expected convergence rates (see §8.6; tests of such
algorithms were also reported in [6].)

The significance of the present studies goes beyond elliptic PDE systems:
many non-elliptic systems, such as all subsonic steady-state flow problems, have
determinants with at least one elliptic factor. Most discretizations of such sys-
tems provide quasi-elliptic approximation to that factor, leading to troubles and
requiring cures similar to those reported here.

Moreover, the techniques described in this article illustrate the following gen-
eral multigrid approaches to general non-elliptic problems: (i) Differential, not
algebraic convergence is sought, and usually easily obtained. Modified methods
for apriori analyzing and aposteriori measuring such a convergence have been de-
veloped. (ii) With considerably more effort, fast algebraic convergence can also be
obtained. (iii) The analysis of difference schemes, and the derivation of efficient
smoothers, for any PDE system is based on the factors of the h-principal part of
the operator determinant.

We thank Ruth Golubev for some of the calculations reported in §8.

2. Definitions and Examples

In the following Lh will represent a system of ¢ real difference operators on
q grid functions, where h, the meshsize of the grid, is for simplicity assumed to
be uniform and the same in all directions. That is, Lh is a ¢ X ¢ matrix of
real polynomials in 77,...,T4,T1—1,...,T4—1, where T; are the grid translation
operators, defined by

Tivy - - - Tavgu(z) = u(z + vh),

with z = (z1,...,24), v = (v1,...,v4) and d being the dimension of the Euclidean
space housing the grid. (In case of staggered grids there may appear non-integral
powers of T and Lh will most usually be a matrix of polynomials in 731/2 and
T;-1/2,5=1,...,d).

Three common examples of difference operator are:

(i) The five-point (compact) Laplacian

1
1 1
Ah = (Toq+T10+To-1+T-10—4T00) = 5 [1 -4 1|, (2.1)
h2 ’ ’ ’ ’ ’ h2 1

where T,, 3 = T1aT2f and the array on the left is the usual pictorial description
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of the weights of the operator. This is the simplest approximation to the two-
dimensional Laplace operator A = 02/0x12 + 02/0x22.

(ii) The central non-staggered approximation to the Cauchy-Riemann opera-
tor

oic 09 C)

Lhogp =
CR (—820 o0ic

(2.2)

where 0;c = %(TZ —T;-1).

(iii) The central non-staggered approximation to the Stokes operator in two
dimensions

—Ah 0 0ic
Lhg = 0 —Ah O9c |. (2.3)
Oic Oac 0

For simplicity we will deal in this article only with constant-coefficient oper-
ators Lh. In this case the symbol Lh(0) of Lh is defined by

LhAeif - z/h = Lh(0)Aeif - z/h,  (|6] <)

for any g-vector A, where 0 = (01,...,04), 0 -2 = 6171 + - + 0qzq and |0 =
max(|61],...,[04]). Thus, Lh(0) is a ¢ X ¢ matrix of polynomials in e+if;, j =
1,...,d, obtained from Lh by replacing each T; with eif);.

Also for simplicity we will deal here only with homogeneous operators Lh,
i.e., operators for which all terms in det Lh (the determinant of Lh) have the
same power in h. (This means that Lh approximates a homogeneous differential
operator L, i.e., det L is a homogeneous polynomial in 9/0z1,...,0/0x4 All
examples above are homogeneous). For homogeneous difference operators, the
general notion of ellipticity measure on a given scale (cf. [2, Sec. 3.1] or [3, Sec.
2.1]) is not needed, and we can use the following simpler definition.

Definition. The homogeneous difference operator Lh is elliptic of order 2m
iff
| det Lh(0) |[> Ch—2m Y _dj—10;2m for all [0 |< , (2.4)

where C is positive and independent of 6.

Ellipticity of differential operators is defined in the same way. (The parameter
h is arbitrary then, and the range of § is unrestricted. It is thus more natural in the
continuous case to replace f/h by another phase variable, w = 8/h say.) It is easy
to see that both A and Ah are second-order elliptic. Generally, simplest central
approximations to second-order scalar (¢ = 1) elliptic operators are themselves
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elliptic. But not all central approximations are. For example, the “skew Laplacian”

1 0 1
1 1
Ax=——(Ti1+Ti,—1+T-11+T_1,-1—-4Tp0) = 7= |0 —4 0| (2.5)
2h2 ’ ’ ’ ’ ’ 2h2
1 0 1
or the “long Laplacian”
1

A2h = ——(T20+ To2 + T-2,0 + To,—2 — 4To,0) (2.6)

4h2
both approximating A, have the symbols

N 1
Ax(9) = E[(COS 01 — cos 62)2 + sin 207 + sin 20s]

A2h(0) = %(sin 201 + sin 263)

which clearly fail to satisfy (2.4). Indeed, Ax (r, 7) = 0 and A2h(r,0) = A2h(0, )
= A2h(m, ) = 0. Whereas these examples seem somewhat artificial (although the
skew Laplacian does naturally arise in various situations, e.g., in semi-implicit
Lagrange codes [4, § IV] and for some kinds of finite elements [7]), non-elliptic
operators are very common in approximations to elliptic systems (¢ > 1). The
discrete Cauchy-Riemann (2.2) and Stokes (2.3) operators well represent this sit-
uation: They are the simplest (non-staggered) central approximations to elliptic
operators, but det Lhorp = A2h and det Lgh = AhA2h, hence they do not satisfy
(2.4), their symbol vanishing wherever A2k does. Note that taking the determi-
nant commutes with passing to the symbol, hence ellipticity of Lh is equivalent to
ellipticity of det Lh, which in turn is equivalent to ellipticity of all factors of det
Lh.

Finite element discretizations of the same elliptic systems, with uniform non-
staggered partitions, give rise to similarly non-elliptic difference operators. This is
not usually recognized because finite element discretizations are seldom Fourier-
analyzed as uniform-grid operators.

In all the above examples, even when Lh fails to satisfy (2.4), it still satisfies
the weaker condition

|det Lh(0) [> Ch—2m ) dj_ysin2m(0;), for all |0 |< m, (2.7)

where C' is positive and independent of . The term quasi-elliptic was introduced
in [8] to describe such operators.

Perhaps all reasonable approximations to homogeneous elliptic equations sat-
isfy (2.7), but for the purpose of including some additional, not-so-reasonable ap-
proximations, we can extend the class of operators, and admit any homogeneous
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operators Lh for which det Lh(@) vanishes only at a finite number of points. This
class includes for example A2hx = (Tp o+ T 2+ T_22+T_o _o—4Tp0)/(8h2),
which satisfies neither (2.4) nor (2.7), but for which the methods described below
are still applicable.

More generally, when inhomogeneous operators are also admitted, our meth-
ods will extend to any operator Lh with O(1) “measure of quasi-ellipticity”, defined
by

Eh,a(Lh)= min |det Lh(0) | /| det Lh(0/) |, (2.8)

o>|0|>6/]
for some reasonable o« > 0. Fh,w is the usual measure of ellipticity F'h described
in [3]. The methods here will in principle work for any positive «, although they
will gradually deteriorate with the decrease of a for which Eh, a(Lh) is still O(1).

For clarity, we discuss below only homogeneous operators, and the strict quasi-
ellipticity (2.7) is assumed.

3. Instability and Inaccuracy

Quasi-elliptic operators do meet some general stability requirements even if
they do not satisfy (2.4). For example, the skew Laplacian (2.5) is a positive type
operator, hence satisfying the maximum principle. The associated matrix has a
dominant diagonal. Nevertheless, in a certain sense such operators are not quite
stable. Namely, since det Lk(#) = 0 for some 6 # 0, in an infinite space, or under
periodic boundary conditions, there exists a highly-oscillating function vh(z) =
Aexp(if - z/h) which satisfies the homogeneous equation Lhvh(z) = 0. Hence
the solution, unlike the corresponding differential solution, is not unique (upto
an additive constant); it contains an undetermined highly-oscillating component.
Similarly, in any bounded domain with any boundary conditions, functions wh(z)
close to vh(z) (e.g., wh = p1vh + @2, ¢; being smooth) exist which satisfy the
boundary conditions and for which Lhwh is everywhere very small. Such wh
therefore forms an unstable mode: A small change in the equation can introduce
a large change proportional to wh. This is a kind of numerical instability, since a
corresponding large change in the differential solution cannot occur.

This numerical instability need not hurt much: If the differential system is
LU = F and the discrete system is LhUh = F'h, all one has to do is to define
Fh = IhF, say, through an averaging operator Ih which liquidates the unstable
modes, i.e. Ih(0) = 1 and the ratio Th(#)/Lh(0) is uniformly bounded for all
|0] > e > 0. For example, one can take ITh = Shlth, where I'h is any F' averaging
suitable for the fully elliptic case and Sh is like the solution averaging Sh described
below. Even this is unnecessary in the usual, smooth case (in the same way that
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the above rule for Ih is frequently neglected for fully elliptic Lh), because the
unstable modes, even when unduly magnified by the discretization, are usually
still small.

Generally, the main disadvantage of quasi-elliptic operators is a certain loss of
accuracy compared to corresponding truely elliptic operators, which is simply due
to the larger differencing steps taken in certain terms of the quasi-elliptic scheme.
In some cases this is particularly obvious, since the grid is locally decoupled into
several subgrids which are not connected to each other by the quasi-elliptic oper-
ator. For example, the skew-Laplacian (2.5) introduces no coupling between red
and black points (in the usual sense of checkerboard coloring, one color being as-
sociated with gridpoints where (z1 4+ x2)/h is odd, the other with even). On each
subgrid the discretization looks like the compact Laplacian (2.1) on a rotated grid
with meshsize hy = v/2h. Similarly, in case of (2.2), the grid is decoupled into
4 staggered subgrids, with meshsizes 2h, on each of which the operator has good
ellipticity (being in fact equivalent to the staggered-grid approximation described
in [3, §17.2] or [5, §5.2]). Thus, since the approximation is O(h2), the error in
case of (2.5) is on the average twice larger, and in case of (2.2) four times larger,
than the errors in corresponding fully elliptic approximations (assuming other dis-
cretization errors, related for example to the representation of right-hand sides or
boundary conditions, behave similarly). In these cases, in other words, each of
the subgrids can produce the resulting accuracy by itself, other subgrids only add
work.

When derivatives are calculated from the solution, however, the approximat-
ing difference quotients may show much greater loss of accuracy, because they
involve differences between values belonging to different subgrids. The error in
£-order derivatives will generally be O(h—£) times the errors in the function itself.
This excessive error can be avoided by taking differences only from one subgrid at
a time, or, more generally, by using only difference operator Dh such that Dh(0)
vanishes wherever f)h(Q) does. In case of (2.3), for example, derivatives of the
third unknown function (the pressure) should be approximated by long differences
such as dc;, dc;jocy, etc.

The instability described above can also be removed, and the inaccuracy in
derivatives proportionally reduced, by averaging the solution, that is, by replacing
the computed solution wh by Shuh, where Sh is an averaging operator which
removes all the unstable components. In other words, S'h(O) = 1 and outside
a neighborhood of § = 0 the ratio Sk(#)/Lh(0) should be uniformly bounded
(wherever defined). For the quasi-elliptic Lh satisfying (2.7) there always exists
such an averaging operator of the form

Sh=1d;—y (3T51/2 + 1T;-1/2)m;, (3.1)
with integral m; < m. On the other hand, the averaging may further reduce the
accuracy of the solution. With the averaging (3.1) the lost accuracy is O(h2). One
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can make that loss O(h2s) by taking for example
Sh = dezl(l — (% — %Tj — %Tj—l)s)mj. (3.2)

Another slight difficulty typical to quasi-elliptic approximations is the need to
define extra boundary relations. This can satisfactorily be done by extrapolation
(cf., e.g., §8.2).

In summary, although quasi-elliptic discretizations are in principle inferior
to fully elliptic ones (obtainable for systems by grid staggering), they can be
used. Since many programmers consider grid staggering a serious complication,
especially near general boundaries, quasi-elliptic schemes and their fast solution
become important.

4. Multigrid Troubles and Their Implications

Usual multigrid solvers yield poor asymptotic convergence rates when applied
to quasi-elliptic schemes (see [4] and §8.4 below). The reason is simple: Slow to
converge are the unstable modes, such as vh or wh above. They cannot signifi-
cantly converge by coarse-grid corrections, since they are high-frequency modes,
essentially invisible on coarser levels. Neither can they significantly converge by
any type of relaxation, since an error like wh shows a very small residual function
Lhwh (compared with residuals shown by other modes with comparable ampli-
tude) and the corrections introduced by any relaxation scheme are proportional
to the size of the residuals (cf. [3, Sec. 1.1]). In particular, the amplification
factor p(@) of the error mode exp(if - z/h) per relaxation sweep must be 1 when
Lh(#) = 0, and since the latter equality holds for some |§| = m, the smoothing
factor i = max, a<|g|<x [14(€)| cannot be smaller than 1.

The poor asymptotic rates are not a real trouble, though. The modes slow to
converge are exactly those unstable modes for which algebraic convergence is not
really desired, their amplitudes in the algebraic solution being unrelated to their
amplitudes in the differential solution. The only concern is that these amplitudes
will remain suitably small.

This situation is typical to all problems which are not fully elliptic, includ-
ing most problems in fluid dynamics: Slow asymptotic convergence of suitable
multigrid cycles occur exactly in those components where not much convergence
is needed anyway. Whenever this situation arises, it is in a sense an absurd to
try and fix the algorithm (although we show in Sec. 7 below how to do it), since
one would then often end up investing most of his human and computer resources
to obtain improvements which are meaningless in terms of solving the original
differential equations.
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Thus, the real objective of multigrid solvers should not be a fast algebraic con-
vergence (convergence of the computed solution uh to the exact discrete solution
Uh), but fast differential convergence (convergence of uh to the true differential
solution U), using any sequence of meshsizes h and measured directly in terms
of the decrease in || uh — U || as function of the overall computational work (cf.
[3, §13]). This modified objective allows for simpler algorithms, but also calls for
some modifications in our approach for analyzing algorithms, for apriori predicting
and aposteriori measuring their performance. The next two sections will illustrate
these modifications for the case of quasi-elliptic schemes.

5. Modified Mode Analysis

It was shown in Sec. 4 that in case of quasi-elliptic systems g > 1, but that
this bad smoothing factor is not relevant to our real objective. To analyze a given
relaxation scheme, assume first that it is as efficient as needed for the differential
convergence of the highest frequency modes (which should latter be checked by the
2-level FMG mode analysis mentioned below). The question then is what efficiency
one should expect from the multigrid cycle (employing the given scheme on all
levels) in reducing all other modes. As in the conventional smoothing analysis, our
simplifying assumption here will be that relaxation on each level should efficiently
treat all modes in only one segment of modes, and that the union of these segments
should cover all relevant modes. Instead of assigning to grid h the conventional
segment /2 < || < 7, however, we can assign to it any segment of the form
a/2 <|| 8 ||< «, with any norm || @ ||. That would automatically assign to grid
h/2 the segment a/4 <|| 8 ||< /2, and so on. It means that we allow some of the
highest frequency components on any intermediate level not to converge efficiently
by relaxation on that level, as long as those components efficiently converge by
the next-finer-level relaxation. This only leaves the highest frequency modes on
the finest grid unaccounted for, which is exactly the segment where we do not
seek simple algebraic convergence. Thus, the modified definition of the smoothing
factor relevant for our purpose here is

=min o max (@), (5.1)
where p(0) is the amplification factor of exp(if - z/h) per relaxation sweep, and
the minimum can be taken over all a > 0 and over all possible choices of the norm
| - ||. (For a generalization of this definition to cases of semi coarsening, cf. [3,

§12]).
In case of the skew Laplacian (2.5), for example, the lexicographically order
Gauss-Seidel relaxation yields the amplification factor

u(8) = eify cos 02/(2 — e—101 cos 92), (5.2)
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so that p(m,7) = 1 and the conventional smoothing factor is 1. But choosing
a = and || € ||= max(|f; + 02|, |01 — 62]|) easily shows that the modified factor
(5.1) yields @ < .5. The same can be shown for the long Laplacian (2.6), by taking
a=mn/2and || 8 |= 9]

In case of systems (¢ > 1), the ¢ x ¢ amplification matrix p of the mode
Aexp(if-z/h) depends both on § and on the ¢g-vector A. The modified smoothing
factor fi is then defined by

I =min max A A
p=min mox  [[uA]l /] A

where « is allowed to depend on both §/|0| and A/|A|. With these definitions and
suitable distributed Gauss Seidel (DGS) relaxation schemes (see e.g. [3, §18.6])
this again yields g < .5, for both the Cauchy-Riemann (2.2) and the Stokes (2.3)
operators. In all these cases, still better factors are obtained by four-color ordering,
for which definitions (5.1) and (5.2) should further be extended (cf. (3.2) in [3]).

As for two-level analyses (cf. [3, §4.1] or [5, §4.6]), they always couple lowest
with highest frequency modes. In non-elliptic cases some highest-frequency modes
are not expected to converge fast. What the analysis should then tell us is how
efficient is the entire multigrid algorithm in reducing the algebraic errors below
the truncation errors. This can be done by a two-level FMG mode analysis, which
Fourier analyzes the N-FMG algorithm described below (usually for N = 1) by
assuming exact solution of the coarse grid equations (both for obtaining the first
approximation and in each of the N cycles) and by comparing for each mode the
final algebraic error with the truncation error (see [3, §7.4]).

6. FMG Solution to Truncation Level

Since the multigrid cycling is inefficient in reducing unstable mode errors,
the multigrid solver should take care not to start with an initial solution which
contains large amplitudes of such errors. The overall initial error in unstable modes
should better be smaller than the overall truncation error. This is easily obtained
by taking a first approximation from a coarser grid, employing interpolation of
suitable order. The usual “Full multigrid” (FMG; also called “nested iteration”)
algorithm can therefore be used, with slight modifications. The usual algorithm
and its modifications are briefly described in the following. For a flowchart, and
a detailed discussion of FMG algorithms and the order of the first interpolation,
see Secs. 1.6 and 7 in [3]. For simplicity we describe here the Correction Scheme
(CS) version of the algorithm, so the problems are assumed linear; it should be
converted to Full Approximation Scheme (FAS) to treat nonlinear problems [3,

§8].
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6.1 Multigrid cycle. A sequence of grids is given with meshsizes hy (k = 1,2, 3,
...), where hi1 = hi/2. On the hy grid the discrete equations have the form

LkUk = Fk (6.1)

where Lk approximates Lk + 1. Given ugk, an approximate solution to (6.1), the
multigrid cycle MG for producing an improved approximation u1k

urk < MG(k,uok, Fk) (6.2)

is recursively defined as follows:

If £ = 1 solve (6.1) by any direct or iterative method, yielding the final result
urk. Otherwise do (A) through (D).

(A) Perform vq relaxation sweeps on (6.1), resulting in a new approximation
uk.
(B) Starting with ugk — 1 = 0, make «y successive cycles
ujk — 1+ MG(k —1,uj_1k — 1, Ik — 1(Fk — Lkuk)), G=1,...,9)

where Ik — 1 is a transfer (“reduction”) of residuals from grid hy to grid hg_q.
We have used the “full weighting”

Ink—1= XToo+ £ (To1 +Ti0+To—1+T-1,0)

(6.3)
1
+16 (T + T+ Toap + 7o, ).

(C) Calculate uk = uk+Iky_quk — 1, where Ik_ is a suitable interpolation
(“prolongation”) from grid hy_1 to grid hj. For problems considered here, bilinear
interpolation is used.

(D) Perform vy relaxation sweeps on (6.1), starting with 4k and yielding the
final result uqk.

The cycle with v = 1 is called V cycle or V(v1, ), and the one with v = 2 is
called W cycle or W (v1, va).

6.2 Full Multigrid (FMG). The N-FMG is an algorithm for calculating an approx-
imate solution

uky = FMG(k,Fk,N) (6.4)
to equation (6.1), defined recursively as the following two successive steps.

(a) Calculating a first approximation ugk: If k = 1, put ugk = 0. Otherwise
put

wok = Dky_1FMG(k — 1, Ik — 1Fk, N), (6.5)
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where IIkj_ is an interpolation of solutions from grid hg_1 to grid hg, and Ipk — 1
is some transfer (“averaging”) from grid k£ to grid k£ — 1, usually a full weighting
of the type (6.3). The interpolation ITky_q should usually be of order higher
than that of the correction interpolation Ikj_1 mentioned above [3, §7.1]. In our
experiments bicubic interpolation was used.

(b) Improve the first approximation by N successive MG cycles
ujk < MG(k,uk;j_1,Fk), (j=1,...,N)
as defined in Sec. 6.1.

6.3 Averaging. The algorithm above is the conventional one, and for equations
with constant coefficients it requires no modifications. In case of quasi-elliptic
equations with variable coefficients, and in particular in case of nonlinear equa-
tions, it is not enough to prevent unstable initial errors, because such errors can
also later be introduced due to interaction between modes. It is then better to ex-
plicitly reduce the unstable modes by averaging, such as (3.1) or (3.2). It may also
then be important to replace Ikj_juk — 1 in step (C) above by Iky_1Shg_quk — 1.
In fact, experiments with non-staggered Navier-Stokes equations (cf. Sec. 8.2)
gave slowly diverging MG cycles unless this averaging was used.

6.4 Measuring convergence. In various situations where algebraic convergence is
not attempted, as in the present algorithm and double discretization [3, §10.2]
and other algorithms, the question is raised how to measure convergence; how to
know, in particular, that a solution to the truncation level (i.e., with algebraic
errors dominated by discretization errors) has been obtained.

The answer is that solution to the truncation level is not really the important
information when differential convergence is our objective (as it should most often
be), because: (i) Solving to truncation level tells us nothing about the trunca-
tion error itself. We may for instance be doing good job in solving the algebraic
system due to having chosen an easy-to-solve but badly-approximating discretiza-
tion. (ii) A smaller differential error may often be obtained faster by switching to
a finer grid before the equations on the present grid have been solved to truncation
level.

The important information is the differential convergence itself, as function
of computational work. This very information can directly be obtained from the
N-FMG algorithm. Indeed, the sequence of approximations uyk, (k = 1,2,...)
is a sequence converging to the differential solution, hence the decrease in the
sequence of differences 6, =| Ik — lunk — unk — 1 || exactly exhibit the speed
of differential convergence, where the norm || - || used to measure d can be chosen
to exactly represent the sense in which convergence is sought. One only has to
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check that the smallness of d;, is not governed by lack of change from ugk to unk.
It is enough for this purpose to check that the suitable residual norm ryk =||
Fk — Lkunk || is considerably smaller than rgk. One can usually also verify that
the algebraic errors are below truncation level, e.g., by confirming that rnk/rok
is considerably smaller than g, /dr_1.

7. Algorithm for Fast Algebraic Convergence

Although fast asymptotic algebraic convergence is not needed for fast differen-
tial convergence, it can still be produced by a more involved multigrid algorithm.
This algorithm (also described in [6]) may be interesting in its own right, since it is
the simplest example of a new kind of algorithms (first mentioned in [1, §3.2], and
more fully in [8]) for solving problems with highly-oscillatory solutions, including
highly indefinite problems.

7.1 Multiple coarse grid corrections. Let 61,62,...,6¢ be all the components for

which Lh vanishes, or, more generally, the centers of all neighborhoods in which
Lh(#) is small. Usually 91 = 0. Then (by [3, §1.1], for example) there exists a
relaxation scheme with fast convergence for all Fourier components except those
close to some 6j5. The error after few such relaxation sweeps must therefore have
the form

Vh(z) =Y _£j=1V;h(z) exp(ibs - z/h), (7.1)

where V;h are smooth functions. Whereas classical multigrid seeks to approximate
Vh on a coarser grid, and the algorithm of Sec. 6 approximates Vih, the new
algorithm will separately approximate each of the V;h, by successively employing
¢ different coarse-grid corrections.

Generally, denoting by H the coarser-grid meshsize (H = 2h), the equations
for V;H, the coarse-grid approximation to V;h, should have the form

L;HV;H = IHy, jRh (7.2)

where IA/J-H(Q) R~ f}jh(Qj + 6) for small 8, and th7j(Qk) ~ d;; (=0 except for
d;; = 1). The boundary conditions may couple V;H and VyH on any piece of
boundary along which exp(i(8j — 6k) - /h) is a smooth function. There are
various ways, variational ones and more direct ones, to derive L;H, IHp ; and
the boundary conditions. There also exist various ways for solving (7.2). In
highly indefinite problems the latter leads to creating more components on grid
4h, etc., so that on increasingly coarser grids the representation tends to a Fourier
representation.
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Here we give only the very simple example of solving for the skew Laplacian
(2.5). (For a more general case, see [6].) In this case £ = 2, 1 = (0,0) and
02 = (mw,m), and one may simply take L1H = LoH to be any H-approximation
to the Laplace operator. In some situations, where the same mechanism creates
both the fine grid and the coarse grid equations, these L;H may again be skew-
Laplacians. As transfer operators one can use

L2 LT -2 1
IHh,l = E 2 4 2 and IHh,Q = E -2 4 =2/. (73)
1 21 1 -2 1

Considering the case that the fine-grid boundary conditions are Dirichlet condi-
tions identically satisfied by any fine-grid approximation, the coarse-grid boundary
conditions for both V1 H and Vo H are the homogeneous Dirichlet conditions. For
solving the coarse-grid equations (7.2), the MG cycle of Sec. 6.1 can be used, even
in the case that LjH are themselves quasi-elliptic, because, for the purpose of accel-
erating the fine-grid algebraic convergence, equations (7.2) need to be solved each
time only to their truncation level (i.e., only to the level of the error V; H — V;h).
In case of similar equations but with non-constant coefficient, averaging as in Sec.
6.3 should better be used.

7.2 The modified algorithm. Given an approximate solution ugk to (6.1), the
modified multigrid cycle MMG for producing the improved solution w1k

urk < MMG (k,uok, Fk) (7.4)

is defined non-recursively as follows:

If k =1 solve (6.1) by any direct or iterative method, yielding the final ujk.
Otherwise, perform v relaxation sweeps on (6.1), resulting in a new approximation
uk,0, and then, for j =1,2,...,4, calculate

vk — 1,7 + MG (k — 1,0, I2hyy,, ;(Fk — Lkuk,j — 1))
uk,j = uk,j — 1+ exp(ibj - z/h) Ikp_jvk —1,j

with u1k = uk, £ being the final result. Ik;_; again denotes linear interpolation.
MG is the cycle defined in Sec. 6.1, with a choice of v, vy, va.

With this MMG cycle replacing the MG cycle, the modified FMG algorithm
is defined in the same way as FMG in Sec. 6.2.

7.3 Modified smoothing analysis. The smoothing factor for the above MMG cycle,
i.e., the ideal factor of convergence one can expect from such a cycle per relaxation
sweep on the finest grid is defined by

= max (), (7.5)
7/2<|0—8j| for one j, |0|<n
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where |1(0)| is the spectral radius of the amplification matrix (or the absolute value
of the amplification factor, if ¢ = 1). Note that for £ > 2d, the domain of 8 over
which the maximum is taken may be empty. In such a situation convergence can
in principle be obtained without any relaxation on the finest grid. This does not
mean that the algorithm is more efficient than a conventional multigrid, because
it employs at least £ times as many relaxation sweeps on each coarser grid.

A more precise two-level analysis can of course be made here in the conven-
tional way [3, §4.1].

For the skew-Laplacian and the algorithm described above, the lexicographic
Gauss-Seidel amplification factor (5.2) attains its maximum (7.5) at (£7/2,0) and
at (£m/2,7), yielding g = .447.

8. Numerical Experiments

8.1 The skew Laplacian problem. Our main experimental studies were conducted
with the skew Laplacian scheme (2.5) in the rectangle {0 < 21 < 2,0 < z9 < 3}
with Dirichlet boundary conditions. These conditions and the right-hand side
of the differential equation AU = F were chosen so that the solution U of the
differential equations is known, to allow direct measurements of discretization
errors. The sequence of grids have meshsizes hy, = 21 —k (k = 1,2,...), each
positioned so that the boundaries of €2 coincide with grid lines. On every level
Lk is the skew Laplacian, and the relaxation is lexicographic Gauss-Seidel. The
algorithms were those described in Secs. 6 and 7.

Table 1 shows the maximal differential error (maximal differences between
computed and differential solutions) on various grids. In addition, columns headed
by 0 or dc show maximal error in first derivatives, approximated either at grid
midpoint by short difference quotients (the 0 columns), or at gridpoints by dc;
(the dc columns). The upper part of the table gives these errors for the exact
discrete solution, the lower part — for the solution obtained by a 1-FMG algorithm
with V(2,1) cycles. For grid 5 an additional result (5a) is sometimes given: It
shows errors measured after the solution is averaged by (711/2 + T1—1/2)/2 (cf.
(3.1)). The table compares skew-Laplacian with usual (compact) Laplacian (using
the same meshsize and the same relaxation), and a case of smooth solution with a
highly-oscillatory case. The latter is shown in order to emphasize how bad quasi-
elliptic schemes can be. In practice such highly oscillatory components have very
small amplitudes: If their amplitudes are bigger than O(h2) (here hs2 = .001),
then second-order approximations cannot be obtained by any discretization. In
the highly oscillating case it was of course necessary to use the full weighting (6.3)
for Ik —1 in (6.5); this was started with £ = 7. In the smooth case, however,
injection of F' was used, in order to obtain a clearer picture, clean of F-averaging
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€ITorsS.

TABLE U = sin(3z + 2y) U=z(2—z)y(3—y) cos W(ﬂ'y)
1 AX Ah Ax Ah
grid 0 Oc 0 0 dc 0

Exact | 3 |.1703 .410 .271|.0517 .108 | 2.25 3.93 3.37|.0152 .030
4 1.0417 .115.092|.0129 .033 | 2.25 4.22 3.93|.0038 .008
5 |.0104 .031 .027|.0032 .009| 608. 19494. 979.|.0009 .002
da|.0084 .027 .031 30.6 979. 38.1
1-FMG| 3 |.1709 .436 .276 |.0606 .151| 2.25 3.93 3.37|.0198 .039
.0418 .109.092|.0169 .048 | 2.25 4.22 3.93|.0055 .012
.0105 .030.027|.0045 .014| 21.5 752. 64.7|.0014 .003
da|.0085 .027 .031 2.13 64.7 6.41

8.2 The Stokes and Navier-Stokes problems. We have also conducted experiments
with the Stokes operator (2.3), described in detail in [3, §18.6] (with slight improve-
ments, to be described in the new edition). The unknown grid functions of this
operator are Uh, Vh and Ph — the discrete horizontal velocity, vertical velocity
and pressure, respectively.

In the differential problem only velocities are normally given on the boundary.
In the non-staggered discretization (2.3) some boundary conditions for Ph should
be introduced (which is a disadvantage typical to many quasi-elliptic operators).
For clarity of exposition we here avoid this issue by showing results for periodic
boundary conditions (adjusting undetermined additive constants before measuring
errors).

The exact treatment of boundary conditions is important only in measuring
asymptotic convergence rates. It does not much affect results of 1-FMG. Therefore
we will show such results also for the Dirichlet boundary conditions. In these
experiments Ph at each boundary point is taken equal to the nearest interior
value of Ph, and it changes whenever the latter does. This does not correspond
to Neumann boundary conditions, but to coupling the four subgrids into which
the Ph grid decouples. A partial relaxation sweep near Dirichlet boundaries is
performed before each full relaxation sweep.

The relaxation employed is distributed Gauss-Seidel (DGS), a special case of
a scheme for relaxing general PDE systems, explained in [3, §3.7]. Briefly, it is
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equivalent to writing Uh = @1 h—01cphs, Vh = pah—0scphg and Ph = —Ahpsh,
and relaxing by usual Gauss-Seidel the resulting equations in ¢jh. The changes
in the latter imply changes in Uh, Vh and Ph, which define the actual changes
performed by the DGS relaxation. The relaxation ordering is 4-colored, relaxing
the four mentioned subgrids one at a time.

The domain for this problem is the square {0 < z; < 27}. The meshsizes are
hi = 2—km. The right-hand side and the boundary conditions are chosen so as to
give the prescribed solution U =V =P = sin(cos(:vl + 2:::2)), a periodic solution
which includes many Fourier modes. The discrete right-hand sides were calculated
by Fk — 1= I3k — 1Fk, using (6.3), starting at k£ = 8.

Some experiments were conducted with averaging (cf. Sec. 6.3). In the
present case this means averaging of Ph only, since Uh and Vh vanish in the
unstable modes. When used, this P-averaging employed (3.1), with mq = mg = 2,
performed on Ph in any solution or correction just before interpolating it to a
finer grid.

Also mentioned below are experiments with non-stagered incompressible
Navier-Stokes (INS) equations, with procedures similar to those for Stokes. For
details see [3, §19]; the modification from staggered to non-staggered formulation
and processing are the same as for the Stokes equations. Results are given for the
Dirichlet problem (U and V given on the boundary, P on the boundary treated as
above), for the case U =V = P = 1+ .2sin(cos(z1 +2z2)). We have experimented
with small and large Reynolds numbers, Re. In the latter case anisotropic artificial
viscosity was used in relaxation, its magnitude being 1.4 times the viscosity intro-
duced by upstream differencing. Central differencing without artificial viscosity
was used for the fine-to-coarse residual calculations, allowing O(h2) solutions to be
obtained. The large Re PDE problem is not elliptic (more precisely, it has small
ellipticity measure), so its detailed discussion is beyond the scope here. Indeed,
the present example is not fully typical for large Re, because it has no boundary
layers and no gridline-streamline alignments.

Table 2 summarizes four numerical experiments: Three with the Stokes
(Re = 0) problem (exact solutions for the periodic (“Per.”) boundary conditions;
1-FMG solutions with W (2,1) cycles for the same problem; and similar 1-FMG
solutions for the Dirichlet (“Dir.”) problem), and one experiment for “infinite” Re,
i.e., with viscosity completely dominated by artificial viscosity. The latter exper-
iment uses 2-FMG algorithm with W (2,0) cycles, because double discretization
(different artificial viscosities at different stages) is involved (cf. [3, §10.2]). For
each experiment and each grid k, the three numbers shown in the first column are
max(|| uk = U ||,|| vk =V |), || pk — P || and || pk — P ||, where (uk, vk, pk) is the
solution obtained for that grid, pk = %Hj=12(Tj1/2 + T;—1/2)pk and || - || is the
discrete L1 norm per unit area. The three numbers in the next column (headed
by “0”) are max;j—1 2 max(|| d;kuk — 0;U ||, | 9jkvk — 0;V ||), || 0;kpk — 0;P ||,
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TABLE Non-staggered Navier-Stokes Staggered

2 No P-averaging P-averaging Nav.-Stokes
grid 0 Oc 0 Oc 0

Re =0 |5/.00084 .0030 .0108 |.00084 .0030 .0108 |.00079 .0055

Per. .00500 .0394 .0392 |.00500 .0394 .0392 |.00150 .0094

.00542 .0395 .0395 |.00542 .0395 .0395 |.00513 .0212

Exact |6].00024 .0007 .0026 |.00024 .0007 .0026 |.00018 .0013

Sol. .00123 .0098 .0098 |.00123 .0098 .0098 |.00037 .0025

.00135 .0100 .0108|.00135 .0100 .0108 |.00127 .0054

Re =0 |5(.00090 .0036 .0113|.00097 .0031 .0113 |.00080 .0052

Per. .00661 .2086 .0555|.00978 .3452 .0682 |.00163 .0215

.00562 .0447 .0445|.00977 .0670 .0691 |.00540 .0243

W(2,1) |6|.00024 .0008 .0027 |.00025 .0008 .0027 |.00018 .0013

1-FMG .00136 .0536 .0146 |.00216 .1346 .0181 |.00036 .0036

.00136 .0119 .0117|.00209 .0180 .0189 |.00129 .0057

Re =0 |5].00104 .0041 .0111|.00097 .0035 .0109 |.00076 .0055

Dir. .01285 .3715 .0851.01480 .3946 .0763 |.00198 .0176

.00712 .0665 .0530|.00971 .0719 .0649 |.00544 .0246

W(2,1) |6|.00027 .0011 .0028 |.00026 .0008 .0027 |.00017 .0013

1-FMG .00337 .1586 .0451{.00371 .1776 .0264 |.00047 .0038

.00191 .0348 .0271.00223 .0252 .0191 |.00132 .0059

Re = 00 |5|.00272 .0433 .0253 |.00215 .0250 .0097 |.00168 .0180

Dir. .01515 .4536 .2382|.00637 .2098 .0256 |.00242 .0832

.00957 .1945 .1594{.00273 .0168 .0147 |.00106 .0076

W(2,0) |6|.00138 .0547 .0357 | .00088 .0154 .0046 |.00039 .0064

2-FMG .01517 .8227 .4913.00142 .0830 .0085 |.00066 .0436

.01051 .4062 .3413|.00074 .0048 .0033 |.00038 .0016
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and || 9;kpk — 0;P ||, where 0; = 0/0z; and 0;jk = (T;1/2 — T;—1/2)/hy. In
the next column (headed by Oc), similar numbers are given, with the long differ-
ence quotient 0jk = dc; = (Tj — Tj—1)/(2hy) replacing 9;k. The next 3 columns
show similar sets of results for the case that P-averaging is used. The remain-
ing 2 columns give for comparison results obtained on a staggered grid with the
same meshsize, without P-averaging. (Using pk for approximation, especially of
derivatives, still may pay if v = 0).

8.3 Accuracy and Stability. Tables 1 and 2 clearly show that the exact quasi-
elliptic solutions (Ax and the non-staggered Stokes, the latter mainly in terms
of P) are several times less accurate than the corresponding fully elliptic ones
(Ah and staggered Stokes, respectively), but they are still O(h2). Errors in the
highly oscillating case, exhibiting instability, could of course all be reduced to O(1)
(or O(hs—1) in derivatives) by enough F-averaging (see §3). Averaging the solu-
tion (row ba, or the pk results), or taking suitable long difference quotients, cure
the worst behavior too, but also somewhat further reduce the smooth-component
accuracy, which nevertheless remains O(h2).

8.4 Poor asymptotic algebraic convergence. Denote by A the asymptotic conver-
gence factor per multigrid cycle, i.e., A = (r7/rm)1/(£ —m) for sufficiently large ¢,
m and ¢ —m, where 7, is any error (or residual) norm measured at any fixed stage
of the £-th cycle. As expected (see §4.1), the usual cycles MG(k, . ..) yielded poor
A for quasi-elliptic schemes:

In case of the Skew Laplacian and V' (2,1) cycles, our experiments exhibited
A = .845 and A = .96 for levels k¥ = 4 and k = 5, respectively. The convergence
rate log1/X is clearly O(h2), as the rate of a simple Gauss-Seidel solver for the
compact Laplacian Ah. Indeed, on each subgrid (red or black) the relaxation does
look like Gauss-Seidel for Ahy, and the coarse grid corrections are no help in case
the black residuals cancel the red ones in the transfer to grid k—1. For comparison:
V(2,1) cycles for the compact Laplacian Ah with lexicographic Gauss-Seidel yield
A=~ .12 on all grids.

Similarly, for the periodic Stokes problem and W (2,1) cycles, A = .80 and
A = .945 were obtained on levels 4 and 5, respectively, exhibiting again O(h2)
rate. The rates were almost identically the same whether P averaging was used
or not. For comparison, for staggered-grid Stokes discretizations the red-black
DGS relaxation gives A = .30 and A = .20 for the W(1,0) and the W(2,0) cycles,
respectively. These same excellent rates are obtained both for the periodic and
the Dirichlet boundary conditions (provided some local relaxation near boundaries
is added in the latter case). The same results are obtained for the Navier-Stokes
problem with small Re. For large Re, divergence occur unless P-averaging is used
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(cf. §6.3).

8.5 FMG results. Despite the bad asymptotic convergence, Tables 1 and 2 clearly
show that results obtained for the quasi-elliptic cases by short FMG algorithms
are very good. In smooth cases they yield differential errors practically as small
as in the exact discrete solutions. Moreover, in case of the unstable mode, the
FMG results are visibly much better than the exact solution (precisely because the
bad behavior is slow to enter). In case of non-linear equations (Table 2, Re = c0)
proper averaging (Sec. 6.3) is evidently necessary for good FMG results.

8.6 Asymptotic convergence with new algorithm. The M MG(5,...) cycle of §7.2
has been employed to solve the skew Laplacian problem with v = 3 relaxation
sweeps per cycle and with V(2,1) used as the MG(4,...) inner cycle. For many
cycles the convergence factor per cycle was steadily between .07 and .08, or a
convergence factor of .425 per fine-grid relaxation, close to the value .447 expected
by the smoothing mode analysis (§7.3).
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