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Abstract. A rigorous two-level theory is developed for general symmetric ma-
trices (and non-symmetric ones using Kaczmarz relaxation), without assuming any
regularity, not even any grid structure of the unknowns. The theory applies to al-
gebraic multigrid (AMG) processes, as well as to the usual (geometric) multigrid.
It yields very realistic estimates and precise answers to basic algorithmic ques-
tions, such as: In what algebraic sense Gauss-Seidel (or Jacobi, Kaczmarz, line
Gauss-Seidel, etc.) relaxation smoothes the error? When to use block relaxation?
What algebraic relations must be satisfied by the coarse-to-fine interpolations?
What is the algorithmic role of the geometric origin of the problem? The theory
helps to rigorize local mode analyses and locally analyze cases where the latter is
inapplicable.

The research reported herein is sponsored by the Air Force Weight Aeronautical Laboratories,
Air Force Systems Command, United Air Force, under Grant AFOSR. 84-0070. A preliminary
version has appeared in April, 1983 [7].



Content

Page

1. Introduction

2. Classes of Symmetric Matrices

2.1 Local positive definiteness

2.2 Positive type matrices

2.3 Zero row sums

2.4 Essentially positive type matrices
2.5 RB matrices and RB vectors

3. Relaxation and Smoothing

3.1 Gauss-Seidel relaxation

3.2 Sharpness of bounds and converse theorem
3.3 Other point relaxation schemes

3.4 Block relaxation

3.5 Algebraic sense of smoothing

4. Two-Level Algebraic Analysis

4.1 General description and notation

4.2 Relaxability after coarse level correction
4.3 Conclusions for positive type matrices

4.4 Strong coupling overlaps

4.5 Conclusions in more general cases

4.6 Two-grid analysis with block relaxation
4.7 Limitations of purely algebraic algorithms

5. Concluding Remarks

5.1 AMG for systems

5.2 Improved interpolations

5.3 Improved E-R theory. Localization blueprint
5.4 Partial relaxation

5.5 Role of geometry

Acknowledgement

Bibliography



1. Introduction

The purpose of this work is to develop the theoretical background needed for
algebraic multigrid (AMG) solvers (see [6, §13.1], [10], [11], [20] and [21]), and at
the same time to develop precise algebraic theory also for usual (including geo-
metric) multigrid solvers. The theory is more precisely quantitative than other
approaches, excluding local mode analyses [8]. Its insights are particularly im-
portant for cases where local mode analysis cannot be applied, such as AMG or
geometric multigrid for problems with everywhere strongly discontinuous coeffi-
cients, as in case of Lagrangian discretizations. The inability of mode analysis
to give full insight to the multi-level solutions of such problems, and the pressing
need for solving many such problems with fully efficient algorithms, that can only
be guided by precise quantitative insights (with convergence estimates realistically
dependent on the various algorithmic parameters), were indeed the main motiva-
tions for this work. Also, even when mode analysis is applicable, it usually needs
to be supplemented by the algebraic theory at some particular regions (e.g., near
structural singularities; see [8]). More generally, the present theory explores the
most general extension of the multi-level approach (not only for symmetric matri-
ces; see in particular Theorem 3.4 and the discussion that follows it, and also [6,

§1.1]).

The term “algebraic” multigrid, as against “geometric” multigrid, refers
mainly to the mode of constructing coarser levels (coarser grids) in multi-level
solvers. In the usual, geometric approach, each coarser grid is a simple, well-
ordered coarsening of the next finer grid; e.g., the lines of the former are obtained
by taking every other line of the latter, whether these are lines of gridpoints or lines
of grid cells (when discretization is made in terms of cells). Sometimes only lines
in some directions are so coarsened, while in other directions all fine-grid lines are
retained in the coarser level [6, §4.2.1]. At any rate, the coarse-level variables, and
their relation to the fine-grid variables (through interpolation), are characterized
by their geometrical location.

In the algebraic approach no organized grids are assumed. The coarse-level
variables are just a set of variables selected so as to satisfy certain criteria based
on the fine-level equations. The most basic criterion is typically that each fine-
level variable should be “strongly connected” to some coarse-level variables (see
Secs. 3.5, 4.3). The coarse-to-fine interpolations and the fine-to-coarse transfers
are also mainly based on the algebraic connections (although “hybrid” schemes
are envisioned in which some geometrical information is taken into account; see
Sec. 5.2); in this respect AMG continues the line of development set in [1] and
[13].

Each of these approaches has its advantages and domain of applicability. The
geometric multigrid in many cases is more efficient in terms of storage and time,
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because it need not store the (sparse) matrix entries (both on fine and on coarser
grid) and it need not assemble the coarse grid equations. But in other cases this
storage and work are still invested even though the geometric algorithm is used.
For such cases and some others, AMG (or the mentioned hybrid schemes) has
several advantages:

First, AMG can be used as a black-box solver. Since the algorithm is based on
the given matrix, assuming only some general properties, it can be used for a wide
range of problems, with no need to give special attention to boundary conditions,
anisotropies, strong discontinuities in coefficients, etc., features which normally
require advanced expertise. Moreover, since the AMG selection of the coarse grid is
based on strong algebraic connections, extremely anisotropic equations, equations
with strong discontinuities, quasi-elliptic equations (cf. [9, §3.4], [12], [14]) and
many other cases where full h-ellipticity is irregularly lost, are all solved by the
same AMG algorithm, employing simple (pointwise) Gauss-Seidel relaxation. This
is particularly important for problems where several of these difficulties appear
together. In some pathological cases (see [A1l, §8]) even 5-point diffusion equations
cannot be solved with the usual, geometric coarsening.

An obvious use of AMG is for problems where no organized grids are employed
and hence the geometric multigrid is not even applicable. This includes finite
elements discretization with arbitrary, irregular fine-grid triangulations, and large
matrix equations which are not at all derived from continuous problems, such as
the geodetic adjustment problem [18], multivariate interpolation of scattered data
[17], large scale problems in economics (cf. references in [10]), circuitry queuing
problems, network optimizations, image reconstruction equations, etc.

There may well be large-scale problems which cannot efficiently be solved by
multi-level techniques. One of the purposes of AMG Research in general, and the
present study in particular is to define classes of problems for which AMG makes
sense. In particular we study the role of the geometrical origin of the problem (see
Sec. 5.5).

Despite the irregularity of the treated problems, the present theory is very
concrete and realistic in its estimates, avoiding general undetermined constants,
and almost precise in studying the dependence of convergence rates on various
factors. Concrete estimates are obtained for successive displacement relaxation
schemes, such as Gauss-Seidel or Kaczmarz with arbitrary ordering, for simulta-
neous displacement schemes, such as Jacobi, and for block relaxation. This is
obtained by introducing new error norms (or square norms, such as R and E in
Sec. 3.1) which experience precise interplay under the corresponding relaxation
schemes. Through examples it is shown that the obtained relations are essentially
the best possible, including sometimes the best possible constants.

For purely algebraic multigrid algorithms the performance of two-level
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schemes is derived by showing the “relaxability” (efficient reducibility by relax-
ation) of the error produced by coarse-grid corrections (Sec. 4.2). This general
result does not depend on any regularity, in fact not even on any underlying ge-
ometric structure. But it is then shown (Sec. 4.7) that such purely algebraic
algorithms have limited efficiency.

To obtain full efficiency geometric interpolation should be used. The main
theoretical vehicle to analyze such situation is localization, briefly described in
Sec. 5.3.

Various AMG concepts and tools are suggested and discussed by the present
study. This includes the algebraic meaning of smoothing by relaxation (Sec. 3.5),
the general “rule of block relaxation” and hence the AMG rule of interpolating
along strong connections (Sec. 3.5), the possibility of using few interpolation points
even when many points are strongly connected (Sec. 4.4), preliminary discussions
of handling PDE systems (Sec. 5.1) and using geometric information in select-
ing coarse-grid variables and in constructing interpolation (Sec. 5.2), and partial
relaxation passes (Sec. 5.4).

2. Classes of Symmetric Matrices

We deal with the solution of the linear system

anzlainj = b;, (i=1,...,n) (2.1)
or, in matrix notation
AX =b.

The matrix A can be fairly general, but for some of the processes described below
to make sense we will see later that some properties of A are needed which are
usually satisfied whenever the system of equations has a geometrical background;
it may, but need not, arise from discretizing a continuous problem.

2.1 Local positive definiteness

In the present work we do not attempt to derive the most general theory. To
make our study easier we start with the case that A is symmetric: a;; = aj;; or,
in the complex case, Hermitian: a;; = aj;. Except for Theorem 3.4, this will be
assumed throughout. Also, we assume A to be positive definite (in case of simple
point relaxation. More general cases may be considered by using distributive and
weighted relaxation schemes, in which case it is A, defined in Sec. 3.3, that should
be symmetric and positive definite).
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We will use, more specifically, the assumption that A is “locally’ (or
“sparsely’) positive definite, i.e., for any vector x

xT Az = Z fr(2)2, (2.2)
k

where each fj () is a linear function involving only few of the components z;. This
class naturally involves least square problems with local (sparse) measurements
and (variational) discretization of elliptic equations. In addition we note in the
next paragraphs several important classes of locally positive definite matrices.

2.2 Positive type matrices

The simplest case of local positive definiteness is that of positive-type matri-
ces, i.e., matrices A for which

aij <0 for all j # 4, and Y a;; > 0 for all i. (2.3)
i

It is easy to see that

eTAz = 53, i(—aig)(zi — 25)2+ 3,30 aij) =2, (2.4)

which is of the form (2.2). Note from here that a sparsely positive definite matrix
is itself not necessarily sparse.

2.3 Zero row sums

sometimes, without loss of generality, it is convenient to assume that a
positive-type matrix A has zero row sums, i.e.,

) ag; =0 for all i. (2.5)
j

Indeed, if (2.5) is not satisfied, we can always add a slack variable, z( say, taking

aOi:aiOZ_anzlaija (i=0,1,...,n).

The new system clearly satisfies both (2.3) and (2.5). Note that with (2.5) the
system is singular; the solution is determined at most up to an additive constant:
If z is a solution, so is also z — (¢, ¢,...,¢)T. Thus, by choosing ¢ = xg, we can
always obtain a solution in which g = 0 and hence the non-slack variables satisfy
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the original system. Note also that, with the zero row sum assumption (2.5),
relation (2.4) simplifies to

2T Ax = %Z”(—aw)(xz - :UJ)Q (26)

The introduction of a slack variable is not just a theoretical artifact. It turns
out to be a useful algorithmic device as well. Including the slack variable and the
corresponding equation in the Gauss-Seidel relaxation is equivalent, in terms of
the original system, to a step of adding the same constant to all unknowns so as
to satisfy the sum of all the equations. Such a step is indeed needed in some cases
(e.g., Helmholz equation —Au + Cu = f with small |C| and Neumann boundary
conditions) in order to get fast convergence on the coarsest grid (cf. [23] and [1, p.
436]). On the finest grids this is usually not needed, so some work could be saved
by avoiding there the introduction of the slack variable. (It can usually altogether
be avoided by solving the coarsest system directly.)

2.4 Essentially positive type matrices

Quite often the matrix A is “almost” positive type, in the sense that ) a;; >
0 is still true for all 7, but the requirement a;; < 0 is violated for some 7 # j. If
those positive a;; are sufficiently small, they need not bother us. This, for example,
is usually the situation in discretizing second-order elliptic equations with mixed
terms (02u/0z10x2 etc.). For each i # j with a;; > 0, we can then usually find
another variable, k say, such that both —a;; > @a;; and —aj, > Ba;j, where
a>1,4>1and (o —1)(8—1)=1. We can then replace (z; — ;)2 in (2.4) by

az; — zp)2 + Bzj — z1)2 — (Qz; + Bz — (@ + B)zy)2 (2.7)
where @ = (o — 1)1/2 and 8 = (8 — 1)1/2, so that the resulting quadratic will

have the form (2.2). Whenever we can so repair (2.4) to get the form (2.2), we say
that A is essentially positive type.

2.5 RB matrices and RB vectors

Another important class of matrices, which are used below mainly as examples
for the sharpness of some estimates, is the class of RB (Red-Black) matrices. These
are defined as matrices A for which there exist two disjoint subsets (“colors”) Sg
and Sp (“red” and “black”) such that Sp U Sp = {1,2,...,n} and such that
a;ja;p > 0 if j and k are in the same subset and a;ja;; < 0 if j and k are in
different subsets.

All positive-type matrices with Property A (see[24]), for example, are RB ma-
trices, including all those arising from the common (2d + 1)-point discretization of
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second-order elliptic equations in d-dimensional space. In addition, the common
13-point discretization of the biharmonic operator, the staggered discretization
of the Stokes or the compressible or incompressible Navier-Stokes equations (the
principal and subprincipal terms; see [5] or [6]), and many other discretized prob-
lems, yield RB matrices, not necessarily symmetric and not necessarily of positive
type.

With respect to a fixed RB matrix, a vector x will be called an RB-constant
vector if ; = —x; whenever icSg and jeSp.

3. Relaxation and Smoothing

3.1 Gauss-Seidel relaxation

In this section (except in Theorem 3.4) we assume A to be symmetric (or
Hermitian) with positive diagonal: a;; > 0 for 4 = 1,...,n. Let z be some
approximation to the solution X of (2.1). We denote the error by e = z — X and
the residual by » = Ae. Thus, r; = Zj a;jrj — by = Zj a;jej. We will use the
square error norms

E =eTr and R:Z\rip/aii
)

and observe their changes in various processes. (The superscript T stands for
transposed, and in case of complex values, for complex-conjugate transposed.)

Consider a Gauss-Seidel relaxation sweep. Let €0, 70, F0 and R0 denote the
values of e, r, F and R, respectively, before the sweep, and el, r1, F1 and R1 the
corresponding values after the sweep. And let r;* denote the “dynamic residual”,
i.e., the value of r; just before the step of relaxing z;. Here, “relaxing x;” means
the step of replacing x; by a new value x; + d;, as a result of which each r; is
replaced by r; + a;;6;, (i = 1,...,n). In Gauss-Seidel one takes

0j = —rjx/aj; (3.1)
so that, in particular, 7; is replaced by 0. Using symmetry (this is in fact the main
point where symmetry is used), it is also easy to see that E is thereupon replaced

by

|7%|2

E+ Zéiaij(sj' =E+T7Tjx0; = FE — = FE — a;;|6;]2. (3.2)

P ajj
(The complex-conjugate bars are shown in case one is interested in complex func-
tions, like those appearing in the corresponding mode analysis.) The Gauss-Seidel

sweep consists of relaxing x1, then x9, then x3, etc. up to x,. Hence,

E1 = E0 — Rx, (3.3)
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where
Rx = Z |7‘j*|2/ajj = Zajj|(5j|2.
J

Thus, in a full sweep the value of F is decreased by a quantity Rx*, akin to RO and
to R1. Actually, we now prove that the decrease is at least comparable to R0 and
to R1.

Theorem 3.1. The decrease of E in one Gauss-Seidel sweep is E0 — E1 >
20RO, where 7 = [(1+7-)(1 +7+)]—1 and

V- =7-(4) = mz?lxz lagjl/aii,  y+(A) = m?XZ |aij|/ai. (3.4)
< >

Proof. After relaxing x; we have a zero residual at ¢, that is

r; =1;0+ Z a;;0; = 0. (3.5)
J<t

Hence, by the Cauchy-Schwarz inequality and (3.4),
> [1i0[2/ay = >7; a;—1 ngi aij0;|2
<30 ai—1(3 < laig]) (3 <i lasjl10512)
< (L 47=) 225 2 j<i lail]o;2
= (L+7-) 225165122255 laij]
< (X +7=)A +v4) 205 4516512
and the theorem follows from (3.3).

Corollary 3.1. If A is symmetric and positive definite than
E > yR.

This follows from Theorem 3.1, since E1 > 0. Numerical values of v and the
sharpness of the estimate are discussed in the next section.

Theorem 3.2. The decrease of E in one Gauss-Seidel sweep is at least y1 R1,
where v1 = [7-(A)v+(4)]-1.

Proof. After relaxing x; we have r; = 0, hence

il = Zaijéj' (3.6)

J>i
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By Cauchy-Schwarz inequality
doilril2/as = 32 aii—1] 3 s, aijj)2
< i ai=1(3 54 laigl) (O 5 laij110512)
< V4225 D> lail|05]2
= 7425 10512 225« laij]

and the theorem follows from (3.4) and (3.3).

3.2 Sharpness of bounds and converse theorem

It will now be shown that the constants vy and 7y; in Theorems 3.1 and 3.2 are
practically optimal: In the most important cases the stated bounds are actually
attained, and in other cases they are reasonably approached. Moreover, in any
case, constants as close to practical as one wishes can be derived. (The reader not
interested in these details can skip this section.)

Consider first the case of an infinite RB matrix A (see Sec. 2.5) with

Y- = laijl/as, v+ = laijl/ai (3.7)

Jj<i J>i

for all 7. Then, for an RB-constant vector of corrections 4, the inequalities in
the above proofs all become equalities. Hence, yg and 7; are the best possible
constants in terms of y_ and 4. Moreover, for a finite RB matrix A and an RB
vector 4, if (3.7) is approrimately satisfied, in the sense that for some small subset
S C {1,2,...,n} and for a small positive constant ¢ we have

D laigl/ag > v-—e, D lagl/aw > v — € (3-8)

J<i J>1

for all i ¢ Sy, then the inequalities in the proofs are not far from equalities, hence
the bounds g and 7; are almost attained. This is indeed the usual situation in
geometrically ordered relaxation of finite difference approximations to differential
equations on regular grids with meshsize h, where Sy is a subset of points near
the boundary and ¢ — 0 as h — 0 if the coefficients of the differential equation
are continuous. The bounds g and ; are then attained in the limit A — 0.

The above class of matrices include most of the regular symmetric matrices
arising in differencing differential equations on regular grids. For matrices not in
that class the bounds are not generally approached, but the practical values of g
and 71 are not far from the stated ones, provided the definition of y4+ and y— are
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slightly modified by excluding some special values of ¢ from the maximization in
(3.4).

Moreover, for regular and large (h — 0) grids, precise values of vy and 71
can always be derived by local mode analysis (cf. [6]). Usually, values calculated
by local mode analysis are rigorously true only for the infinite-domain (or the
rectangular, etc.) problem. In determining g and <1, however, one can rigorously
justify the mode analysis values, 4y and 4; say, for any domain, at least in the
limit of vanishing meshsize (h — 0) and with proper modification of the relaxation
scheme at a small number of points. This is done in the following way: Given a
small positive constant e, before each relaxation sweep a (possibly large) number
v(e) of relaxation sweeps is performed over all those gridpoints whose distance
from the boundary is less than k(e)h. With a proper selection of v(e), k(e) and
ho(€), we can prove that for any 0 < h < hg(e) Theorems 3.1 and 3.2 are satisfied
with 79 = 49 — € and 71 = 41 — €. The detailed proof is omitted since it is not
used below.

For a symmetric constant-coefficient difference operator Lh with geometri-
cally consistent relaxation ordering (i.e., if grid point z is relaxed after z — a,
then it is relaxed before z + a), local mode analysis yields particularly sim-
ple results: Lhexp(ifz/h) can be written as [a + b(8) + b(0)] exp(ifz/h), where
a = a;jj, and each relaxation sweep transforms the error component exp(ifz/h) to
(a+b)—1bexp(ifx/h). Hence, it is easy to calculate that for each error component

E0O—-E1  a 5 E0—-FE1 a

RO _|a+b‘ ’ R1 ‘5'2‘ (3.9)

Since b(0) = b(0) = —a/2, it follows that for smooth components (§ ~ 0) we
have F0 — EF1 ~ 4R0 ~ 4R1. Indeed, when relaxation is slow it is clear that
rO~ 71l rx/2.

There are, of course, particular error components for which £0— FE'1 is consid-
erably larger than v9R0, and (other) components for which £0— E1 is much larger
than v R1. Still, the lower bounds of Theorems 3.1 and 3.2 are very realistic, be-
cause they are (almost) attained exactly for the components which are normally
dominant at the stage for which each theorem is used. Theorem 3.1 is used (see
for example Sec. 4.2) to estimate the drop in F at the first relaxation sweep after
the coarse-grid correction. Due to the nature of interpolation, the dominant errors
e0 at this stage are normally highly oscillatory (e.g., with a large RB component)
which are indeed the type of errors for which the bound in Theorem 3.1 is attained
or approached. Theorem 3.2, on the other hand, is used to estimate the smallness
of R when relaxation slows down. At this stage the dominant errors are smooth
(see Sec. 3.5), for which the bound of Theorem 3.2 is indeed attained (e.g. when
A is positive-type), or reasonably approached.

For symmetric positive type matrices approximating continuous operators,
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with geometrically consistent relaxation ordering, it is easy to see that y_(A) =~
v+ (A) =~ % Hence, v ~ % and 1 = 4, values which are actually attained for the
highest- and lowest-frequency errors, respectively. For this type of operators, as
well as many others, the following theorem, a converse of Theorem 3.1, can be of
interest.

Theorem 3.3. If A is symmetric and v—(A)y4+(A) < 1 then E0 — E1 <
1= (7—74)1/2]—2R0.

Proof. Denoting D = 3", | doi<i a;j0;12/a;; it is easy to see (cf. the proof of
Theorem 3.2) that D < y_~4+ R+. Hence
R+ =3, |ri0+ Ej<i a;j0;|2/a;
S RO+235|ri0[ 325« aijéil/aii + D
< RO+ 2(ROD)1/2+ D
< RO+ 2(y—v4+ROR*)1/2 + y_v4+ Rx

which can be rewritten as

[(1+ (v=74)1/2) (R*)1/2 + (R0)1/2] [(1 — (v=v+)1/2) (R*)1/2 — (R0)1/2] <0

yielding, by (3.3), the theorem.

In particular, for symmetric positive type operators with constant coefficients
and with consistent relaxation ordering we have vy = y_ = %, hence we get the
interesting result

4R1 < E0 — FE1 < 4R0. (3.10)

When relaxation slows down then R1 =~ R0, hence we have quite a precise measure
for the relation between that slowness and the smallness of the ratio R/FE. Namely,
the convergence factor is almost precisely 1 — 4R/E. As we saw above (following
(3.9)), this is in practice the slow convergence factor even when the operator is
not of positive type.

3.3 Other point relaxation schemes

Theorems 3.1 and 3.2 can be extended to perhaps any reasonable point relax-
ation, including point Jacobi (Richardson) schemes, red-black Jacobi (even with
couplings within each color), etc. In fact, if sufficiently small, but depending only
on

’)/*(A) :mlaxzmiﬂ/aii, (3.11)
J
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under-relaxation parameter w is used (as in most multigrid theories, but not in
practice), then the proof is trivial, since R0, R* and R1 are obviously comparable,
and the effect of relaxing points simultaneously is 0(w~«(A)) compared to relaxing
them successively.

In point Jacobi, for example, §; = —wr;0/a;; is added to z;, simultaneously
for all 7. Hence

E1 :EO—2wZ|riO|2/aii+w22 ’I"ZO’I‘JO
5 i a“aN
and by the Cauchy-Schwarz inequality and (3.11)
E1 < E0 — w[2 — wy«(A)]RO. (3.12)

Note that for positive type operators v«(A) < 2, hence E0 — E1 > R0, with
Y0 = 2w(l — w). This value of ~g is again sharp; it is attained for infinite RB
matrices satisfying (3.7) and closely approached for finite RB matrices.

Other types of point relaxation are the distributive schemes (see [9, §5.3],
[4, §4.1] or [6, §3.4]) and weighted schemes (see [3, §3.3] or [6, §3.4]), and the
combination of distributive and weighted relaxation. Such schemes should be
used whenever 74(A) is too large. Each such scheme is equivalent to a simple
(non-distributive and not weighted) scheme for another matrix A = BAC, hence
its analysis follows from applying the above theory to A (if Ais symmetric). The
distributed Gauss-Seidel (DGS) scheme, for example, is equivalent to a Gauss-
Seidel relaxation of A = AC (see [4, §4.1]).

Kaczmarz relaxation [16], in particular, is equivalent to Gauss-Seidel relax-
ation for A = AAT. Indeed, Kaczmarz relaxation for the system (2.1) is defined
as follows. Denoting by a; the i-th row of A, a Kaczmarz step corresponding to
that row is defined as the replacement of z by x — (r;/a;a;T)a;T, thereby forcing
r; to zero. (This in fact is the way to force r; to zero with least square changes in

z.) A full Kaczmarz sweep is the employment of such a step for every row of A,
in the natural order. Now, if (2.1) is rewritten as AX = b, where A = AAT and
X = ATX, it is easy to see that the Kaczmarz step corresponding to the i-th row
is equivalent to replacing Z; (the current approximation to X;) by Z; — r;/a;a;T,
which is exactly the i-th step of the Gauss-Seidel relaxation for AX = b. Thus,
to analyze the Kaczmarz relaxation, one simply applies Theorem 3.1 and 3.2 to A
and € instead of A and e, where e = ATé. This immediately yields the following
theorem.

Theorem 3.4. For any matriz A (not necessarily symmetric), let
E=) lej2 and R=> (Iri|2/) lair[2) (3.13)
7 1 A
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and let EO and RO be the initial values of these square norms and E1 and R1 their
values after one Kaczmarz relaxation sweep. Then

E1 < E0—4R0 (3.14)

and also
E1< E0—# Rl (3.15)
where
Yo =[1+5)1+54)]-1
1= (F-74) -1
V- = max; (30 | Yon ain@ial)/ 2oy laga|2
Yo = max; (3,5 | 2o\ aintjal)/ 20y lain|2

Observe that 44+ are reasonably small in many cases where v+ of Theorem 3.1
are not. In fact, for any reasonable discretization of usual differential equations
v+ and y— are smaller than 3 or so. More generally, for systems not necessarily
arising from differential equations, v+ and y— can be regarded as measures of the
overlap, or dependence, between the individual equations, hence 79 and ; are
measures of their independence.

Theorem 3.4 has in fact general implications. Since Kaczmarz relaxation can
be applied to any (even general rectangular) matrix A, and it converges whenever
a solution exists (see [22]), the theorem shows that fast convergence by a point
relaxation is always obtainable as long as R is comparable to E.

The converse is also true; namely, when R < E then no point relaxation
scheme can yield fast convergence. This is because any point relaxation scheme
which is based on one residual r; at a time must introduce into e changes which
are at most comparable to the normalized residual 7; = r;/ || a; ||[2= ase/ || a; ||2
where || - ||2 is the £2 norm (otherwise, for many errors the changes would be large
compared with the errors themselves, bringing about fast divergence). Hence the
changes introduced into || e ||2= FE1/2 in a complete sweep are at most comparable
to || 7 |[2= R1/2.

Thus, very generally, point relaxation must slow down when and only when the
normalized residuals are small compared with the errors. Note that for an arbitrary
error vector most of the normalized residuals 7; would be comparable to e (unless
a; has a large number of dominant terms comparable to each other). Hence, point
relaxation must slow down only for a special class of error components.

3.4 Block relaxation
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In case of block relaxation, such as line relaxation or collective relaxation, the
theory above still applies, but in block notation: Denoting by FEj; the ¢-th block
of e, by A;; the corresponding blocks of A, a Gauss-Seidel step for the i-th block
replaces E; by E; — A;;—1R;*, where R; = Zj Ai;E; and R;x is the value of
R; just before this step. Hence, analogously to (3.2), this step reduces the error
energy E by

Ri*TAii—lRi*. (3.16)

The full block Gauss-Seidel sweep (making such a step successively for all the
blocks) will therefore reduce E by

R* = ZRi*TAii_lRi*- (3.17)
1

From here one can prove, analogously to the proofs of Theorems 3.1 and 3.2, the
following theorem.

Theorem 3.5. Let RO and R1 respectively be the values of the block residual
norm
R=) R;TA;—1R;

before and after a block-Gauss-Seidel relazation sweep, for a symmetric matriz A.
Then the decrease E0 — E1 of the error energy E due to that sweep is at least
Yo R0, and at least 41 R1, where

Yo = (3+19-1-1, 1= (+9-)—-1
- =max; (G D e @ig)y, - = max(G Yo < ij)
Y+ =max; (G D s Qig)y, A+ = max(G Do > ij)

C; being the spectral radius of A;j;—1 and «;; being the Ly norm of Aj.

This theorem, too, can be extended to other block relaxation schemes, such
as block-Jacobi, zebra and distributed block relaxation schemes, the only change
being the form of dependence of 4 and 47 on 4+ and 44+/. The derived constants
are again sharp in various cases, while in other cases they are not far off, and
optimal constants can be derived from local mode analyses, rigorously justifiable
for sufficiently large (h — 0) regular grids and geometric ordering of relaxation.

Concerning simultaneous relaxation, we would like to add here another result,
which is an interesting generalization of formula (3.2) above and of Corollary 3.1,
and which will be useful in future work.

Theorem 3.6. If A is symmetric and positive definite, then relaxing simulta-
neously the I-th block reduces E at least by

Yol Y Irixl2/ai;

1el
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where
Yol =[1+y-1)(1 +y41)]-1

v_I = max;.; ng;’ |laijl/aii
je

Y+l = maxier 3 5>1 |aijl/aii
je

The proof follows from (3.16) and from applying Corollary 3.1 to the matrix
Ajr (instead of A) and to the error A;;—1R;* (instead of e).

3.5 Algebraic sense of smoothing

A basic premise of multigrid processing is that relaxation is very efficient in
smoothing the error, which makes it possible to efficiently approximate relaxed
errors on coarser grids. More precisely, it is asserted that when the convergence of
relaxation becomes slow, the error must be smooth in some sense. It is instructive
to see that this smoothing has a well defined algebraic meaning. (This discussion is
heuristic. It is not used in the subsequent multigrid theory, except as a motivation.)

Indeed, by Theorem 3.2, when the convergence of Gauss-Seidel relaxation for
a symmetric matrix A slows down, i.e., when F0 — E'1 < E0, we must have

R« E. (3.18)

This by itself can be regarded as an expression of smoothness of e, but we can give
it even more intuitive interpretations. Consider for example the positive-type case
(2.3). By the Cauchy-Schwarz inequality

E2<RY aje;2, (3.19)
hence, the slow convergence condition (3.18) implies
E K Z aj;e;l, (3.20)

or, by (2.4),
Y (—aij)(ei —ej)2 < Y ajiei2. (3.21)

2Y)
Since a;; < 0 for 4 # j, this means that e; — e; is on the average small compared
with || e || whenever |a;;| is comparable with either maxy; |a;x| or maxy; |ag;l,
i.e., whenever ¢ and j are “strongly coupled’. We can thus say that the Gauss-
Seidel relaxation (and similarly the other schemes) smoothes the error along the
strongest couplings (and couplings comparable to the strongest).
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Greater smoothing is of course obtained by block relaxation. When such
relaxation slows down we must have, by Theorem 3.5,

R<E. (3.22)

Hence, applying now the Cauchy-Schwarz inequality to E in the form F =
Z(Aul/2Eg)T(Agg—1/2Rg), we obtain

D (—ai)(e; — )2 <Y ETAyE,. (3.23)
ij

Hence, for (e; —e;) to be small on the average, it is enough that a;; is comparable
to
min(max |a;r|, max |a;x|),
(g, e
where /; is the block containing ¢. Thus, by including the strongest couplings in the
blocks, block relaxation will smooth the error also along next-strongest couplings.

We will indeed see later, more rigorously, that we obtain good multigrid rates
if we see to it that our interpolation is along couplings which are about strongest (or

next-strongest) in the above senses. From here follows the rule of block relazation
(6, §3.3]:

A locally strongly coupled block of unknowns, which is locally decoupled from
(or weakly coupled with) the coarser-grid variables, should be relaxed simultane-
ously.

Although the smoothness may more easily be visualized through (3.21) or
(3.23), it is the stronger conditions (3.18) or (3.22) which we will actually use in
our theory below. In fact, from Example 4.2 below we can see that for algebraic
multigrid the weaker conditions are not enough.

Condition (3.18) is indeed fundamentally stronger than (3.21), since it implies
small changes in derivatives of e along strong couplings, while (3.21) implies only
small changes in e itself.

For simplicity, we have discussed smoothing for positive type matrices only.
The generalization to locally positive definite matrices (see Sec. 2.1) is straight-
forward. Instead of (2.4) one generally uses (2.2) in the left-hand side of (3.21),
showing that when relaxation slows down f;(e) must on the average be small com-
pared with a;;e;2. In case of essentially positive type matrices (Sec. 2.4) this still
means smallness of certain error differences compared with the error itself (see
(2.7)). More generally the smallness of fi(e) does not necessarily mean smallness
of error differences, but can still be used for devising the coarse-to-fine interpo-
lation. In various cases the linear forms fj are not explicitly known. The sense
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of “smoothness” (and hence interpolation) can then be based on pre-relazation
(i.e., on the local behavior of “smooth” vectors previously obtained by relaxing
the homogeneous equation AX = 0) or on geometry (see Sec. 5.2).

The notion of “smoothness” should indeed be generalized, especially in the al-
gebraic context, the most general concept being “approximability by a much lower
dimensional subspace”. For any matrix, even far from symmetry or far from posi-
tive definiteness, even indeed rectangular, a suitable relaxation, such as Kaczmarz,
will converge fast as long as the normalized residuals are not small (compared with
the error; see Theorem 3.4 and the discussion thereafter). Errors that must con-
verge slowly for any relaxation scheme must therefore be approximable by the
subspace spanned by eigenvectors of A with small eigenvalues. The meaning of
this subspace (and hence how to operate it) depends on the kind of problem. If for
example A has good h-ellipticity measure (see [6; §2.1]) then the subspace contains
only smooth functions. If A is highly indefinite, as for example the discretization
of standing wave operators, then the subspace is spanned by “rays”, i.e. natural
oscillations (unconstrained waves) modified by smooth multipliers. Etc.

4. Two-Level Algebraic Analysis

4.1 General description and notation

We have thus seen that when convergence by relaxation is slow, the error e
must be smooth, in the sense that along strong algebraic couplings it has small
variations (or sometimes in a more general sense). We can therefore hope to get
good approximations to that error “on a coarser grid”, i.e., by solving a much
smaller system of equations. For that purpose we have to construct that “coarse
level” system of equations and specify the “interpolation”, i.e., the relation by
which an approximation to e (the “fine level” error) is obtained from the coarse
level solution. In geometrical setting there are several quite natural ways for
selecting the coarse level and the interpolation, but in purely algebraic terms the
methods should be different.

We will generally denote the coarse-level vector of unknowns by ec =

(e1c,eac¢, ..., ecne)T and assume a coarse-to-fine linear interpolation I. given by
(Icec); = Z NCW; L ECE, (1<i<n). (4.1)
k=1

Thus, I.ecis a fine-level vector, intended to approximate the fine-level error vector
e.

We can usually (but not necessarily) think of ec as approximating a properly
chosen subset of e, with each ecy approximating a particular eg(;). The smooth-
ness properties of e resulting from relaxation, as described above, should be used
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in selecting this subset and in choosing the weights w;;. In particular they imply
that w;; should be large only when ¢ and j = F'(k) are strongly connected. By this
we roughly mean that there exists a short chain kg, k1,. .., ky (usually £ =1 or 2)
such that kg = 4, ky = j and k4 is strongly coupled with ko1, (@ =1,...,4).

At this point we will not prescribe, however, any exact rules for choosing the
weights. Instead, we will ask our theory below to furnish the general conditions
that should be satisfied by the weights. As a result, the theory will apply to regular
(geometric) multigrid as well.

Having computed ec, its interpolant I.ec is used to correct the fine-level ap-
proximation. In this section we will use superscripts — and 0, respectively, to
denote the fine-level parameters before and after this correction. In particular,
e—, r—, F— and R— will respectively denote the values of the error vector e, the
residual vector r and the square norms F and R before the coarse-level correction,
while e0, r0, E0 and R0 will denote the corresponding values after that correc-
tion. Hence e0 = e — —lcec, € = Ael, EL =) ,eilril and RL =, |ri£]2/]asl,
(£=-,0).

What equations should be satisfied by ec? In regular (geometric) multigrid
situations the cheapest way for deriving the coarse-level equations is usually to
write coarse-grid approximations to the original differential equations (see more
about this issue in [6, §11]). In algebraic multigrid this approach is not applicable,
and a general prescription in the symmetric case (see [10]) is to require ec to satisfy

(I)T Alcec = (I.)Tr —. (4.2)

This is equivalent to choosing that ec for which E0 will be minimal. It therefore
implies the following three properties of the coarse-level correction:
(i) EO< E-.

(ii) EO0 < E0, where E0 is the value of F after a correction by any other coarse-
level vector ec.

(ili) €0 is a projection of e—; i.e., the linear transformation e) = Pe— satisfies
€0 = Pe0. Hence we must have (I.)Tr0 = 0, or, by (4.1),

ijkrjo = 0 for all £. (4.3)
J

4.2 Relaxability after coarse level correction

In this section we show conditions under which the “energy” EO of the error
e0 produced after the coarse-level correction is efficiently reducible by subsequent
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relaxation sweeps. Since the coarse-level correction itself reduces E, this is equiv-
alent to showing the efficiency of the two-level cycle (composed of a coarse-level
correction followed by relaxation sweeps). By “efficiency” here we mean that E is
reduced to Epey < CE, where C' < 1 and C does not depend on the size of the ma-
trix A. Actually, C' will depend only on “local” constants like v4(A) (see (3.11)).
We thus say that e0 is “relaxable’ if a relaxation sweep will reduce E0 to E1 < CE0
with such C. From Secs. 3.1 and 3.3 it follows that e0 is “point-relazable”, i.e.,
relaxable by a point relaxation (Gauss-Seidel, under-relaxation Jacobi, etc.) if
(and usually only if — see Sec. 3.2) one can ensure that R0 > CyFE0. This relation,
and the size of its constant, are governed by the choice of w;;, as the following
theorem shows.

Theorem 4.1. if there is a constant Cy such that for any fine level vector e
there exists a coarse level vector ec for which

Co Z ajj(ej — Z wierc)2 < eT Ae (4.4)
J k

then RO > C,EO.

In the above summation j extends over the fine-level and k£ over the coarse
level, of course. This convention is also kept in the summations below.

Proof. Choosing an ec which satisfies (4.4) with e = e0 and using (4.3), one
obtains

E0 = Zj e;j0r;0 — > . exc Zj w750
= Zj rjO(ejO — > wjkekc).
Hence, by the Cauchy-Schwarz inequality and (4.4)

(E0)2 < R0 aj;(ej0 = > wjrerc)2 < ROE0/CO
j k

and hence R0 > CyEO.

Corollary 4.1. If 1. is a reqular averaging, i.e.,

wj > 0 and ijk =1, (4.5)
k

and if for any e there exists ec such that

Co Z ajjw;i(ej —epc)2 < eT Ae (4.6)
Jik
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then RO > CyEO.

This follows from Theorem (4.1) upon replacing e; in (4.4) by >, w;ze; and
applying the Cauchy-Schwarz inequality.

4.3 Conclusions for positive type matrices

The theorem and the corollary spell out various possible rules of interpolation
that can guarantee relaxability. For simplicity we first discuss such rules for the
positive-type (2.3) zero-row-sum (2.5) case. In this case interpolation is chosen to
be a usual averaging (4.5), and the required inequality (4.6) can be written, by
(2.6), as

% Zjﬂ-(—aji)(ej — 6i)2 Z Co Zj,k ajjwjk(ej — ekc)2. (4.7)

The zero row sum property (2.5) is, of course, not essential. Even without that
property it is enough to satisfy (4.7), as is evident from (2.4). But the addition
of the slack variable makes it easier to satisfy (4.6) for a larger Cy. It makes it
possible to exploit strong couplings to the slack.

A simple way to satisfy (4.7) is to think of ec as corresponding to a subset of
e, with egc corresponding to e F(k) 83, and to let

1 if j=F(k)
wj =10 if  j=Fk),kt#k (4.8)
aj,F(k)/ Dk aj F(kr) otherwise

so that (4.7) is satisfied with

Co = 3 ming (3, aj p(ryl/aj5)- (4.9)

Hence, all we have to do to obtain good relaxability (large Cp) is to select the
coarse level so that each fine-level variable j is strongly coupled with the coarse-
level variables, i.e., so that the total of its coarse level couplings (>, a;, F(k)‘) is
a large fraction (Cj, at least) of its total couplings (aj; = >_; |aji|)-

This approach was indeed the first one adopted in AMG [10]. It was later
realized, however, that (4.7) can be satisfied, with about the same Cp, by an
interpolation I. that uses fewer coarse-level points k for any fine-level point j (see
Sec. 4.4). This is important in order to keep the coarse-level problem (4.2) as
sparse as possible.

Observe that to satisfy (4.7) it is not necessary that large weights w;j, cor-
respond to direct strong couplings a; F(k)- It is enough that they correspond to

strong connection from j to F'(k) (cf. Sec. 4.1). If, for example, a; gy = 0 but
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there exists an £ such that both aj; and ay p(y) are strong, then we can use large
wj, because we can satisfy (4.7) through

wik(ej — exc)2 = wjk(e; — er — ep(x))2

(4.10)
< awjg(ej — eg)2 + Bwjr(er — epr))2,
for some «, > 1 such that (o« —1)(8 — 1) = 1. (The choice @« = f = 2 may
be standard, but one can take /8 to be an increasing function of aje/ay p(1))-
Thus, each fine-level point j must have strong connections, but not necessarily
direct couplings, to the coarse level.

The interpolation from strongly connected (not necessarily directly coupled)
points is the usual practice in geometric multigrid, hence the present theory applies
to all such cases. It applies, in particular, to equations with strongly discontinuous
coefficients, like those in [1].

4.4 Strong coupling overlaps

Consider now the case where each fine-level variable j is strongly coupled
to many, say roughly M, other variables; i.e., 0(M) terms should be taken in
the summation (4.9) to make Cy = 0(1). This is likely to be the situation, for
example, on coarse levels produced by AMG procedure (4.2) (having not used
in I, the reduction in interpolation points being discussed hereafter). Does this
mean then that we must interpolate to each point from 0(M) points in order to
obtain relaxability? It does, if the problem is arbitrary, but it does not, if it has
(implicit) geometrical background. In the latter case, if each point has 0(M) strong
neighbors, then those strong neighborhoods must have overlaps of size 0(M); i.e.,
each point j must have (many) neighbors i such that ¢ and j have 0(M) common
strong neighbors. Choosing even just one of these neighbors ¢ to be a coarse-level
point k, and using (4.10) for every £ which has strong couplings to both i = F (k)
and j, we get 0(M) strong-term contributions to majoring the left-hand side of
(4.7), which is what we needed in order to satisfy (4.7) with Cy = 0(1).

Thus, even for problems with large neighborhoods of strong couplings, we can
still get good relaxability by interpolating to any point j from just few neighbors,
provided those neighbors’ neighborhoods largely overlap the neighborhood of j.

That such an overlap is necessary we can see from the following example.

Example 4.1. The fine grid is a rectangular lattice of M columns by N rows,
so that each unknown ¢ has a column number I; and a row number J;. The
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coefficients of the matrix are defined by
N if j=1
-1 if J# 1 =1
-1 if I =1I;—1(modM) and J;=J;

0 otherwise.

It is easy to find (e.g., by mode analysis) that a point relaxation smoothes the
error (very efficiently) along columns, but not along rows. Hence the coarse grid
may represent even just one point per column, with interpolation within each
column the convergence will be fast. On the other hand the convergence will be
slow (convergence factor 1 — 0(N—1)) if we interpolate to each point from its left
(mod M) neighbor, with whom the point has poorly overlapping neighborhoods.

4.5 Conclusions in more general cases

The above conclusions for the positive-type case can be extended to general
locally positive definite matrices (Sec. 2.1): By substituting )", fm(e)2 for eT'Ae
in (4.4), various interpolation strategies to guarantee relaxability, and various lim-
itations, come into view. Basically, one can interpolate to a fine point j by taking
that e; which minimizes ), jfm(e)2, where }_  j is a sum over all those fp,(e)
which include e; and which otherwise include only coarse-level variables ep (1. As
in Sec. 4.4, this can then be modified to sums which include fewer terms.Practical
ways of finding such interpolation when the f;,, forms are not explicitly given can
be based on pre-relaxation (see Sec. 3.5) or on geometry (Sec. 5.2).

In case of essentially positive type matrices, for example, this approach shows
that as long as the positive off-diagonal terms a;; are small enough, the positive
type procedures discussed above can remain unchanged. If, for example, for each
@ # j with a;; > 0 one can find an £ such that —a; > 4a;; and —ay; > 4a;j,
with each £ assigned to only one such (i, j), then, by the argument of Sec. 2.5,
condition (4.7) will retain its form, except that the sum }°,; would run only on
the negative aj; and some of these a;; would be replaced by a;/2.

In more extreme cases of essentially positive type operators, however, the
above approach shows that some modifications are required. Consider for exam-
ple one of the most extreme cases of 7-point finite-difference approximation to
second-order elliptic equations. This is the approximation to the (actually already
parabolic) equation

Uge — 2Uwy + Uyy = fa
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based on the “wrong” seven points, yielding the difference stencil

0o 2 -1
( 2 -6 2 ) : (4.11)
-1 2 0

In this case the positive form E = eT Ae (which can be written in a local form
by the procedure of Sec. 2.4, or otherwise) does no longer have terms of the form
bij(ej — e;)2. It is made solely of terms like

ba7ﬂ(2ea7ﬁ - ea_]wﬂ - ea7ﬂ+1)2
or

b,aaﬂ(2eaaﬁ - ea-l_]-:ﬁ - ea7ﬂ_1)27

where (a, 3) are the grid (column,row) numbers. This shows that in order to
satisfy (4.4) one must use interpolation in which

W(a,B)(a+1,8) = W(a,B)(a,f-1) N4 W p)a—1,8) = W(a,p)(asp+1):  (412)

Indeed, using interpolation which does not always satisfy (4.12) yielded in this
case bad results [10, Table 1].

4.6 Two-grid analysis with block relaxation

In case of block relaxation, relaxability after the coarse-level correction is
obtained if R0 > CoE0, where R is defined in Theorem 3.5 and R0 is its value after
the coarse-level correction. For this purpose we have the following generalization
of Theorem 4.1.

Theorem 4.2. If for any fine-grid vector e there exists a coarse-level ec such
that

Co Z(e — Icec)j’TAy5(e — Icec) ;” < eT Ae (4.13)
J

then RO > CyEO.

In (4.13) we used (e — I.ec) ;~ to denote the J-th block of e — I.ec. The proof
is simply the block version of the proof of Theorem 4.1.

It is easy to see that this theorem implies relaxability for the usual anisotropic
operators (such as €0y + Oyy), provided the suitable block relaxation (such as
y-line Gauss-Seidel relaxation) is employed. Theorem 4.1 shows, however, that
block relaxation is not needed if interpolation has large weights only along strong
connections (e.g., vertically, in case of €0z, + Oyy)-
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Another case of block relaxation, sometimes called collective relaxation, is
used when each block contains a fixed number g of unknown and stand for the
values of ¢ different functions at the same grid point. It is then natural to coarsen
the problem using the same block structure: The coarse-level vector ec is also
made of g-blocks, its K-th block, denoted éxc, usually corresponding to one of
the fine-level blocks, denoted ép(f). The interpolation may then take the form of
block interpolation

éJ = ZWJKéKCa (4.14)
K

where each Wi is of course a ¢ X ¢ matrix. Theorem 4.2 can then be used to
derive block interpolation strategies analogous to those in Secs. 4.3 and 4.4. (For

a more general approach to treat systems with ¢ > 1 unknown functions — see Sec.
5.1)

4.7 Limitations of purely algebraic interpolation

In purely algebraic multigrid algorithm no use is made of any geometric infor-
mation, including the geometric location of unknowns. (The geometric origin of
the problem may still play an implicit role, as in Sec. 4.4.) This may lead to severe
losses in convergence rates, as the following examples show. We later discuss how
to mend such situations.

Example 4.2. We start with the 3-point one-dimensional Poisson equation,
in which case

ap; = 2, ajit1 = a5 i—1 = —1, otherwise a;; = 0.

The coarse grid points correspond to every other fine grid point, i.e., e;c represents
eg;- The only difference from the usual (geometric) multigrid treatment of this
problem is in defining the interpolation weights: We assume interpolation from
the right neighbor only:

1 if =2k or 1=2k-1
Wik = (4.25)

0 otherwise.

Suppose a smooth error e— is given, with (slowly varying) slope s. Its coarse-
grid approximation ec, produced by (4.2), minimizes the La norm of the slope of
e — —I.ec. But by (4.15) the slope of I.ec must vanish on half the intervals, so all
that can be minimized is the Lo norm of the slope of e — —I.ec on the rest of the
intervals. The minimum of the latter is actually zero, produced by ec for which

e —ep_1¢= (e —op_1 —e—op_2) ~ 5(e —op ——2k_2)
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(except at the last interval). Thus, the slope of ec is s/2. Hence the slope of
e0 = e — —I.ec is on the average s — s/2 = s/2, but it is actually alternating
between 0 and s. The subsequent relaxation sweeps will efficiently reduce these
oscillations (thereby reducing E from E0 to E0/2); but, no matter how many
sweeps are made (if the grid is sufficiently large), the (average) slope will remain
s/2. Thus the complete two-grid cycle can have a convergence factor no better
than .5, no matter how many relaxation sweeps it employs.

Incidentally, the error e0 produced in this example after the coarse-grid cor-
rection can serve as an example to an error e for which

E=) (—ajj)(e; —ej)2 < Y ajie;2,
irj G

but which nevertheless cannot be reduced by a coarse-grid correction (cf. Sec.
3.5).

The fault in the example above is not exactly the fact that we interpolate from
one point only. To stress this point we bring now a modification of this example.

Example 4.3. Take now the usual 5-point two-dimensional Poisson equation,
with the coarse grid comprising of the red points (grid points (o, 3) such that
a + B is even). Assume first that the interpolation to each black (i.e., not red)
point employs its west and north neighbors only. By an argument similar to the
above it can be shown that, ignoring some effects near boundaries, the complete
two-grid cycle can reduce the north-west-to-south-east slope of the error at most
by a factor .5, no matter how many relaxation sweeps are utilized.

If, on the other hand, the two neighbors used in interpolation are the west
and east (or north and south) ones, we get quite a usual cycle, where convergence
factors can be as small as we please, depending on using enough relaxation sweeps
(as can be verified by mode analysis [6], [9], [8], or by other theories).

Thus, geometry plays here a decisive role: Knowing in what direction to
interpolate can dramatically change the convergence rates. This is even more so
when multigrid V-cycles are used. Interpolations as in the above examples can be
shown to give convergence factors no better than 1 — 21 — L per cycle, where L is
the number of levels.

5. Concluding Remarks

Except for minor modifications, the above sections of this article have ap-
peared before in a preliminary form [7]. The intention to extend this work has
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so far kept it from regular publication. In the meantime results and insights de-
scribed above have been used as keystones in the development of AMG (see [20]),
and also in the applications of multigrid processes to non-PDE grid problems, and
in some theoretical studies [19]. Theorem 3.4 above have served to broaden the
multi-level outlook (see [6, §1.1]) and will be employed in a general justification for
local mode analyses [8]. It is therefore at this point deemed useful to publish the
paper even without the intended extensions, replacing the latter by the following
remarks.

5.1 AMG for systems

The present author is grateful to a referee for pointing out a mistake (in Sec.
2.4 of [7], here omitted) related to “block positive type” matrices. It is related
to the issue of how to develop AMG for matrices arising from discretizing PDE
systems, i.e., q differential equations in ¢ unknown functions, with ¢ > 1. Indeed,
since the appearance of [7], new approaches have been developed for such matrices.

It is usually assumed that the AMG solver is supplied with more information
than just the matrix. It can be assumed, in particular, that the unknowns and
equations come with labels, i.e., they are classified so that the solver knows which
continuous function or PDE equation is approximated by each of them. Any
AMG user can easily supply this classification along with his matrix. (There are
also tricks how to disentangle this information by pre-processing, such as pre-
relaxation of the homogeneous system with random initial approximations, which
almost surely yields different local values for different functions.) A corresponding
labelling can then be carried over to coarser levels, and the interpolation can be
based on it, with each function being separately interpolated.

As for relazation of PDE systems, a general approach for geometric multigrid
solvers is described in [6, §3.7], based on the factors of the principal determinant
of the system. This can also yield a prescription for the corresponding AMG
relaxation. For example, it implies Kaczmarz relaxation in case of the Cauchy-
Riemann system. In case of Stokes equations it implies Gauss-Seidel relaxation
of the momentum equations and “compounded-Kaczmarz” relaxation of the con-
tinuity equation (where the velocities involved in the relaxed continuity equation
are changed as in Kaczmarz, and in addition pressures involved in the momentum
equations corresponding to these velocities are changed proportionately to their
total weights in those equations, with each momentum equation being weighted
proportionately to the change in the corresponding velocity). Etc.

5.2 Improved interpolations

The basic difficulty in all AMG algorithms is the construction of sufficiently
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good coarse-to-fine interpolation formulae. When the order of interpolation fails
to be as high as required by the usual multigrid rules (see [6, §4.3]), convergence
rates will substantially deteriorate, as shown by Examples 4.2 and 4.3 above, and
as confirmed by many numerical tests. For second-order PDE equations, as well
as for many PDE systems of second order equations, the interpolation should be
at least second order (i.e., linear interpolation). This is difficult to obtain without
geometric information. Various rules added to more recent versions of AMG (the
detailed rules in [20, §4.2]) tend, for some geometric reasons, to promote geometric-
like coarsening and hence linear interpolation, and their high performance can
be traced back to this fact. However, that linear interpolation is obtained very
indirectly, and is therefore quite precarious: unlucky choice of point ordering, as
well as various small perturbations to the algorithms, may spoil it, on all or at
least some levels, causing marked decrease in efficiency.

Also, linearity is not enough. Even linear interpolation gives worse-than-usual
convergence unless it is conver, i.e., unless each fine-grid point lies, at least ap-
proximately, in the convex hull of the coarse-grid points from which its corrections
are interpolated. Moreover, higher order equations require higher-than-linear in-
terpolations, which is still much harder to obtain.

A general cure to all these difficulties is to allow AMG the option of using
additional geometric information, namely, the geometric location of each unknown.
Most AMG users would have that information ready anyway. The algorithm can
use it to directly construct linear (and even higher order) interpolations (keeping
of course the rule of interpolating only along strong connections). It can also use it
to obtain convex interpolation, provided a corresponding convexity rule is already
employed at the stage of selecting the coarse-level unknowns. This convexity is
highly desired for other reasons, too: it would ensure representation on the coarse
grid for boundaries and for internal layers of strong discontinuities.

To reduce complexity of the constructed coarse-level problem, especially when
the convexity rule is enforced, it is necessary to define strong connections not only
in terms of direct strong couplings, but also in terms of second order strength, i.e.,
counting the total strength through all the length-two connecting chains (¢ = 2
in the notation of Sec. 4.1). Such second-order measure of connection strength is
already used in some recent AMG codes.

5.3 Improved E-R theory. Localization blueprint

As shown in Sec. 4.7, the current theory essentially yields the best possible
convergence estimates for purely algebraic algorithms. With the improved geo-
metric interpolation discussed in Sec. 5.2, and in geometric multigrid algorithms
in particular, improved convergence can be obtained, and improved theory should
correspondingly be developed.
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In case of uniform or piecewise uniform grids, local mode analysis yields con-
crete numerical convergence factors which are precisely attained for sufficiently
small mesh-sizes, provided negligible amounts of local relaxation work, near struc-
tural singularities, are allowed to be added to the analyzed algorithm [8]. With
a similar approach, the present F-R theory can be extended to the case of im-
proved interpolation, and rigorously yield concrete convergence estimates. These
estimates, although not as precise as the uniform-grid ones, can still be quite re-
alistic, unlike the estimates with vague, undetermined constants obtained in most
multigrid theoretical studies.

Whereas the relaxability-after-coarse-grid-correction theory of Sec. 4 is typi-
cally based on Theorem 3.1, a theory with improved convergence, implied by the
improved interpolation, should typically be based on Theorem 3.2, that is, on the
fact that when relaxation slows down, the final residual square-norm R is small
compared with the final error energy E. The next step is now to show that, with
suitable order of interpolation, the error energy is then always reduced by a coarse-
grid correction to a new value, E, which satisfies E < cR, with a concrete and
realistic ¢, hence deducing F < E.

To obtain reasonably low constants ¢ for general situations, possibly including
various singularities (e.g., re-entrant corners), it is necessary to localize the theory.
This means to first develop, for each non-singular neighborhood, local convergence
estimates, i.e., estimates based on the assumption that the local conditions (local
coefficients, local arrangement of finite elements, etc.) stretch out to the entire
space, without boundaries; and then justify the localization, i.e., prove that for
sufficiently small meshsizes the true convergence is as good as the worst local
convergence, provided some extra local relaxation (costing negligible extra work)
is applied near singularities.

To justify the localization in the E-R theory (which is different from the
justification in [8]) two steps are needed. The first step is to show that, with the
aid of local relaxation, R can always be made uniformly distributed, i.e., R(N)
can be made comparable at different neighborhoods N. This is easy to show by
the theory of Sec. 3 above (typically Theorem 3.1, or 3.4, being here used again).
Denoting by E the value of the error energy after a coarse-grid correction with the
function éc, where éc is a coarse grid function derived from the old fine-grid error
by injection, we have E < E (cf. (ii) in Sec. 4.1). The second step is then to show
that, once R is uniformly distributed, for elliptic equations with sufficiently small
meshsizes and away from singularities, the local value of E is only determined by

R.

The local convergence estimates themselves are quite straightforward to de-
rive, at least in various interesting cases. For the 5-point Poisson equation on
regular grids, for example, simple inequalities lead to the relation E < 4R. (Mode
analysis actually yield E < 2R, but this kind of derivation is not extendible to
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non-uniform grids and finite elements). This relation, together with Theorem 3.2,
show that E is reduced at least by the factor (v + 1)—1 by a two-level cycle with
v relaxation sweeps.

5.4 Partial relaxation

The theory sketched above suggests at least one important practical device
that should be used by multigrid algorithms in general, and by AMG algorithms
in particular, namely, local, or partial relazation (cf. [3, §A.9]). Performance can
very much be enhanced by extra relaxation passes restricted to the immediate
neighborhood of singularities. For reentrant corners this is demonstrated in [2]. In
AMG processing this can be done adaptively, by for example special passes over
points exhibiting large normalized residuals (cf. Sec. 3.3).

5.5 Role of geometry

As discussed in Secs. 4.7 and 5.3, geometric information can be used to im-
prove AMG performance. Beyond this, it should be emphasized that even purely
algebraic multigrid algorithm depend for their success on the geometrical origin
of the problem or on a similar structure of the matrix. It is due to geometric-
like structure that the coarse-level matrices generated by AMG stay “local” and
their sparsity is suitably checked, that is, the number of non-zero entries per row
remains nicely bounded (see (3.10) in [10]).

In case the given (finest-level) matrix is itself dense (or a large fraction of its
entries do not vanish) the sparsity on coarser levels is unimportant, and geometric-
like structure is not needed. What counts in such matrices is only that they have
~ constants (such as g, Y1, V%, 70, Y1, Yo Or 71 in Sec. 3) comparable to 1.
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