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Most massive computational tasks facing us today have one feature in com-
mon: they are mainly governed by local relations in some low (eg 2 or 3) dimen-
sional space or grid. Such are all differential problems, including flows, electro-
magnetism, magnetohydrodynamics, quantum mechanics, structural mechanics,
tectonics, tribology, general relativity, etc., etc., as well as non-differential prob-
lems like those in statistical physics (critical phenomena, lattice gauge theory,
etc.), geodesy, multivariate interpolation, image reconstruction, pattern recogni-
tion, many design, optimization and mathematical programming problems, and
most integral equations, including various tomography problems. This common
feature can be exploited very effectively by multi-level (multigrid) solvers, which
combine local processing on different scales with various types of inter-scale trans-
fers of residuals and corrections.

The computational cost of such solvers is essentially as low as cost can ever be.
For example, if Lhuh = fh is a grid approximation to a steady-state differential
boundary-value problem Lu = f, it can be solved to truncation level (i.e., to errors
smaller than |u — wh|, in any desired norm) in just few Lh-work-units, where an
Lh-work-unit is the amount of work involved in just expressing Lh and fh at all
gridpoints. The 5-point approximation to the Poisson equation, for instance, is
being solved on the CDC CYBER 205 at the rate of 5 million equations per second.

Moreover, these multigrid solvers can fully exploit very high degree of parallel
processing, and for very small extra work can incorporate local grid adaptation
or provide a sequence of extra solutions to a sequence of similar problems (eg for
design and optimization purposes, in continuation processes, etc.). The same effi-
ciency is obtained whether L is linear or not (no linearization is required), elliptic
or non-elliptic, and can be maintained even when L or u are strongly discontinuous,
or when the problem include free surfaces, shocks, boundary shape singularities,
etc., or when eigenproblems, or some inverse (eg system identification) problems,
are solved instead.

A similar efficiency is also obtained for time-dependent problems. Given any
initial conditions at ¢ = 0, the multi-level solution to duh/0t = Lhuh — fh at any
target time (finite or infinite), can still be calculated, to within truncation errors,
in just few Lh-work-units (hence equivalent to just few explicit time steps, in case
Lh and fh are time independent).

At the limit of large grids, the exact number of required work units can
rigorously be predicted by local mode analysis. It can rigorously be shown to be
independent of the boundary shape and the boundary conditions. For L which is a
general system of equations, procedures have been devised to derive this number,
and the type of local processing that should be used, directly from the factors of
the h-principal part of the determinant of L.

The multilevel apparatus can also be used to obtained better discretizations;
for example by employing discrete operators with good local properties (eg stability
and admittance of discontinuities) in the local processing, while other operators,
excelling in global attributes (eg higher accuracy, conservation, etc.) are used in
the fine-to-coarse residual transfers; or, by adding progressively finer levels over
local subdomains, each possibly with its own, locally adapted, coordinate systems
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solution representations on different grids: in case of wave problems, for example,
the coarser the grid the more resolution should be introduced in terms of “rays”
(thus obtaining a hybrid of wave equations and geometric optics, efficiently treating
problems which neither of them can). In case of singular integral equations, each
integration should be performed partly on finer grids (near the singularity) and
partly on coarser grids. And so on. The storage needed for the discretization may
also be reduced very much — by using finer grids only piecewise and temporarily,
only to supply defect corrections to coarser grids.

Fast multi-level techniques have been designed for solving fairly general sparse
algebraic systems and for calculating determinants of linear systems defined on
large grids. This can for example be applied in calculating the fermions effect in
quantum chromo-dynamics. Such and other statistical physics calculations may
also very much benefit from multi-level Monte-Carlo techniques, speeding up sta-
tistical convergence, especially of long range correlations.

In case of highly nonlinear minimization and constrained minimization prob-
lems, including discrete-state (eg spin systems) and combinatorial (eg traveling
salesman) problems, multi-levelling not only greatly accelerates convergence, but
is also essential for escaping local minima with large attraction basins.

Some very large linear programming problems have been solved by multi-level
interaction of simplex processes, reducing simplex solution times by several orders
of magnitude.



