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Abstract

Multigrid and other multilevel algorithms, which combine local processing on
different scales with inter-scale transfers of residuals and corrections, can solve
most large-scale problems in CN operations, where N is the number of real
unknowns and 10 < C < 103 (depending on equation complexity). This in-
cludes general nonlinear discretized partial differential systems, discretized integro-
differential equations (with asymptotically smooth kernels), and any geometrically-
based optimization, constrained optimization, optimal control, mathematical pro-
gramming, and system identification problems. In many cases the very value of C
can rigorously be predicted by local mode analyses. It can rigorously be shown to
be independent of boundary shapes and boundary conditions.

For highly nonlinear problems, and in particular for optimization problems
with some discrete unknowns (such as Ising spins, yes-no decisions in econometric
planning, appearance of edges in image reconstruction, combinatorial variables as
in the traveling salesman problem, large-scale changes in protein folding, etc.),
multilevel annealing is essential for rapidly escaping local minima with large at-
traction basins.

The parallel complexity of these solvers is polynomial in log N. For essentially
the same work they can incorporate continuation processes, local grid adaptation
(including local coordinate transformation), etc. Re-solving a problem with small
data changes would usually require much shorter processing still, allowing on-line

1 The main body of this article is reproduced from [32].

2 Research supported mainly by the Air-Force Office of Scientific Research, United States Air
Force under Grants AFOSR-84-0070 and AFOSR-86-0127, and also by the United States Army
Contract DAJA 45-84-C-0036.



design of complicated structures.

In many cases the multilevel interactions provide much better discretization
schemes, because the most suitable scheme may be scale dependent. This includes
nonelliptic steady state problems, highly indefinite problems with highly oscillatory
solutions, problems with non-local boundary conditions (radiation conditions, flow
exits, etc.), and various ill-posed problems.

Purely parabolic problems, for time 0 < ¢ < T, are solved in computational
work equivalent to O(logT') explicit time steps.

For problems in statistical mechanics and field theory, multilevel Monte-Carlo
techniques can simultaneously eliminate several kinds of slowness (critical slowing,
domain vastness, slow balancing of deviations), and very inexpensively incorporate
dynamical fermions. The obtained renormalization employs only simple interac-
tions at all levels.
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1. Introduction

Most massive computational tasks facing us today have one feature in com-
mon: They are mainly governed by local relations in some low (e.g. 2 or 3) dimen-
sional space or grid. Such are all differential problems, including flows, electro-
magnetism, magnetohydrodynamics, quantum mechanics, structural mechanics,
tectonics, tribology, general relativity, etc., etc., as well as statistical or partly
differential partly statistical problems (e.g. in statistical mechanics, field theory,
turbulence), and many non-differential problems like those in geodesy, multivari-
ate interpolation, image reconstruction, pattern recognition, many design, opti-
mization and mathematical programming problems (e.g. traveling salesman, VLSI
design, linear programming transportation), network problems, and so on. This
common feature can be exploited very effectively by multi-level (multigrid) solvers,
which combine local processing on different scales with various inter-scale interac-
tions. Even when the governing relations are not strictly local (e.g., integral and
integro-differential equations, x-ray crystallography, tomography, econometrics),
any problem with a multitude of unknowns is likely to have some internal struc-
ture which can be used by multilevel solvers. In many cases, the computational
cost of such solvers has been shown to be essentially as low as the cost can ever
be; that is, the amount of processing is not much larger than the amount of real
physical information.

This article is a brief survey of this field of study, emphasizing important
recent developments and their implications. No attempt is made to scan the fast-
growing multigrid literature. (A list of more than 600 papers will appear in [24];
see also the multigrid books [21], [25], [7], [28], [20], [26], [22].) A more detailed
account will be given in a future version of [7].

Multigrid methods were first developed (see historical note, Sec. 16) as fast
solvers for discretized linear elliptic PDEs (see Secs. 3, 4, 5), then extended to
non-elliptic (Sec. 6), nonlinear (Sec. 7) and time-dependent (Sec. 10) problems,
and to more general algebraic systems (Secs. 2, 11). The multigrid apparatus has
also been used to obtain improved discretization schemes (Sec. 8), and is especially
effective in treating compound problems and sequences of many similar problems
(Sec. 9). Recently, mainly in response to current computational bottlenecks in the-
oretical physics, new types of multi-level methods have been developed for solving
large lattice equations (e.g. Dirac equations in gauge fields — Sec. 11); for calcu-
lating determinants (Sec. 12) and accelerating Monte-Carlo iterations (Sec. 14);
and for discrete-state and highly-non-quadratic minimization (Sec. 13), the latter
being applicable to spin systems and also to image reconstruction, crystallography,
protein folding and combinatorial minimization. Multilevel linear programming is
reported in Sec. 15. The Appendices describe in more details some recent devel-
opments.
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2. Slow Components in Matrix Iterations

Consider the real linear system of equations
Az =b (2.1)

where A is a general n X m real matrix. For any approximate solution vector
Z, denote the error vector by e = x — Z, and the vector of residuals by r» =
Ae = b— Az. Given z, it is usually easy to calculate r — especially when A is a
sparse matrix; e.g., when A is based on local relations. One can then easily use
these residuals to correct z; for instance, by taking one residual r; at a time, and
replacing Z by & + (r;/ aiaZT)a;fp, where a; is the i-th row of A (thus projecting z
onto the hyperplane of solutions to the i-th equation). Doing this for i =1,...,n
is called a Kaczmarz relaxzation sweep. It can be shown (Theorem 3.4 in [9]) that
the convergence to a solution z (if one exists), of a sequence of such (or other)
relaxation sweeps, should slow down only when

7| < el (2.2)

where 7 is the normalized residual vector (7; = aze/|a;|) and |- | is the Euclidean
(£2) norm. From the normalization of 7 it is clear that, for most error vectors, |7| is
comparable to |e|; (2.2) can clearly hold only for special error vectors, dominated by
special components (eigenvectors with small eigenvalues), whose number is small.
Thus, when relaxation slows down, the error can be approximated by vectors in
some much-lower dimensional space, called the space of slow components.

The concrete characterization of slowness depends on the nature of the prob-
lem, and is sometimes far from trivial (see e.g. the “multiple representations” in
Sec. 8). In many cases of interest, however, we will now see that slowness simply
means smoothness (see Sec. 11 for a generalization).

3. Discretized Differential Equations

In case the system (2.1) represents a discretization of a stationary partial-
differential equation Lu = F' on some grid with meshsize h, we customarily rewrite
it in the form

L' = Fh, (3.1)

where u” is a grid function. Barring cases of alignment (see Sec. 6), such a system

is numerically stable if and only if L" has a good measure of ellipticity on scale
h, inherited either from a similar h-ellipticity measure of L, or (e.g. in case L is
non-elliptic) from artificial ellipticity introduced either by “upstream” differencing
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or through explicit “artificial viscosity” terms. (Ellipticity measures on uniform
grids, and their scale dependence, are discussed in [7, §2.1].)

For any h-elliptic operator L", relation (2.2) holds if and only if the error
is smooth on the scale of the grid; i.e., iff its differences over neighboring grid
points are small compared with itself. (This in fact is exactly the meaning of
h-ellipticity.) The space of slow components can therefore be defined as the space
of grid-h functions of the form 7 I’gvH , where v are functions on a coarser grid,

with meshsize H > h, and [ ]12[ is an interpolation operator from grid H to grid h.

The coarse grid should not be too coarse; H = 2h or so is about optimal: It
keeps on one hand H close enough to h, so that all errors which cannot be approx-
imated on grid H are so highly oscillatory that their convergence by relaxation
on grid h must be very fast (convergence factor .25 per sweep, typically). On the
other hand H = 2h already yields a small enough number of coarse grid points, so
that the work associated with the coarse grid (in the algorithms described below)
is already just a fraction of the relaxation work on the fine grid.

Let 4" be an approximation to the solution u”, obtained for example after
several relaxation sweeps. To define a coarse-grid approximation v to the smooth

error v" = uh — ﬂh, one approximates the “residual equation”

LMt =t = PP — el (3.2)

by the coarse-grid equation
LHyH = [Hyh (3.3)

where [ ,{J is a fine-to-coarse interpolation (local averaging in fact, sometimes called

“weighting” or “restriction”) and L¥ is a coarse grid approximation to L". One
can either use the Galerkin-type approximation L7 = T f Lh1 I@, or derive LH
directly from L by differencing (replacing derivatives by finite differences) on grid
H, which is less automatic but often also far less expensive in computer time and
storage. A generally sensible approach is to use compatible coarsening, i.e., the
Galerkin approach when L itself has been constructed by Galerkin (or variational)
discretization, and direct differencing in case L" itself is so derived, using the same
discretization order and “double discretization” (see Sec. 10) as used by L”, etc.
(see discussion in [7, §11]).

A coarse grid correction is the replacement of al by al + 1 I}_}’UH . Using
alternately a couple of relaxation sweeps and a coarse grid correction is called
a two-grid cycle.



4. Multigrid Algorithms

There is no need of course to solve (3.3) exactly. Its approximate solution is
most efficiently obtained by again alternately using relaxation sweeps (now on grid
H) and corrections from a still coarser grid (2H). We thus construct a sequence
of grids, each typically being twice as coarse as the former, with the coarsest grid
containing so few equations that they can be solved (e.g., by Gaussian elimination)
in negligible time.

A multigrid cycle for improving an approximate solution to (3.1) is recursively
defined as follows: If & is the coarsest grid, solve (3.1) by whatever method. If not,
denoting by H the next coarser grid, perform the following three steps: (A) vq
relaxation sweeps on grid h; (B) a coarse grid correction, in which (3.3) is ap-
proximately solved by starting with 4 = 0 and improving it by ~ multigrid
cycles; (C) vy additional relaxation sweeps on grid h.

The full multigrid algorithm N-FMG for solving (3.1), when h is not the
coarsest grid and H is the next coarser, is recursively defined as follows: (A) Solve
LAy = FH by a similar N-FMG algorithm, where F7 = I,?Fh. (FH may also
be derived directly from F.) (B) Start with the first approximation @ = I Ihj’[uH ,
and improve it by N multigrid cycles. The solution interpolation I ;LI has usually
a higher order than the correction interpolation I I’g mentioned above.

For almost any discretized stationary PDE problem, a 1-FMG algorithm,
employing cycles with 1 +v2 =2 or 3 and v = 1 or 2, is enough for solving (3.1)
to the level of truncation errors (i.e., to the point where the approximate solution
al satisfies || @"* — v ||<|| v — u ||, in any desired norm) — provided proper
relaxation and interpolation procedures are used (see Sec. 5). Only when L has
a high approximation order p, larger-N-FMG may be required, with N growing
linearly in p.

This means that the solution is obtained in just few L"-work-units, where
an LP-work-unit is the amount of computer operations involved in just ezpress-
ing L™ at all grid-points. The only solvers with an almost comparable (but on
large grids still inferior) speed are the direct solvers based on the Fast Fourier
Transform (FFT), but they are essentially limited to equations with constant co-
efficients on rectangular domains and constant boundary operators. The FMG
solver, by contrast, attains the same efficiency for general nonlinear, not neces-
sarily elliptic, problems (see Secs. 6, 7), for any boundary shape and boundary
conditions, for compound problems (Sec. 9), for eigenproblems, and for problems
including free surfaces, shocks, reentrant corners, discontinuous coefficients and
other singularities.

Moreover, the multigrid solvers can fully exploit very high degrees of parallel
and/or vector processing. In case L™ is the standard 5-point approximation to
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the Laplacian, for example, (3.1) has been solved on the CDC CYBER 205 at the
rate of 5 million equations per second [3]. Also, for little extra computer work
these solvers can incorporate local grid adaptation (Sec. 7) or provide a sequence
of extra solutions to a sequence of similar problems (Sec. 9).

5. Performance Prediction, Optimization, and Rigorous Analysis

The multigrid algorithms have many parameters, including their relaxation
schemes, orders of interpolations, their treatment of boundaries and of the interior
equations near boundaries, etc. To obtain their best performance, and to debug the
programs, an analytical tool is needed which can predict, for example, the precise
convergence factor per cycle. Such a tool is the following local mode analysis.

For equations with constant coefficients on infinite uniform grids, only few (¢,
say) Fourier components of the error function @ — uP are coupled at a time by
the processes of the two-grid cycle, and it is thus easy to calculate (usually by a
small computer program) the two-grid convergence factor (the largest among the
spectral radii of the corresponding £ x £ transfer matrices). For general equations
in a general domain, the local two-grid convergence factor is defined as the worst
(largest) two-grid convergence factor for any “freezing” of the equation at any

given point (extending that equation to the infinite domain).

For a general elliptic system of equations Lu = F' with continuous coefficients,
discretized on a uniform (or continuously changing) grid in a general domain, it has
been proved ([10]; see App. C) that for small meshsizes (h — 0) the local two-grid
convergence factor is actually obtained globally, provided the algorithm is allowed
to be modified near boundaries, by adding there local relaxation sweeps that cost
negligible extra work. Numerical tests clearly show that this local relaxation is
indeed sometimes necessary, e.g., near re-entrant corners and other singularities
[2, §4]. The performance of multigrid cycles can also be precisely predicted, either
by perturbations to the two-grid analysis or by more complex (e.g., three-level)
Fourier analyses (coupling more components at a time).

Moreover, it can also be proved that the two-grid convergence factor, A, can
itself be anticipated by the “smoothing factor” of the relaxation process, ji, which
can be calculated by a much simpler local mode analysis. Namely, A = i® can
always be obtained, provided s, the number of fine-grid relaxation sweeps per cycle,
is not large, and provided suitable inter-grid transfers (high enough interpolation
orders) are used. Furthermore, in case of a complicated system of ¢ differential
equations, i.e., when L is a ¢ x ¢ matrix of differential operators, a relaxation scheme
can always be constructed for which g = max(pr,,, ..., 1, ), where Ly --- Ly is a
factorization, into first and second order scalar operators, of the h-principal part
(the principal part on scale k) of the determinant of L, and fiy,, is the smoothing
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factor obtainable for a relaxation of L (see [7, §3.7]). Thus, the entire multigrid
efficiency can be anticipated from the smoothing factors obtainable for simple
scalar operators, and the practical task then is to construct the intergrid transfers
so that A indeed approaches z°, and then to adjust the boundary processes until
the convergence factor per multigrid cycle indeed approaches .

In case of uniformly elliptic problems, for example, the factors of det L are
usually Laplacians, for which the smoothing factor i = .25 is obtainable, using
the (fully-parallelizable and extremely cheap) Gauss-Seidel relaxation in red-black
ordering. Hence a multigrid cycle can be constructed with convergence factors .25
per fine-grid relaxation, or about .4 per work unit (taking coarse-grid overhead
into account).

For highly discontinuous equations or discretizations, the theoretical treat-
ment is far less precise, but practical approaches were developed [1], successful
enough to yield fairly general black-box solvers [15].

Many situations are analyzed by mnon-local theories, developed over a vast
literature; see e.g. [20] and references therein. The trouble with the non-local
approach is that its estimates are not realistically quantitative: the convergence
factor per cycle is indeed shown to be bounded away from 1 independently of A,
but its actual size is either not specified or is so close to 1 that it is useless for
practical purposes (such as prediction and selecting, omtimizing and debugging
the various processes), and no one believing it would use the algorithm. In fact,
it led to several practical misconceptions [7, §14].

The theory in [9] gives rigorous realistic two-grid convergence estimates for
very irregular cases, in fact for general symmetric algebraic systems without any
grids or any other geometrical basis. This This theory is nearly optimal for the
crude (geometry-less) interpolations it considers. To extend it to the prediction of
the multi-grid rates obtainable with better (geometrically-based) interpolations, it
should be combined with some local analysis, not yet developed.

6. Non-Ellipticity and Slight Ellipticity

For non-elliptic differential equations (or equations with small ellipticity mea-
sures on scale h, which for numerical purposes is the same), it is a mistake to try to
obtain uniformly fast convergence per cycle. Much simpler and more efficient al-
gorithms are obtained by allowing components with larger truncation errors (such
as the “characteristic components”) to converge slower, insisting only that the
1-FMG algorithm still solves the problem well below truncation errors. That this
can be obtained is shown by modified types of local mode analysis (infinite-space
FMG analysis supplemented by half-space FMG analysis. See [6]).
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Indeed, the usual FMG algorithm need only be modified in case of consistent
alignment, i.e., in case the grid is consistently aligned with the characteristic direc-
tions. Such alignment is necessary when accuracy is desired in the “characteristic
components”, i.e., components which are smoother along than across characteris-
tic lines. For obtaining that accuracy, L" should be non-h-elliptic, and the usual
point-by-point relaxation will then smooth the error only in the characteristic di-
rections (in which semi-h-ellipticity is necessarily still maintained). One should
therefore either modify relaxation, by simultaneously relaxing points along char-
acteristic lines (“line relaxation”), or use “semi coarsening”, i.e., a coarser grid
whose meshsize is larger only in the characteristic directions. Semi coarsening,
sometimes combined with line relaxation, is especially recommended in higher-
dimensional situations where the alignment is not in lines but in planes.

Expensive procedures of alternating-direction line or plane relaxation are not
needed in natural coordinates, since only consistent alignment matters in solving to
the level of truncation errors. Such expensive procedures will however very often be
needed if anisotropic coordinate transformations, and nonuniform gridline spacings
in particular, are employed, thereby artificially creating excessively strong, grid-
aligned discrete couplings. It is therefore generally not recommended to use global
grid (or coordinate) transformations, but instead to create local refinements and
local grid curvings in the multigrid manner (see Sec. 7).

For non-elliptic or slightly elliptic problems it is also recommended to use
double discretization schemes (see Sec. 8), since some natural (e.g. central) dis-
cretizations are good for smooth components but bad for non-smooth ones.

7. FAS: Nonlinear Equations, Local Grid Adaptation, r Extrapola-
tion, Small Storage

In the Full Approzimation Scheme (FAS) the coarse-grid unknown v is re-

placed by the unknown uf? o I f;{ @l + vH, where I f is another fine-to-coarse

interpolation (or averaging). In terms of uff, the coarse grid equation (3.3) be-
comes

LHuH:FH—}-T}?, (7.1)

where FH = I,?Fh and 7'}1;{ = LHffﬂh — I,?Lhﬂh. This equation evidently has
the form of a “defect correction” (correcting LH by L", their difference being
measured by @”), hence it makes full sense even in the case that I is nonlinear.

Indeed, using FAS, nonlinear equations are solved as easily and fast as linear
ones. No linearization is required (except for some local linearization, in relax-
ation, into A-principal terms, which in almost all cases means no linearization
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at all). The 1-FMG algorithm has solved, well below truncation errors, various
flow problems, including compressible and incompressible Navier-Stokes and Euler
equations, problems with shocks, constrained minimization problems (complemen-
tarity problems, with free surfaces) and many others. “Continuation” techniques,
sometimes needed for reaching the solution “attraction basin”, can be incorporated
for little extra calculations (see Sec. 9).

In FAS, averages of the full solution are represented on all coarser grids (hence
the name of the scheme). This allows for various advanced techniques which use
finer grids very sparingly. For example, the fine grid may cover only part of the
domain: outside that part (7.1) will simply be used without the T}{_I term. One
can use progressively finer grids at increasingly more specialized subdomains, ef-
fectively achieving a non-uniform discretization (needed near singularities) which
still uses simple uniform grids, still has the very fast multigrid solver, and yet is
very flexible. Grid adaptation can in fact in this way be incorporated into the
FMG algorithm: On proceeding to finer levels the algorithm also defines their
extent (see [5],[2]). Moreover, each of the local refinement grids may use its own
local coordinate system, thus curving itself to fit boundaries, fronts, characteristic
directions or discontinuities (all whose locations are already approximately known
from the coarser levels), with the additional possibility of using anisotropic mesh-
sizes (e.g. much finer across than along the front). Since this curving is only local,
it can be accomplished by a trivial transformation, which does not add substantial
complexity to the basic equations (in contrast to global transformations).

The fine-to-coarse correction T’{{ gives a rough estimate of the local discretiza-
tion error. This can be used in grid adaptation criteria. It can also be used to
h-extrapolate the equations, in order to obtain a higher order discretization for
little extra work. This extrapolation is more useful than the Richardson type,
since it is local (extrapolating the equation, not the solution): it can for example
be used together with any procedure of local refinements.

In view of (7.1), the role of grid h is really only to supply the defect correction
7',{{ to grid H. For that, only a local piece of the fine grid is needed at a time.

Similarly, only a piece of grid H = 2h is needed at a time, to supply 724,?, etc.
This gives rise to algorithms that can do with very small computer storage (even
without using external storage).
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8. Multigrid Discretization Techniques

The above local refinements, local coordinates, refinement criteria, local h
extrapolations and small-storage techniques were examples of using the multilevel
apparatus to obtain better discretizations, not just fast solvers. Other examples
are:

Double discretization schemes. The discrete operator L™ used in calculating
the residuals (3.2), for the global process of coarse grid corrections, does not need
to coincide with the one used in the local process of relaxation. The latter should
have good local properties, such as stability (possibly obtained by adding artificial
viscosity) and admittance of sharp discontinuities (through suitable “limiters”),
while the first should excel in global attributes, such as high accuracy (obtained
by omitting artificial viscosities and possibly using higher-order differencing) and
conservation (through conservative differencing). Such schemes do not converge
to zero residuals, of course, but can approximate the differential equations much
better than either of their constituent discretizations alone, especially in cases of
conflicting requirements (cf. Sec. 6).

Multiple representation schemes. The coarse-grid solution representation does
not need to coincide with that on the fine grid. For example, some nearly singu-
lar smooth components (typical in slightly indefinite problems) should on some
coarser grids be singled out and represented by one parameter each (see [14]).
Or, more importantly, highly oscillatory components showing small normalized
residuals (typical in standing wave problems, as in acoustics, electromagnetism,
Schrodinger equations, etc.) should be represented on coarser grids by their slowly
varying amplitudes. The coarser the grid the more such “rays” should be sepa-
rately represented. Grids fine enough to resolve the natural wavelength can be
used only locally, near boundary singularities, where ray representations break
down. This hybrid of wave equations and geometric optics can treat problems
which neither of them can alone, in addition to supplying a fast solver for highly
indefinite equations.

Global conditions and non-local boundary conditions (radiation conditions,
flow exit boundaries, etc.) are easily incorporated, by transferring their residuals
from fine grids and imposing them only at suitably coarser levels.

Treating large domains by placing increasingly coarser grids to cover increas-
ingly wider regions.

Fast integrals. In case of integral equations with suitably smooth kernels,
most of the work involved in just performing the integrations can be spared, by
performing them mainly on coarser grids using suitable FAS versions (see App.

A).

Finally, multigrid convergence factors always detect bad discretizations, es-
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pecially when “compatible coarsening” is used (see Sec. 3). Several previously
unnoticed flaws in widely accepted discretization schemes were so discovered. Fur-
thermore, brief 1-FMG algorithms tend to correct bad discretizations, by being
very slow in admitting ill-posed components (components showing small residuals
compared with other components of comparable smoothness). For example, quasi-
elliptic discretizations (resulting e.g. from central differencing on non-staggered
grids of elliptic systems with first-order principal derivatives) are so solved with
their highly-oscillating bad components left out [13]. More generally, the FMG al-
gorithm and the multi-level structure provide effective tools to deal with ill-posed
problems, whether the ill-posedness is in the differential problem or only in its
discretization: finer grids can be introduced (in the manner of Sec. 7) only where
their scale does not admit ill-posed components; nonlinear controlling constraints,
either global, local or at any intermediate scale, are easily incorporated; etc.

9. Compound Problems and Problem Sequences

A compound problem is one whose solution would normally involve solving
several, or even many, systems of equations similar to each other. With multilevel
techniques, the work of solving a compound problem can often be reduced to that
of solving just one single system, or just a fraction more.

Take for example continuation (embedding) processes, in which a problem
parameter is gradually changed in order to drive the approximate solutions into
the attraction basin of the desired solution to some target nonlinear problem. Flow
problems, for instance, are easily solved for the case of large viscosity, which can
then gradually be lowered to the desired level, with the equations being solved at
each step taking the previous-step solution to serve as a first approximation. This
process is almost automatically performed by the FMG algorithm (Sec. 4) itself,
since it starts on coarse levels, where a large artificial viscosity is introduced by the
discretization, and then gradually works its way to finer grids with proportionately
smaller viscosity. The process, by the way, can then be continued to still lower
viscosity by using still finer levels only locally (see Sec. 7), at regions where the size
of viscosity matters (i.e., where the flow is driven by viscosity), and eliminating
viscosity elsewhere (e.g. by double discretization — see Sec. 8).

One 1-FMG algorithm, with no extra iterations, can even be directed to
locate limit points (turning and bifurcation points) on solution diagrams; or to
optimize some problem parameters, including optimization of boundary shapes,
diffusion coefficients, control parameters, etc.; or to trace free boundaries, strong
shocks, and other discontinuities; or to solve related inverse problems (e.g. system
identification); and so on — all with accuracy below truncation errors.

In many cases, however, repeated applications of the FMG solver are still
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needed: cases of complicated bifurcation diagrams, interactive design situations,
etc. Even then, the multigrid machinery generally provides for extremely cheap
re-solving: one should only be careful to apply FMG to the incremental problem
(calculating only the change from the old solution; using FAS this is easily done
even in nonlinear problems) and to skip finer grids (or parts thereof) wherever
they describe negligible high-frequency changes.

In designing a structure, for example, one often wants to re-solve the elasticity
equations after modifying some part of the structure. The changes in the solution
are then very smooth, except near the modified part. In incremental re-solving
one therefore needs the fine grid h only near that part, while at other regions
the coarser grid H can suffice - provided the 7{ correction (see (7.1)) is kept in
those regions frozen at its previous (pre-modification) values (otherwise one ignores
the high frequency components themselves, not just their changes). Similarly,
at some larger distance from the modified part, grid H = 2h itself can also be
omitted, then grid 4h, etc. In this way re-solving can be so inexpensive in computer
time and storage as to allow on-line interactive design of complicated structures.
Similar frozen-t techniques can be used in continuation processes and in evolution
problems.

10. Evolution Problems

Some time-dependent problems may need no multileveling. These are hyper-
bolic schemes where all the characteristic velocities are comparable to each other,
and their explicit discretization on one grid is therefore fully effective: the amount
of processing is essentially equal to the amount of physical information. However,
as soon as any stiffness enters, implicit discretization and multigrid techniques
similar to those in Sec. 9 become desired.

Solving the sequence of implicit systems, the 1-FMG algorithm is all one needs
per time step — provided it is consistently applied to the time incremental prob-
lem, since one needs to solve to the level of the incremental (not the cumulative)
truncation errors. Moreover, in most cases, notably in parabolic problems, this
work can vastly be reduced, because most of the time at most places the increment
is very smooth, hence seldom requires fine-grid processing.

For example, it has been demonstrated for the heat equation 0u/0t = Au+ F
with steady boundary conditions and steady sources F' that, given any initial
conditions at ¢ = 0, the solution at any target time 7' can be calculated, to the
level of spatial truncation errors, in less than 10 work units, where the work unit
here is the work invested in one ezxplicit time step. To obtain the solution with
that accuracy throughout the interval 0 < ¢t < T, the number of required work

— 18 —



units is O(log %)

By combining methods developed for such purely parabolic problems with the
method of characteristics, it may be possible to obtain similar results for problems
with convection, because the time increment can be described as a smooth change
superposed on pure convection.

All multigrid discretization techniques (see Sec. 8) can be useful for time de-
pendent problems, too. One example: the popular Crank-Nicholson discretiza-
tion, which offers superior accuracy for smooth components, has the disadvantage
of badly treating high-frequency components at large time steps. This conflict
is easily resolved by a double discretization scheme, which at some initial time
steps, and only at the fine grids’ relaxation process, replaces Crank-Nicholson by
the Fully-Implicit scheme. Other examples that were already used include local
refinements, the 7 refinement criteria, 7 extrapolations, and a treatment of an
ill-posed (the inverse heat) problem.

Time-periodic solutions, or more generally, solutions with the same solution
growth w per time period, can inexpensively be computed, for any spatial grid A,
by integrating basically on grid 2h: once a steady growth w2P has been established
on grid 2h, a defect correction to w?" can be found by integrating one period on
grid h; then the calculations on grid 2h resume, with that defect added at each
period, until a new steady growth is established. The calculations on grid 2h
can similarly be done by integrating basically on grid 4h, and so on. Each grid
integration may of course also use the above frozen 7 techniques.

11. Geometrically Based Problems. AMG

Most large systems, even those not derived from discretized continuous prob-
lems, still have a geometric basis; that is, each unknown has a location in some
low (usually at most 4) dimensional underlying space — indeed, the unknowns are
often still arranged in lattices — and the equations reflect this geometry, e.g. by
more strongly coupling closer unknowns. Examples abound (see Sec. 1). Exclud-
ing for the moment probabilistic aspects (see Sec. 14), these systems can usually
be cast as minimization problems: the solution vector u should minimize some
functional E(u), called “energy”. This naturally leads to various Gauss-Seidel-
type relaxation schemes, in which E is decreased as far as possible by changing
one unknown (or one block of unknowns) at a time. (Kaczmarz relaxation in Sec.
2 can be viewed as Gauss-Seidel for %, where v = AT% and E(u) = %uTu —alb).

Excluding now the case of discrete or partly discrete unknowns (see Sec. 13),
in all such geometrically-based systems the slow components (see Sec. 2) are either
“smoothly representable” or ill-posed. A general smooth representation of compo-
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nents is for example by short sums of terms such as a(x)p(z), where a(z) is smooth
(at least in some directions) while ¢(z) may be highly non-smooth but is fixed
and known (or easily computable). A multilevel solver can then be constructed
in which a(z) is interpolated from coarser levels. The coarser level equations may
be derived either variationally (i.e., from the requirement that F(u) is lowered
as far as possible by the interpolated a(x)), or by simulating direct differencing
approximations.

A multigrid solver of the latter kind has been constructed for a simple case of
lattice Dirac equations in a gauge field. In QED and QCD (quantum electrody-
namics and chromodynamics) simulations, this type of equations should be solved
at each Monte-Carlo iteration, consuming enormous computer resources (see e.g.
[18]). This solver, which employs itself also for updating ¢(x), exhibits the usual
multigrid speed, and requires only a short cycle, costing far less than the rest of
the calculations, per Monte-Carlo iteration. (See also Sec. 12.)

In many problems, including first-kind integral equations in fields like im-
age reconstruction, tomography and crystallography, there exist slow components
which are not smoothly representable. Since they give large errors for small resid-
uals without being smooth in any sense, they are by definition ill posed. Such
error components are introduced only very slowly by the multigrid solvers. Hence
they are harmful only in as far as their absence causes the solution to “look bad”.
Specifying what “looking bad” is, can be done by augmenting F(z) and/or by im-
posing nonlinear constraints. Such constraints, on any scale, can be incorporated
in the multilevel solver (see [11]), even when they are discrete (see Sec. 13).

Multilevel solvers can be constructed even when the geometric basis is not
explicit. In such “algebraic multigrid’ (AMG) solvers the coarse-level variables
are typically selected by the requirement that each fine-level variable is “strongly
connected”, by the fine-level equations, to at least some coarse-level variables.
The coarse-to-fine and fine-to-coarse transfers may also be purely based on the
algebraic equations, although geometrical information may be used too (see [9],
[29]). AMG solvers are good as black boxes, even for discretized PDEs, since they
require no special attention to boundaries, anisotropies and strong discontinuities,
and no well-organized grids (allowing, e.g., general-partition finite elements).

12. Calculating Determinants

At each Monte-Carlo iteration in QED and QCD simulations, what is really
required is not to solve the lattice Dirac equations (see Sec. 11), but actually (if
possible) to calculate d logdet (), where ) is the matrix of that system and ¢ de-
notes change per iteration. Since the steps are small, § log det Q = trace of Q~16Q,
for which calculations one needs to know (Q_l)ij for all pairs of neighboring (on
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the lattice) ¢ and j. Now, it can be shown that by storing and updating similar
information for coarse-grid approximations to @) (for which purpose one also needs
to store and update the function ¢(x) mentioned in Sec. 11), all updates can im-
mediately be done. The implied coarse-level work, including the coarsening of @,
is just a small overhead.

This approach leads to a general fast method for calculating determinants of
lattice equations.

13. Discrete-State Minimization: Multilevel Annealing

In statistical physics, combinatorial optimization (e.g., traveling salesman,
or integrated circuits design), pattern recognition, econometrics, and many other
fields the unknowns u;, or part of them, may only assume discrete states. A typical
example is Ising spins, where u; = +1. To minimize F(u) in such problems is far
more intricate than in continuous-state problems, since the relaxation process is
not only slow, but is very likely to get trapped in a “local minimum”; i.e., in a
configuration u which is not the true minimum but for which no allowable change
of any one u;, or even a small block of them, can lower FE.

“Stmulated annealing’ is a general technique for trying to escape such local
minima by assigning at each step a certain probability for the energy to grow. This
is done by simulating thermal systems: to each configuration u the “Boltzmann
probability”

P(u) = e PEW) 1 7() (13.1)

is assigned (physically % is proportional to the absolute temperature and Z([)
is a normalization factor), and the above strict-minimization relaxation sweeps
are replaced by “Monte-Carlo iterations”, in which each u; change is governed by
(13.1). Gradually and carefully 3 is increased (the system is “cooled”) so that the
Monte-Carlo process tends back to strict minimization. (See [23].)

In many cases, unfortunately, the global minimum is likely to be reached only
if B is increased impractically slowly, requiring exponentially growing computer
times, or else the process will be trapped in some local minimum with a large
“attraction basin” (usually containing smaller-scale sub-basins from which the
process does escape). This difficulty is removed by multilevel annealing, based on
the following principles:

(i) A hierarchy of changes is selected. In two-dimensional Ising spin lattices,
for example, a change on level £ is defined as the simultaneous flipping (sign
reversal) of all the spins in a 2¢ x 2¢ block. (ii) Each coarse-level change is decided
only after recursively calculating its effects (i.e., minimizing around it) at all finer

— 16 —



levels, starting from the finest. (iii) At each level a specific 3, just large enough
to escape local minima on that scale, is first employed, then, still at that level,
strict minimization follows. (iv) A procedure (LCC) for keeping track of the so-far
minimal configuration is added at each level. (See [12].)

These principles were applied to difficult two-dimensional lattice problems
with N Ising spins. The global minimum has always been reached in O(N3/2) to
O(N?) computer operations. The parallel-processing complexity is polynomial in
log N. Similar algorithms are being developed for the traveling salesman problem.
(The “statistical” TSP with N cities is solved in O(N) operations).

The above principles should also apply in many problems where the discrete-
state nature is less obvious. Take for example XY spins or Heisenberg spins, where
each wu; is a 2 or 3 dimensional vector of length 1. Although each w; can change
continuously, some large-scale topological features of the field of spins (such as
the existence of closed curves along which the spins gradually rotate a full cir-
cle) can only change discretely. Similar situations arise in x-ray crystallography
and protein folding problems. Another example: in image reconstruction, each
unknown u;, representing the grey level in the i-th pixel, can be considered con-
tinuous, but nonlinear constraints that should be added to the problem (cf. Sec.
11) may well include discrete elements, such as the appearance of an “edge”. In
each of these cases a certain combination of the multilevel annealing with classical
multigrid should be used. More generally, coarse-level annealing should apply in
any minimization problem with large-scale local minima, and multilevel annealing
15 required whenever a hierarchy of attraction basins is involved.

14. Statistical Problems. Multilevel Monte-Carlo

The aim in statistical physics is to calculate various average properties of con-
figurations governed by the probability distribution (13.1). This is usually done by
measuring those averages over a sequence of “Monte-Carlo iterations”, in which
each u; in its turn is randomly changed in a way that obeys (13.1) (using e.g.
Metropolis rule [27]). Unfortunately, in such processes statistical equilibrium is
usually reached very slowly, and, more severely, even when it has been reached,
some averages are still very slow to converge, especially those long-range correla-
tions the physicist needs most.

These two troubles may be cured by multilevel Monte-Carlo techniques, in
which coarse-level changes (changing the solution in preassigned blocks in preas-
signed patterns) are added and averaged over. In problems and at levels where the
physical states may be considered continuous, this can be done quite straightfor-
wardly and very efficiently: once per several coarse-level sweeps, the probabilities
associated with coarse changes are defect-corrected by fine-level Monte-Carlo it-
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erations (see [12, §7.1]). In case of discrete states, principles similar to those in
Sec. 13 should apply. Namely, the exact pattern of each coarse-level change, as
well as the probabilities associated with it, are recursively decided by finer-level
Monte-Carlo. But see App. B.

15. Linear Programming (LP)

A multilevel approach, called iterative aggregation, has been developed LP
problems (see [16], [31]), especially for situations in which the planned system is
naturally divided into a hierarchy of sectors and sub-sectors. This considerably
speeds up the calculations, and also provides the manager with a very useful
hierarchical view of the system.

For very large systems, to obtain the typical speed of multigrid solvers, more
refined aggregations are needed. This can easily be done, for example, in problems
with a geometrical basis (cf. Sec. 11), such as the LP transportation problem (see
e.g. [19]). Recent tests were made with a method that lumps together two (or so)
neighboring destinations into a “block destination”, two neighboring blocks into a
super-block, etc. Shipping costs to a block are determined from the current intra-
block marginal costs. It turns out that a 1-FMG-like algorithm gets very close
(practically obtains) the solution. The required work is even smaller since many
of the blocks that are supplied by one origin need no fine-level processing. Several
orders of magnitude savings, compared to simplex solutions, were indicated.

16. Historical Note

Various multi-level solution processes have independently occurred to many
investigators (see partial list in [5]). The earliest we know is Southwell’s acceler-
ation of relaxation by “group relaxation” [30], a two-level algorithm. The first to
describe a recursive procedure with more than two levels is Fedorenko [17]. Similar
approaches were early introduced to economic planning (see Sec. 15). All these
early works lacked full understanding of the real efficiency that can be obtained
by multileveling, and how to obtain it, since they did not regard the fine-grid
processes as strictly local, hence thought in terms of too-crude aggregations. Fe-
dorenko’s estimates of the work involved in solving simple Poisson equations are
off by a factor 104, for example. Fully efficient multigrid algorithms, based on
local analysis, were first developed at the Weizmann Institute in 1970-1972 (see
[4]), leading then to most of the developments reported in the present article.
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Appendices
A. Integral Equations

When an integral equation of the general type
/ny y)dy + f(z,u(z)) =0, z e QCE? (A.1)

is discretized in a usual way on a grid with n = O(h~%) points, the unknowns
are all connected to each other; the matrix of the (linearized) discrete system
is full. A solution by elimination would require O(n®) operations. An FMG
solution would require O(n?) operations, since each relaxation sweep costs O(n?)
operations. Even when (A.1) is ill posed (Fredholm equation of the first kind),
the FMG solver can still be as effective (cf. Sec. 11). In case (A.1) is nonlinear
in u, FAS-FMG should be used, still retaining the same efficiency (see Sec. 7).
But potentially the most important contribution of the multilevel approach to the
solution of integral equations is in reducing the work far below O(n?), sometimes
to O(n) and most often to O(nlogn), by exploiting smoothness properties of K.
(In fact, O(nQ) solution time for second kind Fredholm equations is already nearly
obtained by simple relaxation.) This is done by using the FAS structure in the
following special way (first presented in [8, §8.6]).

The discretization of (A.1) on grid A has the form
n
SOKMUl 4 i) =0, (i=1,...,n) (A.2)

where 7 and j are multi-indices, z; = ih, and uf = u"(x;) approximates u(z;).
Since K (z,y) is fully known, (A.2) is essentially obtained by performing the inte-
gration in (A.1) with u(y) being replaced by values polynomially interpolated from
the grid values uh Hence the chosen discretization (e.g., the order of the polyno-
mial 1nterpolat10ns) and its truncation errors, depend solely on the smoothness
of u, not of K. If K(z,y) as a function of y is much smoother than u(y), an
error much smaller than the truncation error would be introduced when K Zhjh is

replaced by K hh — =% h K zhH )j» where K’ hH ig the representation of K} hh (K Zhjh as

a function of j, for a fixed 7) on the coarse grid H, and I}}I is an interpolation from
H to hofa sufﬁciently high order. This will replace each summation in (A.2) by
> K hH , H 5, where J runs over the coarse grid and uH = I [h )Tul | superscript T

denotlng adjoint (i.e., matrix transposition). Hence, choosing I}, [H — =% [T for the
FAS fine-to-coarse solution averaging (see Sec. 7), the summatlon is done on the
coarse grid. Moreover, if K (x,y) is also thus smooth as a function of x, each K Zhﬁ
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can similarly be replaced by interpolation from K _I}H , so that those coarse-grid
summations will actually be calculated only for coarse-grid values of ¢. If K is
sufficiently smooth, one can similarly replace grid-H summations by summations
on still coarser grids, etc. (with suitably growing interpolation orders). All this
can very easily be incorporated into the FAS-FMG algorithm; it simply requires
that, at each level h, wzh => j K Zhu;’ is stored along with u?, its values (on finer

levels) being interpolated from level H along with the interpolation of ui’ or its
corrections.

It is easy to see that if the order of smoothness of K is twice that of u, this
algorithm (with wzhl being used all the way to grid h; = O(h1/2)) will solve the
problem to the level of truncation errors in O(n) operations. In most physical
problems the smoothness of K (z,y) increases indefinitely with increasing distance
|z — y|. In such cases the algorithm can be used (all the way to the coarsest hj),
but the values of w! should be corrected (after being interpolated from w'?) by
summation over some m points on grid h in the vicinity of x;. For example, for
potential-type equations (i.e., K(z,y) = log|z — y| or K(z,y) = |z — y|™!) the
algorithm should be used with m = O(logn), and the order of I Ih{ should also be
O(logn), resulting in O(nlogn) solution time.

This algorithm can in the same way be used even when the given grid is
non-uniform; e.g., when the given grid points represent an actual self gravitating
set of point masses. To facilitate high order interpolations, the best way in this
case may be to organize the next coarser grid in a semi-uniform structure, based
on a collection of progressively finer uniform grids defined over increasingly more
specialized subdomains (cf. Sec. 7).

Recently, an algorithm which solves potential-type equations in O(n(log n)3)
operations has been presented [33]. It seems to be substantially slower than the
above algorithm, less general and more complicated.

B. Multilevel Monte-Carlo

Suppose a grid function « has the boltzmann distribution (13.1), and the task
is to calculate averages (M(u)) = >, P(u)M(u), for various functionals M (u).
Assume first that each u;, the value of u at gridpoint z; = jh = (j1,...,Jq)h, is
a real number.

When 8 — oo (zero temperature), the task boils down to finding the “ground
state(s)”, i.e., the configuration(s) for which min F(u) is attained. This problem
is solved very effectively by the usual multigrid algorithm, that for simplicity can
be described as the alternating use of the following two steps. (i) Gauss-Seidel
relaxation: The gridpoints are scanned in some prescribed order; at each point
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zj in its turn, the value of u; is changed so as to minimize F as far as possible.
This process by itself can in many cases converge to the desired minimum, but
the convergence will normally be slow, because smooth errors will be reduced very
slowly. (ii) Coarse-grid correction is a correction of a given approximation @ by a
function of the form I I@UH , where v¥ is a function defined on a coarser grid (e.g.,

with meshsize H = 2h), and I denotes coarse-to-fine (H to h) interpolation,
whose weights in any direction should generally reflect the strength of interac-
tions in that direction. v itself is selected so as to minimize E(@ + I J’L‘IUH ). To

(approximately) calculate v | the resulting coarse-grid minimization problem is
itself (approximately) solved by using again steps (i) and (ii). (Thus, a sequence
of increasingly coarser grids is in fact recursively used.) Since v very well ap-
proximates smooth errors, the overall process converges very fast. (See Secs. 3, 4,
5. In case local minima are obtained instead of global ones, elements of multilevel
annealing should be incorporated; cf. Sec. 13.)

For finite 3, relaxation is replaced by a Monte-Carlo process: at each z; in its
turn, a new value of u; is randomly chosen according to the probability distribution
(13.1) (given that all other values of u are fixed at their current value). When this
is done many times over, a sequence of configurations is generated with “detailed
balance”, i.e., with the property that, if at a certain stage in that sequence an
equilibrium has been reached (meaning that the probability to have obtained any
configuration u is the physical probability P(u)), then that will also be true in
all subsequent stages, making the subsequent sequence representative enough for
calculating the desired averages. In practice, equilibration is slow: equilibrium is
(approximately) obtained only after many steps, because large-scale (i.e., smooth)
deviations are slow to disappear. More seriously, even when equilibrium has been
reached, the calculated averages are often very slow to converge and very expensive,
because of the following four difficulties. (A) “Critical slowing-down” (typically
occuring near critical temperatures, which are physically most important): the
space of configurations is slowly sampled, because large-scale solution features are
slow to change. (B) Slow balancing: Deviations at all scales are slowly averaged
out. If a standard deviation o is contributed by the features of some scale, these
features have to completely change O((a / 6)2) times in order to obtain accuracy ¢.
(C) Domain vastness. Large scale features, physically very important (especially
close to critical temperatures), obviously require very large grids to be simulated.
(D) Fermionic interaction. In QCD problems, at each Monte-Carlo iteration, to
account for the dynamics of fermions, a system of lattice Dirac equations should be
solved. Moreover, the change in the logarithm of the determinant of that system
should in fact be calculated, possibly requiring enormous amount of calculations.

These four difficulties actually multiply each other, and therefore usually result
in intractable calculations. Fortunately, they can all simultaneously be overcome
by multilevelling.
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We first describe how to eliminate the slow equilibration and the critical
slowing. The first simple approach, in a straightforward analogy with the zero-
temperature case, is to alternate the usual Monte-Carlo process with a coarse-grid
Monte-Carlo, in which only changes of the form I J’ZIUH are considered to a given
fine-grid configuration @. Detailed balance is preserved if the Hamiltonian (en-
ergy) governing this coarse Monte-Carlo is E7 (vH) = E(u + I I}QUH ). By some
pre-calculation this Hamiltonian can be rewritten in a simple form, quite similar
to the given (i.e., the fine-grid) Hamiltonian. (Using the FAS formulation, such
a coarse-grid Hamiltonian can quite generally be devised, even when FE is not
quadratic; see [12, §7.1]. It is interesting to note that with this formulation, exter-
nal fields can generally be viewed as defect-corrections of some finer structures to a
coarser physics.) In some cases (e.g., when large local deviations are improbable),
this coarse Monte-Carlo well represents all moves which are slow to equilibrate in
the usual (fine-grid) Monte-Carlo. In such cases, a two-level cycle, composed of
a couple of fine-grid sweeps followed by coarse-grid equilibration followed by an
additional couple of fine-grid sweeps, will nearly equilibrate the fine-grid config-
uration. The coarse-grid equilibration itself can rapidly be (nearly) obtained by
similarly alternating between sweeps on that grid and (near) equilibration on a
still coarser grid. This recursively yields a multigrid cycle. Since coarser sweeps
are computationally much cheaper, the total work in such a cycle is only a fraction
more than the work invested in the fine-grid sweeps. Thus, equilibrium (and hence
also decorrelation) is nearly obtained in a work equivalent to just few Monte-Carlo
sweeps. (This has been demonstrated by Goodman and Sokal [34].)

In most cases of interest, as Murphy would predict, this straightforward ap-
proach will not quite work, mainly because the probable slow-to-equilibrate moves
cannot generally be characterized as having the form [ I}ZIUH . For example, this is
obviously the case for Ising spins. To be sure, coarse-level moves of Ising spins
are feasible: they would typically consist of the simultaneous flipping of b x b
squares (or b x b x b cubes); and bt x bt squares at the £-th level of coarsening.
But such plain square flips will most often increase the energy very much (the
more so the coarser the level) and will therefore most probably be rejected by the
Monte-Carlo process. To employ probable coarse moves, the blocks being flipped
should tend to be broken along “weak links”, i.e., at interactions which currently
carry high energy (at violated bonds, in case of Ising spins). To obtain such blocks
and still maintain detailed balance, we propose to employ the following stochastic
coarsening process.

Take first, for example, the two-dimensional Ising spin model, with variables
uqg = +1 and Hamiltonian

E(u) = — Zua,ﬁ(Ja,,Bua—}—l,ﬁ + Ka,ﬁua,ﬁ—l-l + ha,ﬂ)- (Bl)
o,

The blocking described above (with b = 2, say) can be done in more steps, alter-
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nating a horizontal coarsening with a vertical one. Consider for example the first
horizontal coarsening. In the straightforward process, the flip of each coarse-grid

spin ug 3 would represent the simultaneous flip of ug, g and ug, 41 g- This block

freezes the interaction Vo, g(u) = Jag gU2q U24+1,3- In the stochastic coarsening
process, we only assign a probability 1 — Py, g for this freezing, while a probabil-
ity Py, g is assigned to simply deleting this interaction from the Hamiltonian
governing the next MC moves. It is easy to see that detailed balance is main-
tained provided (i) whatever is obtained, a freeze or a deletion, it is maintained
for the same MC moves (e.g., for the entire coarse MC); (ii) the probability used is
Pyo g = @20, €Xp(—BVaq (1)), where @ is the current configuration and goq, g is
any non-negative constant (independent of @, but depending on the interaction),
sufficiently small to assure that Py, g < 1. The blocking can now be changed: in
case Vo, g has been deleted, the spin ug,41 g is blocked with ug49 g, not with
u2q,3- The flip of each coarse grid spin will now represent the flipping of between
one and three fine-grid spins. (This is a simplified example. The actual process is
somewhat more sophisticated.)

It is easy to see that the Hamiltonian of the coarse grid will no longer have
the general form (B.1); interactions with diagonal neighbors may enter. But this is
the most complicated the stencil can get: even if (B.1) included all eight (nearest
plus diagonal) neighbor interactions, the above horizontal coarsening would still
produce just eight coarse neighbor interactions. (More flexible coarsening schemes
would allow the neighborhood to grow just a little more.) So the process can
be repeated. At each level a couple of Monte-Carlo sweeps are first made, to
settle to a local equilibrium, followed by stochastic coarsening first horizontally
and then vertically. Then the coarse-level Monte-Carlo is performed (similarly
using still coarser levels). On returning to the fine grid, each coarse-grid spin
whose final value is different from its initial value is translated into flipping of the
corresponding block of fine-grid spins. This whole cycle can be repeated v times
before returning to the next finer grid (when the current fine-grid is not the finest).
The whole trip thus defined from the finest level through all coarser ones and back
to the finest is called a multi-grid cycle (V cycle if v = 1, W cycle if v = 2).

If the maximal possible value is always assigned to gg, g, deletion is sure to
occur at each violated bond (i.e. when V3, g(u) < 0). Hence, islands of reversed
signs will be blocked together and easily disappear in the coarse Monte-Carlo.
Also, new islands will easily appear. Most of the configuration will change in one
cycle. The work in a cycle is dominated by the couple of finest-grid Monte-Carlo
passes. Thus, decorrelation is obtained in a work equivalent to just a few MC
sweeps.

A similar process can easily be devised for any discrete-state or continuous-
state system. The Hamiltonian is first written in the form E(u) = —X,;V;(u),

where the straightforward coarse-to-fine interpolation I J’L‘I would be equivalent to
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freezing some of the interactions V;. But instead of straightforward freezing, each
such interaction is frozen in probability 1 — P; and deleted in probability P; =
4j exp(—ﬂVj (ﬂ)), where the best value for ¢; is perhaps the largest allowed, i.e.,
gj = miny, exp(,BVj (u)) Then the interpolation I I,} is modified accordingly: its
weights are larger in directions of stronger remaining interactions, keeping of coarse
frozen all those interactions that escaped deletion. (The original I I’f[ itself should
best be based on the strength of the original interactions.)

Eliminating the critical slowing still leaves very significant slow balancing.
Even at high temperatures, Ising spins should be flipped 10 times in order to
get five-digit accuracy in the average magnetization. At sufficiently high (or suf-
ficiently low) temperatures, this slowness can be eliminated by changing the way
statistics is extracted from the sequence of configurations; by replacing, for exam-
ple, each Ising spin with its expected value given its neighborhood (thus regarding
the Monte-Carlo sequence as a process for creating detail-balanced neighborhoods).
Such balancing of deviations is still very effective even at quite moderate temper-
atures, if those neighborhoods are suitably enlarged. But close to the critical
temperature, similar balancing needs to be done at all scales. This can naturally
be done with the multilevel Monte-Carlo outlined above: the neighborhood of a
spin is itself balanced in terms of the coarser level, and so on recursively.

The above multilevelling can also be used to deal with vast domains: the
latter should be simulated only on coarse levels. The coarser the level, the larger
its domain. This can be achieved in various ways, depending on the nature of
the problem and the desired statistics. One simple way is still to use the finest
grid over the entire domain, but with only few passes being made on that grid,
since every such pass produces many fine-grid local samples, as against perhaps
only one coarse-level sample produced by a pass on the coarsest level. A multigrid
cycle, as described above, with v = 2d, for example, would produce comparable
number of samples at all scales. If still larger domains are needed without more
samples at the finest level, one can extend that level to the larger domain (using
the periodicity — in case periodic boundary conditions have been used), then create
from it the next coarser level by the stochastic coarsening process and delete the
finest level from subsequent processing. (In some problems the finest level will
still subsequently be processed at some special zones, e.g., near boundaries.) The
domain may latter similarly be extended again and again, deleting each time the
currently finest level.

The solution of the lattice Dirac equations, with associated matrix (), and the
calculation of ¢ log det @, is rapidly obtained by multilevel solvers (see Secs. 11 and
12). Moreover, these solvers can very nicely collaborate with the multilevel Monte-
Carlo: they yield fine-to-coarse defect corrections to (Q_l),-j for neighboring ¢ and
J, so that dlogdet ) can be followed also during coarse-level changes, without
calculations on finer levels.

,24,



It is also expected that multilevelling in the above style, using FAS formu-
lations, will lead to simple and natural renormalizations, i.e., descriptions of the
system behavior in the limit of (infinitely) large scales. In case of Ising spins, for
example, FAS formulation means that the initial value of a coarse spin is decided
by the current configuration in the block it represents, e.g., by a majority rule.
On increasingly coarser levels, the spin dynamics thus created, monitored by any
statistics of interest, will tend to lose dependence on the level, and its “flow” be-
tween levels, as a function of various physical and computational parameters, can
readily be studied. The advantage is that only simple interactions are maintained
at all levels; e.g., only eight neighbor interactions are entailed by the simple ex-
ample above. Still, sophisticated dynamics of superstructures can be performed
at coarse levels, for negligible work, maintaining detailed statistical balance. Such
techniques are therefore obvious candidates for treating turbulent flows, too.

Needless to say, the multilevel Monte-Carlo is highly parallelizable. With
enough processors, solution time will be small-order polynomial in the number of
levels employed.
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