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Single-Particle Theory of Fission*
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The single-particle aspects of nuclear fission theories are investigated. The liquid drop model is shown
to be essentially equivalent to an independent particle model with the requirement that particles occupy
the lowest orbits. The consequences of relaxing this requirement are pursued and are shown to be significant.
A natural framework is provided in which the mass asymmetry of fission arises naturally. A report is given
of the technical aspects and the quantitative results of a detailed model calculation. Some of the indicated
conclusions are formulated as phenomenological rules.

L INTRODUCTlON

~ ~HE phenomenon of Gssion involves the dividing of.. the atomic nucleus into two (or more) parts, and
was 6rst observed experimentally in the late thirties. '
The occurrence of such a division for the heavier ele-
ments is simply dictated by energy considerations. '
A large amount of energy may be released in the process,
because of the smaller binding energy per nucleon for
these nuclei.

The characteristics of cession, as mell as of all other
properties of the nucleus, and the processes which it
may undergo, are, in principle, determined by a many-
body Hamiltonian B. Although there is no conclusive
experimental evidence either way, it is customary to
ascribe to this Hamiltonian the form

E is a one-body operator, including the kinetic energy
term, the spin-orbit interaction and perhaps other
terms. The two-body operator ~ represents an inter-
action between different nucleons, which, in principle,
can be determined. (or at least closely investigated)
from scattering data of nucleons on nucleons, and from
information about the bound-state structure of the two-
nucleon system (namely, the deuteron) s The recon-
struction of such an operator is indeed the subject of the
efforts of a few groups of investigators. Perhaps, the
most comprehensive is that of Breit. The knowledge
of the exact form of the Hamiltonian is still only part
of the problem. It needs to be solved. In particular, we
expect the Gssioning of specific nuclei to be described by
a time-dependent solution of this many-body problem.
The overwhelming complexities of this problem call for
drastic approximations to be made. %hen one deals with
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properties related to structure and simple scattering
processes of a given nucleus, the usual approximations
involve a limitation of the number of particles con-
sidered and a truncation of the space of states which
they are allowed to populate. This is based on the fact
that such properties indeed depend only on the degrees
of freedom of the last few so-called "active" nucleons. '
The bulk of the nucleus, the core, plays the role of an
essentially inert, uninvolved observer. In the truncated
space, the original Hamiltonian is modi6ed, serving as
an effective" interaction. However, since the precise
form of the transition

8;„t(Complete Problem)-+H, rr(Truncated Problem)

is not clear, one may consider H,«as a starting point,
and treat it through a set of primary parameters to be
6tted to the experiment. This, in fact, has been the
underlying philosophy of the shell model, ' which has
scored a great many successes in the 6eld of nuclear
spectroscopy. The inherent calculational difhculties
still present io the shell model, along with the discovery
of rotational spectra, led to the development of the
collective model of nuclei. In this model, it is impossible
to distinguish between "active" and "passive" nu-
cleons. Rather, all nucleons participate, in comparable
measure, in the motion which the model describes.
Hence the term collective. The reduction in the number
of degrees of freedom comes about by altogether dis-
posing of the individual degrees of freedom oF the
nucleons, and replacing them by some variables which
relate to the nucleus as a whole. The structure of the
nucleus is determined by an over-all equilibrium
shape (which is permanently deformed for rotational
nuclei) and by small variations relative to it (giving
rise to vibrational spectra). The relation betvreen
the shell model and the collective model, the ways in
which they complement each other, and through
which they can be integrated into a united model,

4 This idea is a direct carryover from atomic physics.
5 A general reference is A. de-Shalit and I. Talmi, 37uclear Shell

Theory (Academic Press Inc. , New York, 1963).' A. Bohr and B.R. Mottelson, K I.Danske Videnskab. Selskab,
Mat. -Fys. Medd. 2V, No. 16 |',1953 .
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have been the subject of thorough investigation in the
past decade. One may safely say that, at present, we
possess, through these two models, a fairly compre-
hensive and, to a large extent, quantitative under-
standing of low-energy nuclear structure and reactions.

Vet, both models are incapable of providing a mean-
ingful framework for the treatment of fission. In
fission, clearly, we are confronted with a radical re-
arrangement of a/3 the nucleons in the system, and
hence the shell model (and in particular the spherical
shell model) is inapplicable. As for the collective model,
it treats basically saba/l variations in the nuclear shape,
whereas the fission process clearly involves much
larger and more elaborate variations. It is perhaps
because of the inapplicability of the major nuclear
models that the study of fission has become rather
isolated from the rest of nuclear physics.

The first (and so far dominant) model to deal with
fission is the liquid drop model (LDM).' From a
historical, as well as conceptual, point of view, it pre-
ceded the collective model and paved the road for it.
Superficially, they are almost identical, inasmuch as
the nucleus is described by some collective coordinates
which pertain to its over-all shape. The nucleus is
described as a drop of homogeneous, homogeneously
charged, incompressible, nonviscous, sharply bounded
liquid, which is subject to an irrotational, hydro-
dynamical Row. Of all these characterizations of the
problem which one replaces the original Hamiltonian
with, none is truly essential. The basic feature is that the
instantaneous over all shape of -the nucleus ptays the role

of dynanvic variable With th. e particular assumptions
stated above, as well as with a much wider class of
assumptions, the geometrical nuclear surface is in
itself sufficient. The potential-energy part of the
Hamiltonian is composed of an electrostatic and a
nuclear interaction. The electrostatic term is simply
and classically given by a double volume integral
over the nuclear charge density

d'r d'r (2)
N ue1 ~i ~2

Vels~

The nuclear energy is itself a sum of two terms, one
proportional to the volume and the other proportional
to the surface of the nucleus;

However, with the assumption of incompressibility of
nuclear matter, the volume energy simply becomes an
additive constant which contributes nothing to the
dynamics of the system and can be altogether left out
of the discussion. The origin of this form is in the
Bethe-Weiszacker semiempirical mass formula, where
these two terms represent an expansion of the binding
energy in powers of A 't". It is quite clear that the
extrapolation of this form into shapes which are grossly

7 N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).

distorted is fraught with serious dangers. Nevertheless,
the liquid drop niodel (LDM), in its basic, simple
form has been responsible for providing a great deal.
of insight into the fission process. The static, and more
recently dynamic, consequences of it were investigated
in great detail by Wheeler and collaborators, ' and by
Swiatecki and collaborators. ' In fact, in the last 15
years, many of the significant theoretical studies were
either carried out or initiated by the latter. "

The role of the single particles in the nucleus, and
their Fermi-Dirac nature, was a central question from
the start in the understanding and the theory of fission.
The I.DM, inasmuch as it. is a microscopic analog of a
macroscopic liquid, is basically a many-particle model,
where the particles have a mean free path much
smaller than the dimensions of the total system. This is
in a rather sharp contradiction with our current general
picture of nuclear structure, which maintains that
nucleons have a long mean free path, reflecting the
exclusion principle in nuclear matter. As a matter of
fact, this very consideration has been critically dis-
cussed by Bohr and Wheeler, at the very inception of
the LDM. More recent studies (including the present
one) showed that this contradiction has a minor eRect,
at most. It turns out, with a surprising degree of
generality, that an extreme independent particle model
(with simple assumptions) reproduces the LDM
nuclear surface energy. Thus, it would seem, the
I.DM may be used as it was originally conceived,
although its motivational basis is altered. Experi-
mentally there were various observations, " related in
particular to the different fission characteristics of
even and of odd nuclei as evidence for the single-
particle nature of nuclei undergoing fission. A quanti-
tative analysis of the process based on a single particle
approach was performed by Xilsson. " The Nilsson
single-particle model" has enjoyed tremendous success
in nuclear-structure theory, and is also applied to the
theory of fission. In some respects the present work may
be viewed as an extension of the former. In particular,
the nuclear shapes discussed in the present work are
more general in nature, and are more characteristic of
the fission process.

Before proceeding with the exposition of ideas, the
presentation of results, and their analysis, we must
make one point extremely clear. The present work does
not constitute an independent, self-sufficient model of
fission. Rather, it is an attempt to illuminate (quanti-
tatively as well as qualitatively) various aspects and
concepts in relation to other existing models. It is

8 D. I . Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).
9S. Cohen and W. J. Swiatecki, Ann Phys. N.Y. 22, .406

(1963);J. R. Nix and W. J. Swiatecki, Nucl. Phys. 71, 1 (1965);
W. J. Swiatecki, Phys. Rev. 104, 993 (1956)."This is also the case for the present work.' V. M. Strutinskii, Zh. Eksperim. i Teor. Fiz. 45, 1841 (1963)
(English transl. : Soviet Phys. —JETP 18, 1298 (1964)g."S. G. Nilsson (private communication) .

» S. G. Nilsson, Kgl. Danske. Videnskab. Selskab, Mat. -Fys.
Medd, 29, No. 16 (1955).
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hoped that a better understanding of such aspects will
eventually pave the way to a rigorous, integrated
theory of nuclear fission.

II. COLLECTIVE- AND SINGLE-PARTICLE
DEGREES OF FREEDOM

As was already pointed out, the description of the
nucleus in terms of the coordinates of the individual
nucleons. is a formidable undertaking. Attempts to
construct a framework which will forego the use of
these numerous coordinates and will concentrate on a
much smaller number of degrees of freedom serve a
dual purpose. First, the computational complexities
may be reduced to a workable level; and second, the
new coordinates may be more closely related to our
intuitive picture of the fissioning nucleus and to the
physical observables which the process involves.

The basic problem, therefore, involves the tran-
scription of a Hamiltonian H(ri, ~ ~ ~, r~, ri, ~ ~ ~, r'~)

dependent on the coordinates and their derivatives of
the A nucleons (ss well as on their spin and isospin)
into a, Hamiltonian H()i, ~ ~ ~, $„;j&, ~ ~ ~, j„)which
depends on some set of variables (b, ~ ~ ~, $„)and their
derivatives. It is assumed throughout the following
discussion that H({r};{r})is precisely known, though
in reality this is not the case. Nevertheless, enough
of its basic characteristics are well understood. In
particular, when no velocity-dependent forces are taken
into account, JJ may be simply separated into a kinetic
term which depends oddly on the derivatives of the
coordinates, T({r}),ancl a potential term which de-
pends only on the coordinates themselves —Ir( {r}).

If the set of "collective" variables {$}((,;i = 1, ~ ~, tt)
corresponds to some rearrangement (say, a linear
transforms, tion) of the individual variables —par-
ticularly meaning that there is no reduction in the
number of independent variables —then the trans-
formation simply generates a different, but basically
equivalent way of describing the A-body system.
Although such a precedure may have its merits, it is
hard to see how it will reduce the enormity of the task
at hand. Clearly, then, before constructing H, the first
step is the proper selection of the "collective" co-
ordinates. This selection is effectively a truncation of
the configuration space, and as such must be guided by
physical considerations. If this truncation corresponds
to some regien of configuration space to which the
system is in actuality confined, then the Hamiltonian
H can be simply mapped. over into H on the truncated
space. This, however, is generally uncertain, and we
have no way of checking it in practice, anyway. Thus,
the effective truncation must be accompanied by a
certain modification of the Hamiltonian as well. At
this point of the reasoning one may be tempted to
drop altogether the many-body Hamiltonian, and to
use the "effective" Hamiltonian H({$}) as a starting
point. That, indeed, is what the LDM does. The

variables describe a shape which defines the boundary
of a liquidlike nuclear matter. The potential-energy
part of H has the simple form of a sum of Coulomb
electrostatic energy, and nuclear-surface energy. On the
other hand, the dependence of the kinetic energy term
on {g} and perhaps also on {$} themselves, is more
complicated. One must incorporate further assumptions
about the nature of the internal motion, " and resort,
in most cases, to elaborate hydrodynamical descriptions.
As we shall see, the question of the counterpart to the
kinetic-energy term in the many-body Hamiltonian, is
persisting in other treatments as well.

The many-body Hamiltonian, in second quantization
notation, has the form

H = Z ( I
&

I
P)o-'e

n, P

The creation and annihilation operators a t, a~ create
and annihilate single-particle states, and thus construct
a description directly in configuration (or momentum)
space. In some problems in nuclear structure, the
collective coordinates (such as relate to the total
quadrupole moment) are considered im additiort to the
particle coordinates. In such cases they are redundant,
and special arguments must be advanced as to why the
resulting treatment may still be basically valid. "
Generally, however, conditions must be imposed to
cut down the redundancy thus introduced. If the
conditions are physically acceptable and mathe-
matically manageable, then not only is the redundancy
removed, but a prescription may be provided for
constructing the effective Hamiltonian, H, which de-
pends on the collective variables only.

The most widely used approach" to the choice of
collective variables very much resembles that of the
LDM. It essentially specifies —not necessarily com-
pletely —the total nuclear spatial density p(r). The
basic feature of nuclear matter —its incompressibility-
is introduced tt priori by limiting the acceptable
p(r) to those functions which describe a standard
constant density, or ones that fluctuate around it.
Once the standard density is fixed (with proper allow-
ance for surface diffuseness) all that remains to be
done, is to specify the region in space to which the
nucleus is confined. This can be done, as the LDM
would do, by describing through the variables ($i, ~, f )
the two-dimensional surface which forms the nuclear
boundary.

An alternative method may be employed, which
relates the new coordinates directly to the Hamiltonian
H. The central argument is that the nucleus can be
described as a system of irtdepeedertt particles, moving

'4 J. A. %'heeler (unpublished work) .' S. A. Moszkowski, Phys. Rev. 103, 1328 (1956)."S. A. Moszkowski, in IXaedbuch der Physik, edited by S.
Flugge (Julius Springer-Verlag, Berlin, 1957), Vol. 39, p. 411.
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in some common average single-particle potential.
In particular, the ground state would thus be described
by

up= II a~'10&=~(pi~" p~)

where aq~ creates a single-particle state pq with ap-
propriate quantum numbers (such as jn, t;, r, etc.)
out of the vacuum

I 0). The properties of Pp are de-
termined through a variational principle demanding
that

Qp I P I @p)=min
or

bQp I
&

I @p&=0 (7)

with Pp assumed to be kept normalized and anti-
symmetrized.

This variational principle gives rise to the familiar
Hartree-rock theory of atomic and nuclear structure. "
To recap briefly, the states q», ~ ~, p& which are the
occupied orbits making up @0, are to be eigenstates of
the Hartree-Pock one-body operator h,

On the other hand, h is related to its own eigenstates
through

I= Z {&~I~I»+ Z &~l
I
l'I»)}a-"o (9)

These equations have to be solved simultaneously in a
self-consistent manner. If the variation is unrestricted,
one obtains &0 which is an approximation to the ground
state, with an expectation value

&p—= 8p I
&

I &p&= pQp I It+h
I ep& (1o&

Now let Qi, 02, ~ ~, Q„bea set of one-body operators
which relate directly to the nuclear-density distribu-
tion. These may be, for example, a series of multipole
operators, or combinations of them. This specific set
of operators has a set of expectation values in the
approximate ground state $0 which we define as

There is clearly a correspondence between any state
f of the nucleus (expressed, say, in configuration space)
and a set of numbers (t} through

This will only be a one-to-one correspondence if {(}
form a complete set of variables. Generally, however,
there will be many states corresponding to the same set
of values ($}.To lift this ambiguity as much as possible,
we extend in a natural way the variational approach
of the Hartree-Fock theory. Again, we limit outselves
to antisymmetrized, normalized product wave func-

~~For a general exposition, see F. Villars, in International
School of Physics" Enrico Fermi" Course XXIII, edited by V. F.
Keisskopf (Academic Press Inc., N.Y., 1963},

tions. Of all states p satisfying (11),we select that one

p({$}) for which Q({$})I
H

I p({f})) is smallest.
This is equivalent to solving the variational problem
with (11) as a subsidiary condition, and, in practice,
is simply done by the use of Lagrange multipliers.

Thus, the expectation value Q ( ($}) I
H

I p( {$}) )
provides a unique value at each generalized point
{$},and is further usually associated with a unique
state in configuration space. The physical meaning of
this procedure may be understood as follows: Assume
that the system is restricted. (by some external force,
say) to have the set of expectation values {$}and is
maintained long enough under this restriction so that
it is allowed to attain as low an energy as possible.
The lowest energy is then identified as the potential
energy term of the Hamiltonian. Clearly, by hypo-
thetically substituting in the Hamiltonian H, {t}=0
one would be simply left with this potential energy-
term, and, in fact, a good deal can be learned about the
system merely by inspecting the potential surface. It
must be emphasized, though, that in it we do include a
great deal of the heretic energy of the imdhvidual nu-
cleons, as is evident by forming the expectation value
of the many-body Hamiltonian H.

The construction of a kinetic term, namely one that
depends on the time derivatives of the generalized
coordinates, is much more elaborate in this framework.
If we assume, as is customarily done, that the kinetic
energy is a bilinear function of the form

(13)

then the problem reduces to the extraction of the
"mass parameters" m;; which themselves may be
functions of {&}.

In practice, the performance of the self-consistency
program, using a realistic many-body Hamiltonian, is
far too complicated. For two-body interactions which
have a hard core, one runs immediately into divergences
in the calculation of matrix elements between un-
modified single-particle states. In fact, the construction
of a one-body average field is impossible, and one must
introduce strong many-particle correlations to counter-
act the hard-core effect. This very difhculty persists to
some extent, even for interactions which have so-called
"soft" or "soft-hard" cores.

The procedure that is followed alleviates the necessity
of going through the self-consistency problem, simply
by postulating what is the solution to this problem.
This does not mean that the conceptual significance of
an average potential, and its relation to the many-
particle Hamiltonian are abandoned. It merely repre-
sents the elimination, through lack of choice, of an
intermediate numerical step. One must hope that the
results are not aR'ected considerably, and that no ap-
preciable physical insight is lost. Since the immediate,
gigoroq. s relatiog. to &he original Hamiltoni@n is not
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apparent, one must also specify an CBective, residual
two-body interaction, operative between states of the
nem single-particle field. This nem, effective Hamil-
tonian is then used to produce the collective Hamil-
tonlRn which dcpcnds on thc ncw coordinates.

A case in hand for such a procedure is the nuclear
shell model. The average single-particle potential is
spherseal, llsually R 11Rll110Illc osclllatol' ol' R SRxoll-
Woods type, with a strong spin-orbit couphng. The
residual two-body interaction is either standardized
(as a Gaussian or Yukawa) or treated as variable and
fitted to experimental data. An extremely successful
extension of this approach to nonspherical shapes is
provided by the Nilsson model. " Here, again, the
emphasis is on the description of the average potential,
in this case a quadrupole deformed harmonic oscillator,
while the residual two-body interaction is usually taken
on Rn cd hoc bRsls.

The extension of these ideas to any arbitrary shape is
straightforward. Let the variables fP} define any shape
S{$}which in turn uniquely defines a one-body po-
tential h{$}.This potential generates a spectrum of
single-particle wave functions

h{t}~{I}=~{&}~fr}. (14)

If care is taken to reproduce the average nuclear
density, then the incompressibility of nuclear matter
is automatically taken into account. In practice, this is
equivalent to a simple restriction on the spatial ex-
tension of the field h f)j.

The first-order identi6cation of the nuclear energy
(as distinct from the Coulomb energy) as a function of
f$} is obtained by simply summing up the energies of
the individual nucleons

where d f $j is the normalized, antisymmetrized product
wave-function of the states g, f $};X = 1, ..., A. This
simple expression is eo) identical to any of the proper
expressions discussed above, and its application requires
some justi6catlon.

Our basic argument is that any part of the potential
energy which depend& only on the total number of
particles (or, equivalently, on the nuclear volume} can
be left out safely from the analysis of the 6ssion
process. Furthermore, all residual terms (namely,
nuclear terms which do depend on the shape) need
only be known up to a proportionality constant, which
may in turn be adjusted separately to observed data.

First, me note that the single-particle energies in the
Hartree-Fock potential already include a good deal of
the tmo-body interaction. Upon varying the depth o~ the
potelltlal by R coils tRllt (fixlllg tile Fel'Illl level of
nuclear matter), we add a term of the form

AZNegl=, p' ej=Aej (i6)

which is independent of the shape. Next, me consider
the types of residual imteractiojt Va~(rl, rs) which we
might add to the summation 'of Eq. (15). The ex-
pectation value added may be expressed:

8 {&}I Va- I efkj &= 2 {e.e, I
Va

I ~I,& (1&)
X&p

If mc follom a common argumentation and consider
Va to be a very short rartge -interaction (zero range in
the limit} we notice that the matrix elements have the
form

{Io y, I Va I e,q.&= «I«su*(rl. }v.*( r')

XV"8(r —r) fm( )q, ( ) —q„( )e,( ) }, (fg)

where ~~8 depends only on the spin-isospin degrees of
freedom and the integration is understood to include a
summation over those as well. A similar consideration
applies to the pairing force" as mell, rendering the
result imdepejtdent of the shape of the average fleM.
Having de6ned the average potential associated with
each "point" f$} we still have a choice in deciding
which particular levels mill be occupied by the A
nucleons of the system. It is true that to be a solution
to tile stl'lct 1111111IIllzlllg problem Df Eq. (6) 'tile coll-
6guration of A nucleons must be composed of the
energetically lowest levels. However, as written in Eq.
(7), the extremum equation gives rise to numerous
solutions, some of which are only local energy minima
and some o~ which are saddle points of the energy
surface Q I

H
I p&. We simulate each such solution as a

different configuration of levels in the standard h({$j)
rather than solve for the modi6ed average potential.
This is done both for mathematical and computational
simplicity, and because an element of arbitrariness in
the construction of the average 6eld has already been
introduced. It must be borne in mind, though, that the
actual increment of energy resulting in the rearrange-
ment mill thus be usually smaller than might be ex-
pected from a mere inspection of the levels of

hfdf}.

We shall not explicitly take this particular effect into
account because of the lack of a rigorous quantitative
handle on it.

The 6rst rule of level occupation that one naturally
tries is the one mentioned above; namely, the lomest-

energy levels. In anticipation of results that follow, we

may state with a large degree of generality that with
this prescription the I.DM potential-energy surface is
essentially reproduced, This may provide partial justi-
6cation for de6ning the LDM potential surface as the
one generated by this particular approach.

That this prescription is indeed somewhat arbitrary,
mas hinted at above. The potential energy as it is
de6ned here already contains a considerable amount of
kinetic energy of individual nucleons. %'hy, then,

'8 L. S. Kisslinger and R. A. Sorenson, Kgl. Danske Vedenskab,
Selskab, Mat. -Fys. Medd. SZ, No. 9 (1960).
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~ cm ce co DCI solutions Q of the variation. al problem satisfy

(2&)

~ CG
IEb ZEc ZZd

FIG. 1. A schematic description of two different modes of
fission. In the first (Ia—Ie) a neck is forming, which becomes
continuously thinner until it finally snaps. The hatched cross
section describes the "scission surface, " In the second (IIa—IIe)
a region of lower density is forming in the middle of the nucleus,
becoming rarer until the nucleus splits.

should any addi60eal kinetic energy imparted to the
system (that is, to the nucleons) be transformed
entirely into kinetic energy of the collective coordinates?
Moreover, it is entirely conceivable that the potential
energy at a given "point" {P}will depend both on the
total energy of the system, and on its past history.
The emphasis in this paper is on the quantitative
consequences of various choices of level populations,
rather than on formula, ting an approach based on any
specific one.

The Hamiltonia, n H is known to commt&te with
various operators, which generate a set of conserved
quantities and describe the symmetry of the system.
Thus

(IZ, J7=0, )II, Tg7=0, PE, i%7=0, (19)

where J is the angular momentum vector operator
(associated with spherical symmetry), T, is the third
component of the isotropic-spin vector (charge con-

servation) and R any spatial reflection" (generating,
together with J, improper orthogonal space trans-
formation). The one-body Hamiltonian Ii does not
necessarily possess all these symmetries. We have
purposefully abandoned the spherical symmetry to
arrive at shapes which are typical of paths leading to
fission. ln the same manner we may abandon others.
We also recall that the extremum problem will often
call for symmetry-lacking solutions because of the
special nature (determinantal) of the sought wave
functions. Let us consider the case (which is applicable
here, but may be easily generalized) in which we have

Lh, I,7=0, Lh, T37=0, Di) E.7=0. (20)

We have chosen s as a preferred symmetry axis. At
each "point" {$} the eigenstates of fi are labeled by
m, r3, and y, corresponding to these operators, and as
w'e assume that they form a complete set, we always
have diGerent energies associa, ted with levels having
the same set of quantum numbers.

At the same time, levels having different sets of
quantum numbers may have the same energy. All the

' Giving rise to the gerade or ungerade nature of states of Ref, g.

where Q„ is any state which differs from p by oiie

particle. This rejects the relative stability of each of
the con6gurations against excitations of particles by the
total Hamiltonian H. Thus there is an increased
tendency to conserve the individual quantum numbers
of each of the particles. H we consider a subspace in
which axial symmetry always holds, we arrive at an
alternative rule of population whereby the magnetic
quantum number m is individually conserved. A similar
consideration holds for the reAection symmetry.

The question now arises as to what happens when

any of these symmetries are relaxed. An energy de-
generacy which may have existed between states
belonging to diJerent y, is removed once y, ceases to be
a good quantum number, because of the interaction
now operative between the states. The transition
between these two states, which the strict conservation
of the relevant quantum number would require, must
be understood in the following sense. As we have
mentioned above, the freedom associated with the
particle coordinates is manifested in the multiplicity
of solutions to the variational problem. Each such
solution, p'({P}) is an eigenstate of a digererit Hartree-
Fock Hamiltonian h'({P}). We have simulated, for
reasons of simplicity, each p'({j}) associated with
Ii'( {$}) by a difTerent solution of the same, standardized
h({&}).Thus, two solutions p' and p' which viewed in
this simulated manner are very similar (different, say,
in one particle) may have been in fact quite different
originally. Also, the energy degeneracy which may
exist (and seems to be removed) between two individual
single particle st-ates of h({$})actually represents a true

energy degeneracy of the two complete configurations
p' and g'. We, therefore, may be justified in considering
the conservation of individual quantum numbers in
this framework.

ID practice, the effects of the internal degrees of
freedom which are absent in the I.DM, may be taken
into account in two ways: (i) Explicitly, by actually
including the additional coordinates in the calculation
to a larger or smaller extent, (ii) implicitly; working in
the LBM spa, ce, but modifying the LDM potential by
adding a comp/ex, noelocal, energy dependent potential. -

These special aspects, which are of a more dynamic
character will be discussed elsewhere.

III. PARTICLE LOCALIZATION IN
FISSION PROCESS

Ke have already emphasized the conceptual dif-
ference between the I DM and the independent
Particle Model (IPM) in the descripton of fission. This
may be summarized by the difference in the character-
istic mean free path of nucleons in nuclear matter;
it is very short in the I,DM and very long in the IPM.
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An individual nucleon —in a properly antisymmetrized
framework —is described by a highly localized wave
function in the LDM, as against a wave function
extending over all the nuclear region in the IPM.
If we were to construct a rigorous, complete description
of the system, the choice of a basis of single-particle
wave functions (localized versus extended) would not
matter much. However, in an approximate theory, the
choice of representation may matter a great deal.

We have indicated in anticipation that under certain
a,ssumptions, the potential energy associated with any
nuclear shape (specifically also the nuclear energy) is
practically identical in both models. This does not mean
that the predictions of both will be identical, since an
essential portion of the dynamic informa, tion is in-
herent in the kinetic-energy operator (or in the mass
parameters) which, given the potential, is yet to be
determined. In this section we pursue a line of in-
vestigation which is indirectly related to this specific
problem.

Let us consider a generalized, multidimensional
space 8, each point s of which may be characterized
by a set of generalized coordinates, such as the f$}
discussed above. S is the modified configuration space
in which the fissioning system is described. Each point
s of it represents (in the .LDM) some nuclear shape.
On the other hand, in the IPM each point characterizes
an average instantaneous potential in which the

.independent nucleons move. It is assumed that some
basic assumptions about the nature of the motion,
such as the incompressibility of nuclear matter, are
already incorporated in this description. The first basic
difference between the LDM and the IPM in this
connection is that for the IPM we must be explicitly
aware of the additional degrees of freedom which
characterize the actual occupation of single-particle
states in the potential of the generalized point s, V(s).
As we have stated already, forcing the nucleons to
occupy the lowest orbits, brings about an almost perfect
equivalence between the IPM and the LDM potential
surfaces.

We may now divide S into two types of points s:
S'" which represents all simply connected shapes, and
S"' which represents all divided shapes. In other words,
shapes characteristic of prefission and of postfission
configurations, respectively. If the ground state, or
any initial nuclear state, is represented by a point
s;, s;PS~'~, then the fission process is classically de-
scribed by a path which asymptotically leads to some
point sf, where sf& 5"'. To further the classical analog
we now speci6cally consider such a path. Given any
spatial shape described by a point s on this path, we
draw an imaginary surface 0- dividing this shape into
two subshapes. In a hydr odynamical flow, (such
motion as would be described by a classical LDM) it
is possible to trace the evolution of the surface 0. along
the path the physical system is following. In particular,
if the area of 0 vanishes in the Gssion limit, we would

FIG. 2. A schematic sequential
description of the 6ssion process,
occurring as a result of the nuclear
interaction between the two frag-
ments at the generalized point (.
After that the interaction between.
them is purely electrostatic.

refer to it as a scissiort surface. It is obvious that along
such a classical path, the area of the scission surface
varies continuously until it becomes zero. In fact,
within the framework of the LDM, this is the only type
of sequential process through which fission can occur.
The urea of 0 is a direct measure of the interaction
(other than electrostatic) existing between the two
parts of the 6ssioning nucleus. Were this interaction
switched off, the potential energy of the system would
be raised precisely by the amount

~~~pot 2CSU1'A 0'y (22)

X= (XL, XR), (23)

where XL is dined over EL, and pR over RR only.
Employing this separation into left and right, we may
also write the single-body Hamiltonian h as a 2X2
matrix operator

(hLL hLR)

EhRL ttRR)
(24)

where the meaning of the various pieces is obvious.
In the fission limit, when the left and right regions
become totally disconnected, we clearly have

hLR hRL (25)

where A, is the area of 0.. If, for example, the system
has enough kinetic energy at this configuration, then
such a transition, (from one nucleus to two nuclei
"touching" but not interacting) is energetically
realizable. In principle, it might also be consistent with
the equations of motion, if one takes into account the
additional degrees of freedom which are suppressed
(or "hidden") in the LDM treatment. In particular, if
one allows variations in the liquid drop local density,
one may construct such physical paths which are not
characteristic of the LDM. This is illustrated in Fig. 1.
Each point s along the path discussed above represents,
in the LDM framework, a potential h(s), whose eigen-
states are occupied by the independent nucleons. A
scission surface separates the potential region into two
parts which we shall refer to as ER(s) and EL(s) (for
right and left). Each single-particle wave function may,
therefore, be described by a pair of wave functions,
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Fi(". 3. The type of shapes
used in the present calcula-
tions, and the parameters (ex-
cept for 0.) used to characterize
them. The parameters are not
independent, since an over-all
normalization of volume (or of
central density) must be per-
formed.

and the operator h becomes a direct product

each of the components in the localized states expansion
of P(s) must be determined by taking into account the
eGect of aotisymmetrization, recalling that the

(xz (s), 0) Land likewise the (0, xa (s) )7 are not
necessarily normalized or orthogonal to one another.
To work with these states we dehne the "localized
overlap matrix" E as follows:

& '"( ) =((x ( ), 0) I (x '( ) 0))

The eigenstates x of h (in this limit) have the form
(xz„o) or (0, xa). Namely, they are completely
localized in one of the separated regions, and they
belong to the eigenvalues {ez, } and {ea~} of hz, z, and
hRR, respectively. The only case where an eigenstate
of h~, L&(h~a may be different from zero in both regions,
is when some eigenvalue eL is accidentally equal to
some eR&. In such a case any linear combination of
(XL", 0) and (0, xa&) will be an eigenstate of h. The
physical signi6cance of this localization is simple: It
states that each of the nucleons of the mother nucleus
will definitely find itself in one of the daughter nuclei.
It is further suggestive of the possibility that one may
forego the necessity of antisymmetrizing particles in
the two separate regions.

For any point s, s&S&'&, the nuclear wave function
is some antisymmetrized product of nucleonic states
of the form

(3l)

and similarly for IC p&a& (s) .E,ii(s) depends both on the
shape s and on the way the division into the left and the
right regions is made, where we clearly have

& s'"'(~) +&.s'R'(&) =4s (32)

The length of each particular state vector in the ex-
pansion of p(s) is therefore simply

edtE~, , , z:, ,=~ (s) XdetEi, ;;=,+z, . . .,qP(s), (33)

where EL is a vga determinant giving the overlap
integrals of the u states localized to the left, and
similarly Ea is the (A —v) X(A —v) determinant for
the states on the right. To sum up, g(s) can be repre-
sented as a general expansion of the form

where

h(~) (xL (~), xa (s) )=o (~) hL (~), xa (~) ) (2g)

We now break each of the (orthonormal) single-particle
states into

x ()—= (x (), x (~))=(x (~), 0)+(o, x (~))

(29)

and substitute it into the expression for p(s). p(s) can
therefore be written as a sum of states of the following
form:

y(~) = g g II (x,-'(.), o) II (o, x - (~) ),
v=0 {(ai) }

(30)

where the summation over {(n;) } corresponds to all the
divisions of a system. of A states into two strange
subsystems of v and A —~ states, respectively. In
principle, therefore, Q(s) is a superposition of states,
each of which has a digereez number of particles
localized in each region. The liquid drop picture on
the other hand, strictly assigns to each region the
number of particles consistent with its volume (as-
suming constant standard density). The amplitude of

y(s) = Q a„y, (s)yg „"(s),

where the &P.L(s) is a normalized state describing the
component of p(s) in which v particles are localized in

the left Land similarly for p~,a(s)7. The a~erage

number of particles in each of the subregions is simply
given by the integral over this region of the over-all
particle density. If the potential which generates the
single-particle state is uniform in space (as we have
assumed) then this average is simply given by the
volume enclosed in each of the regions. However, the
expansion of Q(s) demonstrates the existence of
variations (or fluctuations) around this average.
This is precisely the equivalent of a cellular expansion
of molecules in a gas. The average number of molecules
in a given cell of a larger container is proportional to
the volume of the cell; the Pucfgatiols around this
average are of the order of the square root of the
number of molecules. In a liquid, where one deals
with 10" molecules (or of the order thereof), the
Quctuations amount to one part in 10"or so, and may,
therefore, be neglected altogether. Inasmuch as the
LDM regards the nucleus as a compact liquid (com-
posed of imaginary, infinitely small subpar ticles)
these Quctuations may be neglected in this case as well.
The nucleus, however, contains only a small number of
particles, and the fluctuations may reach approximately
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x-"'= (x-', x-"), x-' '= (x-', -x-'), (33)

where x„Lor x„aare the (identical') eth state in one
or the other of the separate potentials. We implicitly
assume that n refers to an energy ordering —which is
identical in both halves of the potential —and com-
pletely speci6es the state. Ke now may associate with
each n, an occupation number p„whose value would
be 0, 1, or 2 depending on whether the nth level is
6lled in none, one, or both of the fragments. Alter-
natively, it tells whether none, or both of the pair of
states x„&+&, x„~& are occupied. Each determinantal
wave function is characterized by such a set of oc-
cupation numbers fp„}.Clearly, any I for which
p„=2will correspond to a pair of particles, one of
which is localized on the left and one on the right.
Therefore, only the levels for which p, =i need be
considered in the expansion of the form (30), to
ca,lculate the Quctuation in the number of particles.
Let X; be the number of levels with p=i, the relevant
expansion surviving antisymmetrization is clearly

~() = II (x-,, 0)(0, x.,) II (x... (~)x.,). (36)

Hence, the relative frequency of a Quctuation of dui
around the mean is simply given by

x, ) |'x')
o(») =I II I

~ (37)

Thus, the width of the number distribution is simply
given by (-',X&)'". We may apply this result to some
more specific cases of the idealized picture.

(i) As we have noted above the (LDM) potential
energy is effectively reproduced by populating all the
lowest levels. In this ideal case we have for the oc-
cupation numbers

p„=2 for n& ~~A,

p„=o for n& pA. (38)

fifseeN particles. Such fiuctuations are not negligible
and should be incorporated into the dynamics of the
system. Realizing, on the other hand, that one has to
consider the e6'ect of antisymmetrization, we see that
these Quctuations will, in general, be reduced from
the square-root limit.

To make the point clear, we consider a potential
which is symmetric under reQection, but is composed
of two separated, completely independent (and of
course identical) regions. These regions are the left
and right pieces discussed above. Since this idealized
picture is supposed to corresponds to prefissioN type
of potentials, we shall consider the representation in
which the eigenstates are either symmetric (gerade)
or antisymmetric (ungerade) under reflection. The
nth symmetric and antisymmetric states are simply

FIG. 4. The energy levels of
a spherically symmetric square
well of zero depths and in-
Qnitely high boundary. The
units correspond to A'/2&=1
and to E= (~)'13.
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Thus, %~=0 and the width vanishes, as it would in the
classical picture of a liquid as well. Therefore, the
assgmptiog of compact level fillin within the IPM,
reproduces the LDM also as to the properties of particle
localization.

(ii) An alternative way of expressing the occupation
described by Eq. (38), is to state that the —',A lowest-
symmetric add &A lowest-antisymmetric states are
occupied.

%e may consider the general case in which the K+
lowest-symmetric, and the E lowest-antisymmetric
states are occupied, with S+ not necessarily equal to
E . Under this condition we clearly have

mg ——[A~—x I (39)

and the width may be quite considerable. If we relax
the restriction that the occupied states are the lowest
for each reQection symmetry, then we can only write
the ineguu/ity

(40)Kg&I zp —E
(iii) The app1ication of these considerations, coupled

with a statistical treatment, may give the behavior of
the idealized "localization width" as a function of
excitation energy imparted to the system. It is clear
that the excitation of the system will generally cause an
increase in the average value of K~. In the limit of
infinite energy, we have obviously

(41)

(where A is the total number of particles in the twin
systems). This is so because the relative probability
of 6nding two particles at precisely the same state
becomes zero when a 6nite number of particles are
distributed. in an in6nite number of states. In the
intermediate-energy region, which for real nuclei for
this purpose is of the order of tens of MeV, we may
employ a statistical Fermi liquid theory to investigate
the behavior of the quantity K&. This is done in Ap-
pendix A. As a rough result we show there that the
"localization width" behaves as Esl'.

In the case of an arbitrary, prefission configuration,
the basic features of the discussion above stil1 hold„
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TABLE I. A list of the geometrical characteristics of some of the nuclear potentials for which more extensive results are quoted.
(The codes assigned to the shapes are arbitrary. ) For each of these shapes an asymmetry parameter may be added. Some of these
appeared in the course of a dynamic calculation performed elsewhere. Column 6 gives the surface area of each of the equivolume shapes
with the volume normalized so that the sphere has a surface area of 4.836.

Shape code

SPHERE
F1P

F2P

F6Q

F1P6

F2S

F2S4

F6R

F8R

FSQ2

FSQ3

FSQ7

0.620

0.533

0.488

0.460

0.538

0.493

0.497

0.497

0.470

0.477

0.481

0.486

(0)
0.213

0.390

0.552

0.215

0.394

0.397

0.398

0.564

0.572

0.578

(0.620)

0.507

0.432

0.378

0.394

0.349

0.319

0.329

0.286

0.246

0.194

(0.620)

0.521

0.464

0.427

0.528

0.451

0.429

0.332

0.433

0.416

0.365

0.345

Surface

4.836

4.988

5.264

5.565

5. 163

5.359

5.480

5.541

5.698

5.804

5.890

5.979

except that one is forced to make elaborate numerical
calculations to arrive at a proper quantitative gen-
eralization. The coupling between the two parts is
through the common surface, and the energy therein is
proportional to this surface area, independently of
conditions in all other modes of motion. The same is
not true for the IPM. To obtain a quantitative measure
as well as a qualitative understanding of the coupling
through the common 6eld and its dependence on the
level occupation, we go back to the overlap matrix E
of Fq. (31).E is best expressed in a representation in
which h is diagonal and it contains, in principle, the
relevant information. We may look at any wave func-
tion g and calculate the fluctuation of the Harniltonian
h in it; namely, the quantity

~hBU=LQ Ih'I@)—&@Ihl@)']'", (42)

which has the dimension of energy, and can be easily
expressed in terms of the eigenenergies of h, and the
matrix element of E. If Q is an eigenstate of h, then,
and only then, the fluctuation DhLp]=0. For pre-
6ssion s, and for wave functions describing a number of
particles localized in one of the regions, Q" say, LNI pL)
is dkgeremt from zero. In fact, Ah may serve as a quanti-
tative measure for the quality of the particular mode of
separation described by PL. In the limiting case de-
scribed above, the Ructuation of h is zero for all lo-
calized components of the wave function separately.
To obtain a measure for the meaning of the absolute
value of Ah in any general case, we investigate the
other limit, that of the originally spherically sym-
metric con6guration. The properties of E for this
particular case, as well as some of its eigenvalues are
summarized in Appendices 8 and C. Numerical results
utilizing such calculations are given in a following
section.

The significance of the preceding discussion to the

actual model describing hssion is manifold. The
existence of fluctuations in the mass number at a given
energy and in the energy at a given mass number must
be related to the distributions of mass number and
energy yield, resulting from a dynamical model of the
process. We may describe the dynamics of the process
by the following schematic graph (see Fig. 2). The
final state describes a particular mode of separating
(into mass, charge, energy, etc.) the total nuclear
mass, and the initial state is a particular nuclear state.
Out of the total Hamiltonian describing the system we
single out as a perturbation the interaction (other than
electrostatic) between the two regions. The vert:ex
describes the transition (through the switching of this
interaction) to two nuclei, and must be considered at
all points of configuration space. It is clear from the
discussion above, that each mass division, for example,
will have significant contributions from points in this
space, which ordinarily (namely, in the LDM) would
not contribute at all. Moreover, without actually
performing a detailed calculation, it is easy to conceive
of situations in which the effects of destructive or con-
structive interference in the calculation of the amplitude
will be of major importance. Again, this particular
dynamic aspect will be tackled elsewhere.

IV. CALCULATIONS OF MODEL

As the previous section indicated, the basic theo-
retical, as well as technical problem which we en-
counter, involves the finding of single-particle wave
functions and eigenenergies in wells of arbitrary spatial
shapes, of various energy dependence, and with various
boundary conditions. This is generalizing and extend-
ing the Nilsson work, which essentially gave eigen-
values of an elliptically deformed harmonic oscillator.
These deformations and potentials are not generally
typical of the fission process. For reasons of compu-
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TAaLE II. The energy difference (in arbitrary units) between the lowest symmetric and antisymrnetric states as a function of I for
various reflection symmetric shapes. The difference is an alternate measure of the coupling between the two "halves. " In the LDM
this direct coupling is simply proportional to h„which we quote in column 8. It can be seen that the relation between these two mens-
ures is not unique.

No.

SPHERE

F1P

F1P6

F2P

F2S

F6Q

FSR

FSQ2

FSQ3

F8Q7

7.83

5.09

4.58

2.96

2.36

1.75

1.49

0.66

0.30

0.12

0.04

9.80

4.67

2.63

1.57

0.84

0.62

0.68

0.14

0.03

0.01

0.002

11.72

6 ' 35

4 43

2. 10

0.90

0.35

0.23

0.24

0.03

0.004

0.001

0.0001

13.52

6.62

4.00

1.56

0.49

0.15

0.09

0.08

0.005

0.0004

0.0001

15.30

6.75

3.52

0.26

0.07

0.04

0.03

0.005

0.0001

17.08

6.72

3.06

0.75

0.14

0.03

0.01

0.01

0.001

0.0002

0.257

0.209

0.187

0.155

0. 122

0.102

0.143

0.108

0.082

0.061

0.038

tational convenience we have restricted the nucleus to
shapes which are axially symmetric, but are otherwise
completely arbitrary. " This has the effect of cutting
down the number of degrees of freedom to a workable
level, without impairing seriously the generality of the
considerations and conclusions. The technical aspects
of the numerical solution with this assumption are
described in Appendix D. Nevertheless, the relaxation
of the axial symmetry restriction may have implications
which we have already discussed. Before describing in
detail the particular calculations reported here, we
would like to make the following general remarks. The
object of the calculations is vol to solve quantitative
problems related to specific nuclei and their fission.
Rather, it is to provide a qualitatively comprehensive
and quantitatively meaningful framework which forms
an analog, similar system. In that system the essential
features of the theory and their relation to experiment
are formulated and investigated. This study will thus
illustrate what further quantitative treatments should
be undertaken, as well as what general statements can
be considered as valid for actual physical systems.

The first step that must be taken, is a truncation of
the nuclear instantaneous shapes to be considered, over
and above the limitation to axially symmetric shapes.
Clearly, highly irregular shapes can be excluded. In
this paper we consider quantitatively shapes which can
be described by a small number of parameters, and
which have already been treated in previous studies. "
The nucleus is described by two spheres (overlapping

"Thus we remove the restriction to second-order surfaces of
some previous works."I.Kelson, Phys. Rev, 135, B1667 (1964); J. R. Nix, in
Proceedings of the Third Conference on Reactions Between Complex
1VNclei, edited by A. Ghiorso, R. M. Diamond, and H. E. Conzett
(University of California Press, Berkeley, 1963), p. 366.

or not), joined by a neck which is a second-order
surface of revolution. Figure 3 shows the general type
of such shapes. In addition an asymmetry can be
introduced for any shape, by means of an additional
parameter.

Thus, each shape is described by an axially sym-
metric surface which is obtained by rotating a line
y(x). This line is described by the following param-
eters: r is the radius of either of the two spheres; d is
the separation between the centers of the spheres;
hJ is the distance from the symmetry axis of the point
where the neck joins the sphere. Alternatively, the
coordinate» can be specified (see Fig. 3); h~ is the
thickness of the "neck at its centeral point; 0. is the
asymmetry parameter which is introduced for any
symmetric shape y(xl by modifying it to y(x) through
the following prescription:

I
x

I )» y-(~x) =~y(x);

I*I &» y. (~x) =I:1+(~—1)l xl/»]y(x),
for x&0

I xl )xg y ((1/a)x)=(1/~)y(x);

y-((1/~)x)=11+(~—1) I*I/»3 'y(x)

for @&0.

The ratio of volumes of the two parts is then given ap-
proximately by u'. The set of parameters (r, d, hJ,
h~, n) defines a shape, which must be normalized
through multiplying by an over-all scale factor.
The simplest procedure would be to make the volume
of the enclosed shape some prefixed constant. It was
pointed out by Swiatecki, " however, that this causes

"Vf. J. Swiatecki (private communication) . Also Ref. 27, p. 19.
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FlG. S. A typical single-particle energy spectrum for a sym-
metric 6ssioning potential. The energies are given in the described
units, along with m and 7, of each state. Note the parabolic rise
with m of the energy of the lowest es state. The shape is the one
coded F2P.

dE2 d (II 21'EI)

do d {g'I'0)

d(II-I/8E )
d {IIej8~)

Wc can, therefore, describe results on such a relative
basis, thereby avoiding the central density normaliza-

tion problem. Surface energy constants wouM thus be
given in terms of a standard LBM surface constant.

The spatial dependence of the potential energy can be
chosen in various ways. Since there is no sound physical
reason for making any particular choice, wc have mostly

a considerable distortion in the potential energy
surface and its dcl 1vatlvcs. Rather& onc has to nor-
Qlalizc the shapes ln such a %Pay which reproduces a
constant central nuclear density. For a sharp-edged
potential weB the total single density displays
diffuseness effect near the surface. The fallo6 of the
density to zero on the surface is determined by the wave
number of the most energetic nucleons ill the system. .

As wc deal with a prescribed number of particles,
there is a constant X, independent of shape, such that
the central density is multiplied by a factoI, g, g=
Ll+~ (0' ueuheee) jq WllcrC 0'sphere IS thc SurfaCc al ea of
a reference sphere of some given volume V, and 0-

the surface area for any other shape whose volume is
the same. To correct the density back, one has to
multiply the volume by g (which is a function of 0).
This causes the surface to bc InodiQed through Inulti-

plication by g'I', and the single-particle energies

through multiplication by g @'. Thus, if we plot an
ss5$0(&pfd cllel gy E(0'), as a fllIlct1011 of 0', wc llavc 'to

modify it through multiplying the abscissa by q(a)'I'
and the ordinate by g(0) 2I'. This causes a very sub-

stantial modihcation in the surface energy constant,
which becomes d(g '"E)/d(g'"o) rather than dE/do.
However, if we compare IIII0 curves, EI(0) and E~(0),
which are not very diGercnt from each other, then—
since g is a slowly varying function of 0—we have that
the ra/io of surface constants is only slightly changed.

Namely,

worked with a potential which is both Datural and
technically easy to handle. The potential depth is
taken to be coestaet, inside the potential region, and
infinite outside. Thus the boundary condition for the
single-particle wave functions is the simple requirement
that they vanish on the surface. In reality, the surface
thickness thus introduced is somewhat smaller than
what onc would cxpcct OD cxpcriIQcntal gl ounds.
However, since it is a diQ'ercnce which is independent
of the spatial shape, it is hardly of any practical con-
sequence. Similarly, it is possible to modify the behavior
of the potential inside the region, but, again, pilot
calculations that we have made indicate that this does
not add measurably to the understanding of the
probleln.

An important option in the solution of the single-
particle problem is the incorporation of a different
boulldary condltlon on thc surface vvhlch specifies the
value of the dt, ringlik rather than the value of the
wave function on the surface. This is particularly
signi6cant for the incorporation of the collective
dynamic aspect into the internal, single-particle degrees
of fI'ccdoIQ.

Thus, for each shape specified by the above param-
eters, a set of eigenstates are given. Each of these are
characterized by the generalized parameters of that
particular shape, viz. , by III (the s component of orbital
angular momentum), by I (an ordinal number), and,
for shapes which possess reQection symmetry through
the x-y axis, y, (the parity under that operation).
The quantum number v which counts the number of
orthogonal states belonging to the same set of other
quantum numbers, was limited (for practical reasons)
by the relation v&12. For actual physical problems,
high levels of large es play a very small role, and many
were thus not even calculated.

The question of the degree of accuracy in the per-
formance of the numerical calculation is rather in-
tricate. %e discuss it, along with examples, in Ap-
pendix E.

A par tlcUlaI' dlfGculty ls posed by thc splD-ol bl t

I�2-
0I�—
IOO—

8 90

~80—
~70—

60—
50—

Lal 40
30—

IO—
0 ———--

M*O

FIG. 6. A typical single-particle energy spectrum for a non-
symmetric 6ssioning potential. Note that Ascreasieg difference
between the erst two states of each m value.
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interaction. For a spherical potential, this operator
is well deGned and easy to handle. It can b
treated as a
value r

as a perturbation on the purely spat 1

problem or through modifying this problem into
ia eigen-

a set of coupled diGerential equations. %hen a general
shape is treated, the basic delnition (and t
extent alsoo the motivation) of a spin-orbit force

~ ~

an o some

becomes ambiguous. One can simply ado t the de6n-
a y extends the spherical case, merely

by consi ering the geometrical cent ther as e origin of

fol
e posit~on vector. There is however

' tever, no ~ustuxcation

two s stem
or such a procedure and in dd't' ha i ion, t e passage to
wo systems, each with its own spin-orbit t

calcu
p ing, ecomes rather obscure. Throu h t th

lations, however, we have aim t
oug ou t e

treated the s in-
a os excl.usively

e e spin-orbit force as a perturbation on the
very final state of numerical results, as in Sec. VI.
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FIG. 7. Variation of single- articleg e-par icle spectrum on an axially
, re ection symmetric 6ssion aths.

levels corresponding t th h

h f harison on t e right.

V. PRESENTATION AND ANALYSIS OF
NUMERICAL RESULTS

In this section w
on the id

'o, we present and analyze result b d
deas and techniques discussed in the

s ase

sections and in th
'

in e previous

results are d
in their accompanying appendices. Thices. e

tho
e divi ed into two general c ta egories:

ose relating to the single-part' 1 6 ld,ic e e, eigenstates,
ose r ai o hean eigenfunctions; and (ii) tho 1

mu iparticle potential-energy surface and
properties.

e an general

Ke have made an eGort throughout the presentation

I IO—

l20 --+
55

IIO -4

IOO—

90-44

+80-

.p 70—
33

~60—
2+

50—
2 2+

40—
I+

50—
I 1

—+

20—
0+

0-
10 -0

-0

I

I.05

FIG. 8. The variation of the ener levely

are shown to demonstrate th
'ape. n y t e three lowest le

ra e eir c aracteristic behavior.

to display results on a relative basis em h
'

h, emp asizing the
g ue o various modifications without neces-

sarily obtaining: there absolute values. Thus, we
express most of the pertinent b

~ ~ ~ ~

num ers in arbitrar
Nezts. This is basically mada e or practical reasons.

famil of
n Sec. "-'IV, we have described th

'
e e parametrized

y of shapes (potentials) with which
been workin .

w ic we have
'

g. As these parameters, Ave alto ether
are not independent we hav t' y - aram-

t rough the test. To each one of th
asymmetr aram

e o em an arbitrary
ym e ry parameter 0, may be assigned. Th h

'

p meters was mainly dictated b the d
o id id

"
b

'
e a"; asis 'or calculations as ossible.

Also, some of these particular sha es were
rse o dynamical calculations" (in the LDM

turn
framework) and it was felt that th

'
e a t eir selection mi ht

urn out eventually to be useful in a uni6ed d

ec nica i culty to bar the evaluation of th
properties of articles in

'on o e

p es in an axially sylmnetric field f

From a physical point of view, we may diGer nt'
b

'
c ypes (or modes) of motion. The

mo eshaveonl ana r
ese

rinci al m
y approximate meaning the ar t

p
' 'p odes in the rigorous math t 1

e are not

since th e inetic-ener o
ematica sense

dl
gy perator is not necessaril

)

iagona in them. Moreover th
riy

r, ey are not generall
mutually orthogonal to each oth No er. evertheless, we
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TABLE III. The probability of localizing in the bigger region of an asymmetric, pinching shape, of the lowest ns state. The ratio of
the radius of the "neck" to the average radius of the two spheres is also shown for each shape.

F1P6

F2P

12S

F6Q

FSR

FSQ2

FSQ3

FSQ7

0.73

0.81

0.77

0 ~ 86

0.91

0.98

0.94

0.98

0.99

1.00

1.00

0.82

0.89

0.85

0.93

0.96

0.99

0.98

0.99

1.00

1.00

1.00

0.89

0.94

0.91

0.98

0 ~ 99

1.00

0.99

1.00

1.00

1.00

1.00

0.93

0.98

0.95

0.99

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.95

0.99

0 ~ 97

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.97

1.00

0.98

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.951

0.849

0.885

0.799

0.702

0.642

0.822

0.700

0.600

0.511

0.396

find it useful to analyze and discuss the results with
speci6c reference to them. They may be termed as
follows: Fissioning mode, essentially governed by
changes in d; pinching (or "necking") mode, changes
in h~, asymmetrizing mode, changes in n, fra, gments
internal mode, changes in r and h~.

The internal fragment mode may call for a larger
degree of variety than we have allowed it, as is the
case in the work of Xix and Swiatecki. ' Ke also assume
that the over-a, ll rotational degrees of freedom have no
direct bea, ring on the intrinsic single-particle fields.
The initial spherical 'con6guration, and the final two-
sphere con6gurations provide suitable reference points
for our discussion. In Fig. 4, we show the eigenvalue
spectrum of an infinite square-well of a spherical
geometrical form. The eigenstates are labeled by the
orbital angular momen. turn / and by an ordinal (or
principal) quantum number ii. As is well known, for this
case the eigenvalues are immediately derivable from
the zeros of the Bessel functions ji(x+E). The overlap
matrices E, for a corresponding division into two
hemispheres, are given for m =0, in Table IV (Ap-
pendix B),where'their particular structure (as discussed
in Appendix C) is readily apparent. The eigenvalues
of various submatrices of E, corresponding to various
configurations in the spherical potential are shown in
Table V. Since the width in the inherent statistical
mass distribution is approximately measured by

AA g eg(1 —ei,), (43)

we see that the width is mostly generated (for com-
pact m filling) by the difference between the number
of symmetric and antisymmetric states, determining
the number of eigenvalues of E which are equal to —,'.
Clearly, starting with the initial spherical shape in its
ground state, we already have this width which is
theoretically absent from the LDM. In the other

asymptotic case, all eigenvalues of E are 0, -', or 1 and
we may follow the gradual transition, through fission
paths, to this case.

Some typical spectra corresponding to a partially
pinched con6guration in a symmetric and in an asym-
metric case are shown in Figs. 5 and 6. In the sym-
metric case the levels are also characterized by p, (+
or —) which is the eivenvalue of the reflection operator
E, One notes that the states of lower ns are generally
shifted lower than those of higher m, relative to the
sphere. This is a chara, cteristic of any prolate deforma, —

tion, and is also apparent in the Xilsson level scheme.
At the same time the density of states of each m varies
in a similar manner, na, mely, the lower the m, the
denser the states become.

Since we are dealing with a complicated four-param-
eter family of shapes, we have a certa, in degree of
arbitrariness in selecting the results to be displayed.
In Fig. 7, we show the variation of the independent
particle field along a typical path leading to fission
with strict reQection symmetry. We note the following
features: (i) The lower m levels go down relatively to
the higher m levels. (ii) There is a gradual approaching
of corresponding levels of opposite E, symmetry. In
the limit of two iden. tical spheres a complete regroup-
ing of levels is carried out. While trend (i) is char-
acteristic of the fission mode, trend (ii) is basically
characteristic of the pinching mode (for a symmetric
field). In Fig. 8, we show, for a particular shape, the
typical dependence of the single-particle spectrum on
the asymmetry parameter n. For clarity we show only
a few states for each m, where we have also specified
their asymptotic reQection symmetry. Figure 8 demon-
states some significant effects. (a) The removal of the
reAection symmetry removes the degeneracy between
states of the same m, as that which is apparent in Fig.
7. In. much the same way, if we were to depart from
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the axial symmetry as well, no degeneracy (and hence
no level crossing) would occur at any point along this
graph. As we have already emphasized, this is a con-
sequence of the 1ieeor character of the eigenvalue
problem. If we believe that each point represents a
solution to a nonlinear problem (such as the self-
consistency problem in fact is) then such degeneracy

may in principle occur. (b) The first derivative of the
energy e,~„,(i being an ordinal quantum number)
at n=l (symmetry) with respect to n, is of great
interest. %e may, quite generally, express its behavior
as follows:

hN = 0.9
r

h„= 0.8
r

t Arbitrary Normalization

/
/

/
I

/

sgn[(8e, ,„/Bn).=i]= —y„

This rule may be coupled with the general observation
that the slope is a generally decreasing function (in
absolute magnitude) in i, the ordinal quantum number.
The reasons for this behavior are rather simple. The

'

Ig
'

){8 f

[Arbitrary Normalization

a = I.P5

/a = i. t

I

0 O. I 0.2 0.3 0.4 0,5 0,6 0.7

a=a
(8-function) .i

0.8 0.9 I.o

FIG. 9. The distribution of the vaIues of the diagonal matrix
elements of the overlap matrix for shape F6Q, for various asym-
metry parameters. For u= 1 the curve corresponds to a 6 function,
namely, all the diagonal elements are the same, owing to the
reflection symmetry. The values a=1.05 and 0,=1.1 represent
transitions towards the extreme, u= ~.

namely, the symmetric levels tend to go dozen a~d the
antisymmetric levels up in energy. If we recall that the
asymmetry brings about two nonidentical potential
regions, we interpret this observation in a simple wa, y.
The symmetric states tend to localize in the larger
region, and the antisymmetric in the seal/er region.
This is also what one would expect from applying
lowest order perturbation theory, since the anti-
symmetric states are identically zero on the sym-
metry plane, and the symmetric states are different
from zero on that plane. Clearly, once we have moved
away from the point o.= 1, this conclusion becomes less
and less valid, as the interaction between states of
different asymptotic y. builds up. (c) .We further note
the di6erence in this slope for various values of m. For
the lowest (i =1) symmetric level for each i', the slope
is an increasing function of m, namely,

I I
-i~

I I I I—
0 O. I 0,2 0,5 0.4 ' 0.5 0.6 0.7 0.8 0.9 I.O

FIG. 10, The distribution of the values of the diagonal matrix
elements of the overlap matrix for two asymmetric shapes which
differ only in the degree of pinching (measured by the ratio h jr) .
Note the increase in the number of eigenfunctions localized in
one region, when the pinching is increased.

higher the ordinal quantum number, the more nodes
does the wave function have, and the less likely it is to
be influenced by asymmetrizing the shape. Also, the
lower m is, the closer to the symmetry axis is the wave
function centered, with the same general result. The
consequences of this behavior, which are rather basic
and general, is to generate a different behavior of the
potential-energy surface depending on the level oc-
cupation, as we shall see in the second part of the
section.

The essential feature which characterized the fission
process from all other collective types of motion is the
"pinching" mode, which describes the transition to
two subsystems with no nuclear interaction between
them. The effect on the single particles, is, as we have
mentioned. before, to cause them to localize in one of
the partial regions. One way of observing this eGect
quantitatively is by looking directly at the single-par-
ticle wave functions and calculating the probability
that they be in one region. %hen a degeneracy exists
between eigenenergies of the two separate subregions,
one may have to form linear combination of the cor-
responding eigenstates to describe the localized states.
Thus, alternatively, one may take the energy difference
between these asymptotically degenerate levels as a
measure of the localization of these states. An example
is given in Table II. The difference is a fast decreasing
function of the center cross section as well as of the
magnetic quantum number m, although it clearly
depends on various other parameters. By looking at the
same shapes, but with some asymmetry parameter
+&1 which removes the degeneracy, we can give the
probabilities that the lowest "symmetric" state be in
the bigger region (and, almost identically to it, that the
lowest "antisymmetric" state be in the smaller one).
These are shown io Table III, which demonstrates the
extreme localization occurring even at relatively early
stages of the pinching. The effect becomes less marked
for states with higher p.
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X

FIG. 1.1. The dependence of the parameters of the SP shape
on the 6ssionability parameter x. Note the familiar transition
one sphere to two touching spheres, as x goes from I to 0. The
parameters are expressed as the dimensionless ratios cx, h /r,
d/r, and r,~h.

In general, the information concerning the inter-
action between the two subpotentials is inherent in the
overlap matrix as well as in the eigelienergies. A direct
measure of the individual particle state localization is
given by the diagonal element of that matrix, although
this, as we saw, is not a definitive measure. Some
characteristic distributions of these values, for the 200
lowermost states consistent with the magnetic quan-
tum numbers of an initial spherical configuration, are
shown in Figs. 9 and 10. In Fig. 9, it is given for a
constant shape coupled with various asymmetry
parameters. It is easy to see that there is a sizable
portion of the particles which appear to be localized
predominantly in one part or the other. This portion
becomes bigger when the pinching develops, as is
apparent from Fig. IO. As a function of the asymmetry
parameter, it approaches a 8-function at the value 1,
corresponding to the trivial case where the larger part
comprises the entire volume. It is interesting to note
the concentration around the values 1 and O.S (or
0.6), and the great depletion at other values (clearly the
average must correspond to the ratio of the volume
occupied by the region in question). Some cf the
characteristics of these curves are spurious, inasmuch as
they relate to exact eigenstates, instead of correlating
diferent eigenstates belonging to the same quantum
numbers and having approximately the same energy.
A more consistent way is to observe the eigenllues
of the localization matrices. These display the same
general characteristics: a gradUal passage to a set of
5-function-bike spikes situated at 0, 0.5, and $.0.

l40 —
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Fro. 12. A display of "direct shell e8ects" (or dependence on
number of particles) for two different shapes, one of which is
asymmetric. The ordinate gives (in arbitrary units) the value of

(g—5/3 g &,)
gg s 1

where the spin and isospin degeneracy of the levels is neglected.
The solid curve corresponds to shape F1P6; the dashed to F1P
(n= 1.1) .

"V. M, Strutinskii, X. Ya. lyashehenko, and N. A. Popov,
Zh. Eksperim i Teor. Fiz. 43, 584 (1962) I English transl. : Soviet
Phys. —JETP 16, 418 (1963)j.

'4 H. Faissner and K. Wildermuth, Nucl. Phys. 58, 177 (1964) ."P.Pong, Phys. Rev. 89, 332 (1953).
"We wish to emphasize again that, the term "potential" is

somewhat misleading, as it contains also the kinetic energy of
the individual nucleons. It must be understood in the sense of the
previous sections.

It is, incidentally, important to note that the inter-
action between the two forming fragments is unequally
shared by the nucleons. One is essentially reminded of
the "nuclear molecular structure", " in which clusters
are forming inside the dividing nuclear matter, inter-
acting through the exchange of a relatively small
number of nucleons at the later stages of 6ssion.
whether or not one can fully expect a "cluster model""
to work on these grounds is not clear. It is a matter of
quantitatively finding whether these clusters are
formed (in a statistical sense) before or after the
system has evolved through the (classical) saddle-
point shape and thus committed to a particular mode of
division. As this is a basically dynamic question we
shall not attempt here a comprehensive study of it.
Ke shall only conclude by remarking that the cluster
model (and also the statistical modeP') would generally
be expected to improve with lower Z and lower fission-
ability parameter.

The first task of the I.DM is the charting of the
potentiap' energy surface as a function of the variables

{$}used to describe the physical system. This is the
subject of a few studies, ' some of which deal with
families of curves very similar to the ones dealt with in
this paper. In principle, such a chart must be prepared
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for every nucleus (Z, A) under consideration. The
LDM, however, replaces the potential part of the
many-body Hamiltonian by the sum of an electrostatic
term
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Fxo. 13. Two typical cases of "derivative shell effects." The
ordinate shows (in arbitrary units) the variation with Ã of the
quantities BV/Bh„(solid curve) and BV/Bn (dashed curve) for
one particular shape F2S.

and a nuclear surface energy term

V,„,=C,X(surface area).

This has the effect of smoothing out all the effects
which are peculiar to some specific neutron or proton
number. It is clear that up to a scaling factor, the
potential-energy surface depends only on owe parameter
which measures the relative strengths of V electrostatic
and V surface. This fissionability parameter is of basic
importance in determining the likelihood of Gssion for
any individual nucleus. It is the electrostatic repulsion
which is responsible for the tendency of the nucleus
to split, and the nuclear surface cohesion which tries to
counteract its eGect. The Qssionability parameter x is es-
sentially the ratio of the two constants, C,/C„which
scale these two forces. %hen one picks the empirical
values of C, and C, from fits to data on binding er.ergies
of nuclear ground states, one obtains

x=Z'/50. 13A"'. (48)

The value @=1 represents a nucleus which is already
unstable against 6ssion in its spherical ground-state
configuration; it provides the actual limit on the
stability of nuclides in the upper part of the periodic
table '~

Of the various features of the energy surface, per-
haps the most interesting is the existence of saddle-
point shapes and their properties. Using the termi-
nology of Sec. III, we can define this point as follows:
Consider all continuous paths leading from some
specific initial configuration s;, s;$$"& to any point

850
0 A

o o

750 I I l I I I I 1 I I I

0 O.l 0.2 0.5 0.4 0.5, 0.4 0.6 0.8 l.o l.2 I.O 0.8 0.6 0.4
d/r hn/r

FrG. 14. The total nuclear energy for three types of con6gura-
tions: (i) two tangent spheres with a varying volume ratio,
(ii) a slightly pinched configuration with varying stretching, and
(iii) a partly stretched configuration with varying degree of
pinching. For each case the graphs for two total number of particles
(protons or neutrons) —40 and 92—are given, along with the
best fit by a sum of volume and surface-energy terms.

sf sf g St'& . Since s; represents a configuration which
is locally stable, and the energy at sf is lower than at
s;, the potential energy attains some maximum value
on each of these paths. The lowest of these maxima is
then dedned as the saddle-point shape, and its height
relative to s;, as the LDM Qssion barrier. It represents
the configuration through which the system is classically
most likely to proceed to Gssion. Mathematically, when
we consider the energy surface V(g), one demands:
(i) For the saddle point esp

(8V/8$~) I,p ——0, 1=i ~~~ 5I

and (ii) all eigenvalues of the second-order derivative
matrix D~ ~((sp), where

Dg&'& =O'V/8$;8$;

are positive, except for one which is negative. Clearly,
if the topology of V(g) is complicated, one may
encounter many saddle-point shapes satisfying con-
ditions (i) and (ii), as well as other extremum points
satisfying (i) but not (ii). If an abundance of SP's
occur, one has to fall back on the requirment that the
fission barrier is smallest for the proper SP. The actual
calculation and ending of the SP shape is rather tedious,
basically because of the high accuracy necessary in the
performance of the calculation of the six-dimensional
electrostatic-energy term for each shape. ' Clearly,
also, the SP shape will depend on the nature of the
coordinates ( and their symmetry properties. Never-
theless, enough is known about the behavior of the
LDM SP shape as a function of the fissionability
parameter from previous studies" and from general
considerations. The characteristics of the classical

"W. Meyers and %. J. Swiatecki, Nucl. Phys. 81, 1 (1966). "R.Beringer, Phys. Rev. 131, 1402 (1963).
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LDM SP shapes in the framework of this paper are
given in Fig. f1. They may be summarized as follows:

(a) The smaller x, the more removed from the initial
configuration the SP shape is.

(b). The smaller the a, the more pinched the SP
shapes and the less matter is concentrated in the
"neck."

(c). For alt x, the SP shape possesses reflection
symmetry through the x—y central plane.

These fea.tures are rather general, they are apparent
from the curves in Fig. 11, and are quite independent
of the rather large numerical uncertainties inherent
in the calculation of the absolute magnitude of their
values. Property (c) is most striking of all, inasmuch
as it confronts the LDM with the challenge of ex-
plaining the experimentally observed mass asyn1-
metry in the fission yield distribution. "

The various aspects of the explicit inclusion of the
lndcpcndcnt paI'tlclcs dcgx'ccs of freedom will bc tl cated
with reference to the classic LDM results. They are
essentially described as modifications and additions
to them. Furthermore, they are performed and analyzed
in such a way, as to make them rather insensitive to the
calculational uncertainties of the former. This is done
primarily by employing perturbation techniques in the
calculation of the SP's as follows: Expand the potential.
energy V(() a,round the SP (sp.'

V(() =V((sp)+-'(( —4p) D"'(4p) ((—&»)'
where D&'~ is the second-order derivative matrix of
Eq. (50), and ( stands for ($1, $2, ~ ~ ~, t„).We now'

expand around gsp a small perturbation V(()
V(() =V(4p)+D'"((sp) (4—4p)

+k((—4P)D"'(Gp) ((—4P)' (52)

with D&'& standing for the 6rst derivatives column,

D;&'& =BV/B);. (53)

Solving the cxtremum conditions

B(V+ V) =0,
we clearly have for the new SP (sp

4P=4p —LD'"(4p)+D"'(bp) 3 'D"'(6p) (55)

This procedure is particularly useful for determining
the cGcct of various perturbativc terms on the co-
ordinate ~ which measures the asymmetry of the
shape. The most important perturbative terms involve
thc promotion of pal tlclcs fx'OIQ occupied to unoccuplcd
nuclear levels.

The results are divided generally into two cate-
gories: shell effects and gross properties of the multiple
nuclear potential-energy surfaces.

29Recall, though, that a symnMtric SP does not necessarily
imply symmetric division.

Shell Effects. Under this heading we include all the
characteristics of the system which were smoothed
off by the LDM potential-energy ansatz, and which
reQect dependence on the number of particles. Strictly
speaking, shell CR'ects refer to particular distontinuities
or irregularities which occur at specific particle numbers.
They essentially accompany any problem which
involves discrete, irregularly spaced eigenvalues. In
the spherical shell model, for instance, they are further
enhanced. by the existence of strong degerIeracies in
the eigenvalue spectrum. As far as the energy of the
system is concerned we may distinguish between two
general types of shell effects; those which are associ-
a.ted with the total energy of the system, and those
which are associated with the response of the system to
variations and stimuli. The erst deals with the function
E(Ã); the second with BE/B((1V). The same two
types exist in the nuclear shell model, except that the
distinction between them is not always clearly made.
The first is responsible for the behavior of binding and
separation energies; the second for the behavior of
first (and higher) excited states, and of transition
probabilities. We should point out that the present
calculations indicate empirically that the sphere is the
only spatial configuration for which both types of shell
effects occur consistently at the same numbers The.
curves in Figs. I2 and 13 demonstrate the two types of
shell effects for various shapes. We may summarize the
relevant qualitative characteristics (some of which
are displayed in the figures):

(i) Derivative shell effects are much more dramatic
th. Ml dlI cct shell cffccts foi shapes which possess a
lesser degree of symmetry.

(ii) As the shape becomes more pinched, the direct
shell effects become dominated by the corresponding
effects in the substructures which are being formed.
This feature has direct bearing on the validity of ap-
plication of the cluster and statistical models.

(iii) The shell effects, although very pronounced in
many cases, attain varying forms and occur at other
nucleon numbers for diferent shapes. This is signihcant;
it means that although these variations may be some-
times important, and certainly always interesting, wc
may average them out, indeed, when we investigate
characteristics of the system which arc independent of
the number of particles. In other words, the many-
particle nature of the system is preserved throughout
tile calculatloil (1atllel tllail 1eplaciilg tlie Hall'111-

tonian by a "smooth" one), but. the variations which
are due purely to "shell CGects" are subsequently
averaged away. One of the major effects which are thus
concealed, is the behavior of the fission barrier in the
vicinity of closed shell. This basically comes about
because the inclusion of the shell structure actually
shifts the ground-state configuration away from sym-
metry. The additional binding energy present for closed
shell nuclei causes them generally to bc more stable
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against fission than otherwise (with the averaging
procedure) might be expected. An exhaustive study of
this aspect, for more realistic single-body potentials,
was carried out by Nilsson, Swiatecki, and collabor-
ators.

In Figs. 12 and 13, we held the shape of the potential
fixed while allowing the number of particles to vary.
We now turn our attention to a diferent presentation,
namely, holding the number of particles fixed while
changing the shapes of the potentials. This will not only
demonstrate characteristics peculiar to the number of
particles, but will also help us to try and extract
average volume and surface potential-energy terms.
This is shown in Figs. 14(a), 14(b), and 14(c). The
first of those describes the configuration of two tangent
spheres with different radii but with a combined fixed
volume. The second and third correspond to more
elaborate modes of motion, intermedia, te in the fission
process. For all shapes, two total numbers of particles
are quoted, but the figures hold the shapes fixed so that
the density normalization is inccrporated in the
constants necessary to define the volume and surface
terms. Figure 14 depicts information which is char-
acteristic of the behavior of the total energy, and show,
as we have anticipated, that the IPM becomes es-
sentially equivalent to the I DM when the stipulation

FIG. 16. The difference in
arbitrary units between
V(SIPM; P) and V(LDM; P)
as derived and normalized from
Flg. 15.
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is made that the nucleons occupy the lowest available
orbits. The LDM is thus representative of the gross
features of a special type of IPM. In general, however,
if we just give the generalized coordinates {$},we would
not be specifying the state of system completely.
More information which we may symbolically desig-
nate by x is necessary, which determines the occupa-
tion of single-particle orbits in the potential char-
acterized by {&}.We therefore would have as a function
of {$},not just one potential-energy surface, but an
infinite family V(ir; {$}) . The LDM is basically
(averaging and neglecting

fluctuations)

the lower
envelope of all surfaces:

V(LDM; {$})—=minV(~; {t}).
V
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It seems intuitively apparent that in any time-de-
pendent description of the system, it will not necessarily
be confined to V(LDM; {$}).Now, although we can-
not make any dynamic predictions based on the
knowledge of all the surfaces V(ir, {t}) (just as the
LDM could not from merely inspecting V(LDM; {$}),
it is nevertheless very instructive to be familiar with
their general properties. Ke begin by noting that a
dynamic rearrangement of particles which reproduces
the LDM, involves the transition of particles from
higher to lower orbits. In particular also, individual
quantum numbers may have to be changed in the
process. Therefore, we shall look specifically into a
limiting case in which individual quantum numbers
are not altered. Since we are exploring here a model
with intrinsic axial symmetry, we shall let the mag-
netic quantum numbers be the key to the definition
of the multiple surfaces V(vr; {$}).We shall consider
configurations in which all magnetic quantum numbers
are frozen. The symbol m will then stand for a set of
numbers {g }, g being the number of particles with
magnetic quantum number m; and we further assume
that for each m, the g occupied levels are the lowest.
In an axially symmetric framework this procedure
defines an infinite family of mutually nonintersecting
potential surfaces V({g };{$}),where we clearly have

FIG. 15. The variation of V (LDM; P) (solid curves) and
V(SIPM; P) (dashed curves) for 40, 92, and 130 particles of a
kind, as a function of the fractional mass of one of two tangent
spheres. Note the "shell effects" which are quite striking. The
shapes are held 6xed even though the number of particle varies,
and the ordinate is given in arbitrary units.

= total number of particles.

The potential surface with which we shall be pri-
marily concerned, other than the I.DM surface, is
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that which retains the magnetic quantum numbers of
an initial spherical configuration; we shall refer to it
as SIPM. This is physically significant since the sphere
does represent an actual metastable starting point of
the fission process. Again we start by looking at the
configuration composed of two tangent spheres with a
constant combined volume. The abscissa gives the
fraction volume in the smaller sPhere, with P=s
corresponding to two equal spheres, and p=0 to a
single sphere. In Fig. j.5, a series of curves, for various
total particle numbers (again keeping the volume
fixed), gives both V(LDM; ff}) and V(SIPM; f(})
as a function of the parameter P. Figure 15 displays
some important, . characteristics. As the definition
trivially implies, the SIPM values are always larger
than or equal to the LDM ones. For each total number
of particles 2, there is a minimum value P; (A)
under which the'diGerence of the two is zero, and over
which it monotonically increases with p. This minimum
value is itself a monotonically decreasing function of A.
Namely, the larger the total number of particles, the
more asymmetric is the two-sphere configuration at
which the SIPM potential energy begins to diGer from
the LDM one. This, of course, will also hold for more
general configurations. It implies, among other things,
that the properties of V(SIPM; j$}) depend ort the
total rtumher of particles as well as on the fissionability
parameter x. This is in marked contradiction to
V(LDM; f$}).To further demonstrate this point, we
extract from Fig. 15 the difference AVI SIPM-LDMj
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between the two curves and we normalize all curves
through division by a constant proportional to E I'.
The results are shown in Fig. 16, where one clearly sees
the shell eGects superimposed on the general trend of
the curves as described above.

Ke may gain further insight into the properties by
considering the electrostatic term in the two tangent
sphere configuration as well. %e write schematically

V(SIPM P) =[P' t+s(1 —P)@'1

+~f sP"'+ s (1 P) "—'+LP (1 P) /—(P"'+ (1 P) "—')j}

+AVLSIPM-LDM] (P),

where i is a constant proportional to the Gssionability
parameter. For i=0 we may replace 6V by a function
which is rigorously monotonic in p, and then the SP
of V(SIPM; f$}) will coincide with that of V(LDM;
f$}1, but it will be higher by the amount 8 V at the
SP. As i becomes larger than zero, the SP becomes
truly a saddle point in the sense of the above defini-
tions, and the eGect of d, V which has a nonvanishing
derivative at P=0.5, is to shift it towards smaller
values of p (and asymmetry). Clearly, at the same
time the true SP will no longer be on the two-sphere
configuration subspace. As p becomes closer to unity,
the SP of the LDM potential (exclusive of DVf SIPM-
LDM$) approaches the one-sphere configuration.
But for this configuration, as we saw, hV is negligible,
and hence the SP for V(SIPM; f)}) becomes sym-
metric once again. The dynamic Consequences, how-

ever, of the SP symmetry are not quite as clear for
P 0.5 as they are for P 0, because in the first case the
two fragments are hardly defined at the SP configura-
tion.



SIN GLE-PARTICLE THEORY OF FISSION 1045

Results pertaining to these functions (which are
a priori not necessarily constant) are schematically
presented in Figs. 17 and 18. As we mentioned, these
figures clearly demonstrate that there exists a fairly
good constant Cz M which is largely independent of the
nuclear shape and of the type of shape variation causing
the change in the nuclear surface area. This C8 M is
naturally identified with the one taken over from the
semiempirical mass formula. On the other hand, the
SIPM types display a much more elaborate structure
of the surface constant, particu'arly where the asym-
metry parameter is involved. The surface constants
associated with all modes are of the same order of
magnitude as C8 M, except for the asymmetrizing
mode, for which it is much larger. As is apparent from

applying the perturbation on the SP, and as we have
a.lready noticed. The transition from the LDM to the
SIPM surfaces thus has the basic effect of shifting the

saddte point shape from -symmetry to asymmetry. At the
same time, of course, the other coordinates will change
slightly, but this, we feel, is a second-order efFect,

I.05

0 Oa2 ' 0.4 Oa6 Oa8 I;0

Fre. 19. The variation with g, the Qssionability parameter, of
the asymmetry parameter a of the SP of the SIPM type surface.
The shading represents the uncertainties in the calculation of
these values.

A detailed mapping of V(SIPM; {$}) is not pre-
sented here for a number of reasons. Firstly, {g
represents a set of intricately dependent 6ve param-
eters which make the charting technically unfeasible.
Secondly, its properties are basically related through
the addition of AV[SIPM-LDMj to the well-known
and widely described LDM potential. Thirdly,
V(SIPM; {$}) is just one surface of many [many
others being intermediate between V(SIPM; {$})and
V(LDM; {$})j and we fear that spending too much
eGort on its description might overprej udice the
reader as to its signi6cance. We And it more useful to
extract out of typical cross sections of this surface
(and of the LDM one) the surface-energy param-
eters. These are general functions associate'd with each
of the degrees of freedom {]},and are defined for any
surface through

(8) {;{}})'t(8 (Sur(ace Area{S) ))-'
8&;

Frc. 20. The ratio of
fission barrier height of the
SIPM type surface to that of
the LDM type surface. The un-
certainties below x= 0.5 are
rather large for other co-
ordinates.
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qualitatively as well as quantitatively. In Fig. 19, we
plot the dependence of the asynunetry of the SIPM
on the Gssionability parameter. Were we to insist on
the system proceeding through these shapes, we would
be able to obtain approximate phenomenological
rules" for the mass distribution, as discussed in Sec.
VI. It must be remembered though, that in the case
of the SIPM there is also the dependence on the totuL

elmber of particles as well as on the 6ssionability
parameters; this dependence has been suppressed in the
presentation, and the assumed number of particles
(260), roughly agrees with the experimentally interest-
ing ones.

While the SIPM SP shape is asymmetric, the
fission barrier it predicts is higher than the one pre-
dicted by the LDM. In Fig. 20, we plot the ra6o of
the two as a function of the 6ssionability parameter.
It is a rather strong function of x, corresponding to the
fact that the lower x, the more particles have to be
rearranged to derive the SIPM level occupation from
the LDM one. For values near 1, they are identical,
because the SP shape is close to the sphere for which
the lowest levels and those originally occupied do in
fact coincide.

One need not go into detailed dynamic calculations
to see the significant implications of these last two
figures for the understanding of the mass division in
fission, and its dependence on the fissionability param-
eter. Clearly, the eventual mass division is determined

by the relative importance of the SIPM and LDM
surfaces. There necessarily is coupling between the two,
going through intermediate stages, which will bring
about the so-called "slippage" of the system across the
surfaces (sr; {f}).For large Qssionability parameters,
the SIPM SP shape is close enough to the initial
configuration, and its energy is only little higher than
the LDM SP, that we may indeed expect it to be
dominant in the dynamic process, and to bring about
asymmetric fission. As the fissionability parameter goes
down, these two arguments become less and less
applicable, and we would expect a transition to sym-
metric fission. This is observed experimentally. Con-
sequently, also, the phenomenological rules which are
formulated in Sec. UI are u priori expected to hold only
for larger values of x, although we have no way at

»Some heuristic arguments justifying such rules were given
in a previous publication: I. Kelson, Phys. Rev. Letters 20, 867
(~968).
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present of predicting where the transition will actually
occui .

VI. PHENOMENOLOGICAL RULES

The precise incorporation of the single-par ticle
degrees of freedom into a rigorous dynamic approach
is far from simple and is not explicitly tackled in this
paper. However, we have proposed, " some simple
rules for the description of the mass-yield distribution
as well as for other final distributiolis resulting from the
fission process. It must be emphasized, though, that in
the absence of a definitive theory such rules are purely
phenomenological and should not be applied indis-
criminately.

If we insist on a particular level-filling rule, it is
possible to draw conclusions about the behavior of the
potential-energy surface. From the discussion in the
preceding sections it became obvious that th- SP
shape associated with various configurations is not
symmetric, and may thus yield mass divisions which are
distinctly unequal. As a simple rule we suggest that
the mass ratio of the daughter nuclei be given by
A+/A, namely, the ratio of the number of symmetric
to antisymmetric (gerade versus ungerade) single-
particle states. Since this characterization of single-
particle states is rigorously applicable only for po-
tentials (shapes) which possess reflection symmetry, we
must understand it in a somewhat modified manner for
a genera1 potentia1. In an asymptotic sense, we may
define a "symmetric" state as one which has a crest on
the nuclear-scission surface, and an "antisymmetric"
state as one which has a node on this surface. The
A+/A rule may be visualized in the idealized case
described in Appendix D. A configuration of 2+
syillmetrlc and c4 antisymmetric states in a dlvlded
potential may be seen as a superposition of limiting
cases of various mass divisions. For any specific mass
ratio we have an increment in the potential energy for
that ratio relative to the I.DM potential energy.
If the ratio is not unity, we have to adjust the sizes of
the two separate potential regions to obtain the actual
physical division to which this component corresponds
(since the density must be the same in both regions).
Under this adjustment, states in the larger piece go
down in energy, and in the smaller piece go up. The
smallest increment would occur for the case when most
of the particles will be in one of the fragments. Hence
the ideal preference for the A+/A ratio.

The basic question as far as the A+/A rule is con-
cerned, is in which configuration should this ratio be
evaluated. There are two distinct possibilities: (i) the
1111'tlR1 gl olllld-stR'tc collfiglll Rtloll Rnd (ll) tile clRsslcal
I DM SP configuration. The first possibility was given
1Il a previous publication' of one of the present authors,

3' J. Griffin, University of Maryland. Report (unpublished).

the second was suggested later by GriKn" and seems
to be somewhat more consistent with the general
picture of the process. Whereas the first (rather than
the second) is quantitatively successful for the de-
scription of fission of the more fissile (higher 7) ele-

ments, lt ls ulisuccessful In BccouIltlng fol the tI'Bnsltlon

to symmetric fission in the lower Z region. The converse
is true for (ii). Inasmuch as we treat this rule at this
stage as a purely phenomenological proposition, we
present it here without further discussion.

Assuming an initial spherical potential, the nucleonic
spatial eigenfunctions are characterized by the quan-
tum numbers e, 1, m,

y„I„=I'„I(r) P„I(cosi/) e'™~.

Under reRection E„~~~and 8~—8, so that

&..O'-I =V@'I = (-&) I 'V-I . (58)

t
21 lj m/) = elm; I/2XI/2'—

't/nlm;+I/2X —I/21 (6O)

where p I,.+I/2 are the spatial functions of Eq. (57),
y+1~~ spinors, and the bracketed symbols —Clebsch-
Gordan coefficients. The states

~
223j I/2, ), therefore,

are not invariant under 8,. Rather, they are a combin-

AS / IS Rll llitCgCI. , tllCIC IS Rll 0(ld lllllllbCI (2l+I) Of

states in each / multiplet, (1+1) having y, =1 and I
having y, = —1, Therefore, there are always Inore
symmetric than antisymmetric states, with the dif-
ference equal to the number of filled l multiplets in the
initial system.

In a deformed initial potential, l is not a good
quantum number and the determination of A~ —3
(wllicll ls supposedly determining thc nlRss dlBcrcncc
between the fragments) is not as straightforward. It is
easy to see that because of the difference in boundary
conditions for symmetric and antisymmetric states on
the reflection sy~IInctry plane, (A+ —A ) is a rnono-

tonically increasing function of the nuclear cross section.
Hence, the asymmetry in the mass yield distribution
in spontaneous fission is a measure of both the sign
and the magnitude of the intrinsic nuclear ground-
state deformation. Qualitatively we should have for the
same hypothetical nucleus

(A+ —A ).slai.) (A+ —A ).ps.,) (A+ —A )I,.ol.a. (59)

It is well established that in nuclei there is a strong
spin-orbit coupling. The effect of this coupling is to
make the half-integer j(=l+s) a good quantum
number, along with the half-integer ns; (rather than
222 and 222,). An eigenstate

~
22 fjm;) is

j
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ation of states with y, =i and y, = —T, with proba-
bilities

Io

C(-»,)"'=
1m JW2 &2 1'

for 7 = (—1) ' ~&+u' '(61)
The initial nuclear ground state, inasmuch as it is
described as a system of independent particles, is
therefore a linear combination of states with different
values of A+ and A . The total probability for a certain
A+ (and the complement A ) is simply

O.OI—

(64)

A

g~ &+)~ ~-) (65)

For spontaneous fission, the relative abundance of a
fragment with mass number Ap is proportional to
P (Ap, A —A p) +P (A Ap, A p) . Norma—lizing the
distribution of A~ to 200%, 6nally, we have

p(A| ) = (27rI') 'I'{exp)—(2F)-'(Ag —(A ))']

where the summation extends over all partitions of the
A-nucleon system into an A+- and an A -nucleon sub-
system. Clearly, therefore, the eGect of the spin-orbit
coupling is to introduce an intrinsic width into the mass
distribution. Applying the central limit theorem to this
distribution, we rewrite it as

P (A+, A ') = (2m.I') '~' expL' —(2I') '(A+ —(A+)) '],
(63)

where

0.0OI—
0

and similar relations for the corresponding parameters
for protons and neutrons.

The distribution of excitation energy of the fragments
may also be simply formulated. Assuming the distribu-
tion to be directly due to the energy fluctuations in
each particular mass and charge division, we im-
mediately obtain a Poisson type distribution. Using a
standard energy interval dE (to coincide, say, with the
average energy necessary for the emission of a neutron)
we have

P[mhE&E, & (n+1) DE]=expL —f(Z~, A~)]

Xff (Z„A,) ]"/n! (69).

70 80 90 IOO I 10 I 20 I26
I 82 I72 I62 152 I42 I32 I26

Fragment Mass Number

Fio. 21. The theoretical mass-yield distribution for the
spontaneous fission of Cf"', and the experimental data (uncor-
rected for prompt neutron emission). The circles and triangles
represent light and heavy fragments, respectively. A prolate
deformation with a major to minor axis ratio of 1.4 is assumed.

+ „L- (2r) |(A (A ))2]I (66) The function f(Z&, Az) has to be calculated numerically
from the potential-energy surface.

Figure 21 shows a typical mass yield distribution ob-
tained for the spontaneous fussion of Cf'".

The arguments which led to the A+/A rule of thumb

apply also to the neutrons and to the protons sepa-
rately. Thus, the total charge distribution is given by

p(Zp) = (2~1' ) ~~~{exp{ —(2I',) ~(Zp —(Z+))2]

+ pi —(».) '(Z —(Z-))']I (67)

with s+ and I', analogous to A~ and I'. A similar ex-
pression holds for the neutron number. As a rough,
general, relation in the limit of a large fissionability
parameter we have

(A+) 0.6A, (A ) 0.4A, I' 0.15A (68)

APPENDIX A: CALCULATION OF FLUCTUATIONS
IN NUMBER OF PARTICLES AS

FUNCTION OF ENERGY

We have twin systems which are given a total excita-
tion energy E. We assume that the excitation energy is
large enough to excite a relatively large number of
particles, and we treat the systems statistically within
the framework of the theory of Fermi liquids. The total
excitation energy is distributed between the two
liquids according to some probability function
D(E&, E); namely, D(E&, E)dE& represents the prob-
ability that one of the systems will receive between E&

and E&+de in excitation energy. From the statistical
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TABLE IV. The m=0 localization overlap matrix, corresponding to the symmetric division of spherical square-well with in6nite
boundary. The levels are labeled by an ordinal quantum number f, and by y, .

10+

0.5 0.415 0 0 —0.136 —0.105 0 —0.073 0 —O. 073

0.5 0.237 —0.121 0 0 —0.048 0.044 0 —0.019 0

0.5 0 0.365 —0.047 0

0.5 O. 093 0.388 0

—O. 135 0

—0.069 0

0.054

—0.087

0.5 0

0.5
0.277 —0.056 0

0.024 0.228 0

—0.015 0

—0.158 0

0.5
0.5

0.348 0

0.053 0

—0.035

0.360

0.5 0.026 0

10+ 0.5 0.119

0.5

theory we can write the average occupation of a single
particle at energy e, as a function of energy n(e, E).
The density of single-particle states at this energy
is denoted by p(e). The average number of stat.-s with
occupation number I, may therefore be simply ap-
proximated by the following double integral:

Kg(E) =2 dEgD(Ei, E) de p(e)

Namely, for each possible division of energy, properly
weighted, we sum over all single-particle energy states
the average probability that one of the levels at this
energy is filled while the other is not. The factor 2
stems from the symmetry of the two systems.

To perform the actual calculation we need explicit
expressions for the functions D(E~, E), p(e), and
n(e, E,). For p(e) we take, according to simple phase
space argument

p(6) =Cy+6. (A2)

D(Eq, E) is related to the density of states of the whole
system at excitation energy E„p(E,) through

D(R, E) =P(Ex)P(E K)—p(Ei') p(E—Ei') de'

(A3)

for p(Eq), a few model prescriptions are available, '~

and we may choose the functional form:

relations we write

n(e, E,) =L1+.exp(E/C3E„)g
—'. (AS)

The constants Ci, C2, C3 depend on the systems'
dimensions and characteristics, on the units used and
to some extent on the models employed here.

At intermediate energies we may deduce the general
behavior of 5l~ (and hence of the fluctuations in the
number of particles) by making some approximations
in (A1). Assuming an equal division of excitation
energy we reduce the problem to a one-dimensional
integral

X— (A6)
1+exp (2e/CzE) f1+exp(2e/C3E) ]'

Changing the integration variable to x=2m/CgE, we
Write

Xg(E) ~ E'I' 1 1
dx x) — — — . A7)1+e' (1+e')'

Hence, K&(E) is approximately proportional to E'" and
the width is proportional to its square root or E'~'.
The region of validity of the statistical, and other ap-
proximation is determined by the requirement that the
average number of excited particles will be large, yet
small in comparison with the total number of particles.
VVe require, therefore, that

P(E) =expL(C2E)'"3. (A4)
—,'A'»Ep (0)»1, (A8)

Neglecting the chemical potential, setting the Fermi
energy at zero, and neglecting any interparticle cor-

"J. M. B. Lang and K. J. Lecouteur, Proc. Phys. 5oc.
(London) A6T, 586 (1954).

where p(0) is the density of single-particle states at the
Fermi level and —,'A is the total number of particles in
each subsystem. Taking as typical numbers p(0) =S
MeV ' and 3 =200, we find that 8 has to be of the
order of j.o~I0' MeV.
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Submatrix
dlmensj, on

TAaLF. V. The eigenvalues of submatrices of the matrix of Table IV, varying the dimension.
Note the special structure of the eigenvalues.

Eigenvalues

0.5
0.915 0.085

0.978 0.5 0.022

0.993 0,5 . 0.5 0.007

0.997 0.895 0.5 0.105 0.003

0.999 0.909 0.889 O. iii 0.091 0.001

0.999 0.988 0.899 0.5 0.101 0.012 0.00i

0.999 0.989 0.964 0.5 0.5 0.036 0.011 0.001

0.999 0.998 0.965 0.878 0.5 0.122 0.035 0.002 0.00i

1.000 0.999 0.990 0.880 0.5 0.5
1.000 0.999 0.995 0.897 0.876 0.5

0.120 0.010 0.001 0.000

0.124 0.103 0.005 0.001 0.000

APPENDIX 8: OVERLAP MATRIX K
FOR HEMISPHERE

We have mentioned in the text the significance of the
overlap matrix IC. As a reference case we calculate it
here for the particular case of a spherical in6nite
square-well. Working in the (e, l, m) representation
we write, for E dined on a hemisphere

&&,
(&)— P '(h) P„"(h)Ch. (36)

0

First we note that the symmetry properties of the
associated Legendre polynomials may be utilized as
follows:

The angular 8 integral, transformed to the coordinate
x=cos8 is simply

+nfl, n&t m =
hemi

fig p« (81) 2 (1+m)!P '(h' )P "(h)Ch= ', 8ip
21+1 l —es !

Using spherical coordinates we put

dV=r dr sly' it%(p~

P„g„=f„((r)P„'(c 8o)se'"&

with the integration extending over

0&r&E,

(82)

(»)

(84)

P„'(h)P„"(h) Ch

+ P '(h) P "(h)dh
0

P '( h)P "(—h)Ch—

Hence, the integral (81) separates as follows:

f„;(r)f;p(r) r'dr

w jo
P„'*(cos8)P P (cos8) sinzMz9

X expLi(m —m') q $dq . (35)

The azimuthal integration over p yields 2+8 ., and
we are left with a product of an angular integral and a
radial integral.

+ P„'(h)P "(h)Ch
0

=21+(—1) '+"3

X P '(h)P "(h)dh. (3/)

1 (l+m)!E~gp'e'=,
,

8&p for(l+l') even. (38)
21+1 l—m !

P„'(h)=P "(h) gg, 'h, (89)

To calculate the general case, we note that P '(h)
can be expressed as a polynomial in h, Q„'(h)multiplied
by P„"(h):
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(l—m)q„, '+(l+m —1)tl„,' ' —(2l—1)tl„, g' ' ——0
.'l' &=L(2m —1) ttJ'

where the coefficients q
' satisfy the differences Ke have

cqltat;&on I
~A (1 xo) tn.dx

with
(810)

g„,.' =0 for u(0; m) l—m; l(m (811)
P (2m —1) !!]'(2m)!!(X—1) !!

(2m+ X+ 1) !! (815)

fjtm, O (812)

Therefore we have to calculate integrals of the form

Im, &&' ~ (Im, a (tm, P & m(a+P) ~
(8) M l l~ v'

a,P

(316)

Substituting

x"LP„"(x)]'dx.

2' m(x) = (2m —1)!!(1—x')"".

EaA'aL integral. The radia, l functions in a square-wc(i

(3]3) ale given by

f-~(r) =r "'~~~I («-r), (817)

where k„is the wave number such that J~+Uo(k R) =0.
(814) For I=i' we may use the following relation:

Inl, n, 'l (r)— rJ yy/o(k„r) J/+y/o(k„r) dr

k. rA+i/2(k. r)A i/o(k r) —k rJi i/o(k r) J/+i/2(k„r)
k„'—k ' 0

o+ +l 1f2(kn&—)&~a/2(kn&) nn'

For the general case, l/l we utilize the explicit expansion of the Bessel function
cn xP+2x

g=o 2"+'9.!I'(P+X+1)

and we get

(—1) +P (-',«„E)'+"'+'(-,'k .R) "+"'+'P
Z

n o;p o(!+=&'=+3+2~+2P)~lPll'(I+$+o/) I'(&'+g+P)

(818)

(320)

This expansion converges very fast. The results of this From the general orthonormalization requirement
calculation are summarized in Tables IV and V.

APPENDIX C: SOME PROPERTIES OF
OVERLAP MATRICES

(i) Let the Hamiltonian k commute with some one-
body operator 0, then cu the eigenvalues of 0 may be
used to label the eigenstates of h, and hence the repre-
sentation in which E is written. If, furthermore, hLL
commutes with Q (and consequently also «Ra), then
E is diagonal in cv. For example, if h describes an axially
symmetric held and the division into "left" and
"right" leaves both regions axially symmetric, K will
break into a sequence of submatrices each characterized
by a magnetic quantum number ns.

(ii) Let the Hamiltonian k be symmetric under
reAection, and hence its eigenstates are either sym-
metric or s,ntisymmetric under reflection (and shall be
designated by s and ap, respectively). Let the division
into "left" and "right" be made through the symmetry
plane. Ke clearly have

IC,p&~~+E p&~'=o p,

it therefore follows

K 8p +0 Qp /~ad

and the only matrix elements (other than the diagonal)
are those which connect states of opposite symmetry.
The matrix (E&L&——',) has thus the property that,
there are two groups of states such that matrix ele-
ments between states belonging to the sume group
vanish. I,et the number of states in each group be E+
and E, with E+&E . Ke shall now show that for
such matrices: (a) At least (E+ X) of the root—s
are zero. (b) If X is a root, so is —X; namely, the roots
come in pairs with opposite signs. To prove these
properties we note that the determinant of any such
matrix vanishes if E+4A . We now expand the char-
acteristic polynomial of E in terms of the central
minors

(L) + (R)

(L) —.~ (&)~~a~aP =~~o~aP

(C1)

(C2)
I'(x) = g ( x)~++~ ND„, — -—
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TABLE VI. Single-particle eigenvalues of shape F6Q for three
different grids; 14)(32, 17X48, and 21)&64. The extrapolated
eigenvalue is given in column 5. The main source of error is in
the lack of control on'the relative significance of the two grid
dimensions involved.

Since, by definition, E ( ) measures the probability
that the particle in the state p„will be in the left
region, we obtain the total density (or average number
of particles) Ã' ', by

3E EL14X32$ EL17X48$ EL21X64$ ELExtrapoG
A

W~& = Q E lL& =TrElL&. (C7)

11.078

12.522

17.328

22.934

29.802

37.687

46.406

25.895

26.574

33.446

38.998

46.367

54.616

44. 235

44.478

54.908

59.512

/6. 010

65.586

65.667

80.626

83.784

92.408

90.157

90.184

109.906

118.081

118.090

10.987

12.453

17.246

22. 890

29.833

37.827

46.430

25.854

26.542

33.460

39.062

46.602

55.157

44. 193

44.451

54.806

59.467

76.536

65.914

66.002

80.801

84.011

92.965

91.037

91.065

110.727

119.490

119.499

10.975

12.445

17.234

22.908

29.875

37.817

46. 123

25.850

26.541

33.459

39.084

46.680

55.282

44.277

44. 534

54.916

59.595

76.811

66. 121

66.207

81.127

84.216

93.440

91.335

91.363

111.192

119.879

119.887

10.959

12.435

17.219

22. 932

29.928

37.803

45. 730

25. 845

26.539

33.457

39.113

46. 780

55.443

44.385

44. 641

55.058

59.760

76. 163

66.386

66.470

81.545

84.407

94.050

91./20

91.746

111.790

120.378

120.386

Performing an orthogonal transformation 0,
pn' g Oagpgi (CS)

(C9)

where the unit submatrix is l&(l, we look for an orthog-
onal transformation 0 which would maximize

E&tL&=Tr(1&OKO '). (C10)

Call OD the orthogonal transformation which trans-
forms E to a diagonal matrix D,

D=Qg)EQ~ '. (C11)

we have for the transformed density

Al &'= QEpp& &'=TrE't "=Tr(OIt' '0 ')

=TrX&L& =ElL&. (C9)

Thus, the total density is independent of the repre-
sentation, as we would clearly expect. We now look at
the following problem: Given any number l, l(A,
find the states (combinations of the A occupied states)
which maximize the density in the left region. Defining
the matrix 1i as

where D„is the sum of the determinants of all central
minors of order e each of which has the same structure
as E. A necessary condition for A„not to vanish is for
e to be even and not larger than 21V, and I'(x) may
be written

Since the orthogonal matrices form a group, we need
to maximize with some general orthogonal transforma-
tion the expression

E&&L& =Tr(1&ODO '). (C12)

Using the cyclic property of the trace we expand in
terms of the eigenvalues of D, d .

N

I'(x) = (—x)~+—~- P D,„(—x) "~='" (C6)
@=0

f; om which the stated results follow directly.
(iii) Let us consider the submatrix of ZC correspond-

ing to some particular set of A eigenstates of h. We
shall refer to it also as E without fear of confusion,

E&&L& =Tr(O '1&OD)

A l

(C13)
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TABLE VlI. The calculated and the exact single-particle eigenvalues in a sphere. The 11 lowest eigenvalues are given in the column
~&{nl), while the calculated magnetic components (which should all be the same) are listed under their respective quantum number nz.

2$

1f

2p

7.532

15.406

25.345

30.126

37.266

45.541

51.101

63.126

6{3.802

67.791

82.812

7.533

15.410

25.339

30.137

37.289

45.558

51.175

63.085

66.756

67.864

82.909

15.408

25.339

37.286

45.562

51.153

63.085

66.762

82.900

25.330

37.290

51.144

63.099

66.755

82.888

37.284

51.131

66. 789

82.854

51.120

66.798 66. 760

Hence, the coe%cients of each of the d satisfy metry. Transforming Eq. (D1) into cylindrical co-
ordinates, one obtains

(C14)

and the maximum E~&L~ will be attained when the co-
efficients of the largest roots are equal to unity (and
hence of the other roots equal to zero). Thus,

{
1 8 8 't O' I 8'— ——r —I+ —+ — — +V(r, s) 4=El
r 8y Brj Bs~ 1~ By~

The boundary condition on P is
(D2)

max/i'L& = g (1 largest roots of E) . (C15)

In the particular case discussed above (1V+ sym-
metric and X antisymmetric states), (E+ 1V )—
of the eigeovalues of E are exactly equal to —,', E
are larger than —', and E are smaller than —,'. Thus, for
l &E it is possible to achieve large maximum densities;
for 6 &l&E+ the maximum average densities vary in a
standard fashion, and for /&Ã+ they are modi6ed
further only slightly.

APPENDIX D: METHODS OF SOLUTION

The basic single-particle equation, in its general form,
reads

I
—(fi2/23I) 7'+V}P=EP,

where M is the particle mass, V' the Laplacian oper-
ator, and t/' the potential in which the particle moves.
We shall choose the units such, that fi2/2M = 1.

We shall first consider the eigenenergies I:, and
eigenfunctions P, of a restricted case of Eq. (D1).The
potential t/ is taken to be infinite outside a given
axially symmetric region and is finite and possesses
axial symmetry inside it. Actually, only the axial
symmetry is necessary to render the problem feasible.
We demand that P shall be well defined and integrable.

The problem is suitable for treatment in cylindrical
coordinates r, s, p, where the s axis is the axis of sym-

m is an integer and is the s component of orbital angular
momentum, characterizing each individual eigenstate.
This characterization is a direct consequence of the
axial symmetry in the problem. As is known, m de-
termines the asymptotic behavior of U„(r, s) for
small r,

U (r s) =r~+'~' g A (s)r'" (D6)

To treat the problem numberically, we replace the
differential equation (D5) by s set of difference
equations. We cover the finite domain, in which U
does not vanish, by a rectangular lattice with mesh size
h)&h, and denote the point (r=ih; s=jh) by (i, j).
The function U (r, s) is approximated by a discrete

P(EO(s), s, p) =0, (D3)

where r=RO(s) is the curve in the (r, s) plane, whose
rotation around the s axis de6nes the region in which V
is finite. Outside this region f vanishes.

We now make the usual ansatz

P(r, s, p) =r '~'U (r, s) exp(im(p) (D4)

obtaining the following eigenvalue equation for
U (r, s):

I
—L(a&/ar&) + (a2/as2) y P—rN2) /rq

+V(r, s) —E}U (r, s) =0. (D5)
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P . . y m+1/2 y m+5/2
&0+1 j ~ ~ ~ y m,+1/2+2(n —1)

function P;,;, which is de6ned for all the lattice points
inside the potential region. Correspondingly, Kq.
(D5) can be written as a finite set of equations

—(1/h') (I'~i.~+I' i,~
—. 2~',~)

—(1/k') (I';;+i+I';; i—2P, ;)+ ( f
—(,' -e—P)/i'h']

+V(ih,jk) —E)I', =0 (D7)

with i and j running over the internal points of the
region. For points near the boundary r=RO(s), how-
ever, (D7) have to be modified to account for boundary
condition (D3). This is done in a standard way. "
On the axis, we could write the boundary condition
Po,;=0, which follows from the requirement that
y-'/'U is 6nite there. To determine appropriately the
form of the difference equations near the boundary
y=0, we need investigate the error, introduced by
replacing (D5) by (D7). Using Taylor's theorem this
error is easily shown to be

E, ,= (h'/12) (84/Br') U„(ih+8h,jk)
+ (k'/12) (84/Bs') U„(ih,jk+0'k), (D8)

where —1(8 and 8'(1.From Eq. (D6) it follows that
O'U /8r' behaves as r" s' for r 0. Thus for m&3 the
error becomes more and more significant as the sym-
metry axis is approached, and threatens to impair the
accuracy of the calculations. This indeed was found to
be the case in actual computations. To overcome this
difficulty, we limit the use of Eqs. (D7) to i greater
than some io.

The values of P;, ,j will be determined, by imposing
the asymptotic behavior (D6). For each j, an ad-
ditional relation between p;, ,; and p~l,;,
~ ~ I';~„,;, is obtained from Eq. (D6), truncated to
the n leading terms. This relation is best expressed in
determinantal form as

y m+1/2 y m+5/2, yom+1/2+2(n-1)0

Obviously, Eq. (D9) can also be written in the form

P;, ,;= Q C„I',0+„,;. (D10)

Inserting these expressions in Eqs. (D7), and arranging
all the P;,j of the internal points in a vector P, our
equations can be represented by the matrix equation

AP =EP. (D11)

N
X= Qc„e„; C.WO for all r . (D13)

Therefore, operating with B(q) on X will give a nor-
malized vector

A is a sparse square matrix, of domension E equal to
the number of internal (active) points; it is almost
symmetric, except for points close to the boundary, or
to where a change of lattice density occur. %hereas
the differential equation (D5) has an infinite number of
positive eigenvalues, bounded from below but not from
above, the matrix equation (D11) has a finite number
of eigenvalues E1&E2& ~ ~ &EN. The lowest eigen-
values, in which we are interested, should provide a
better approximation to the corresponding lowest
eigenvalues of the original problem. This is, indeed,
the case, since they are associated with eigenfunctions
with a small number of nodes. In general, when solving
for an eigenvalue, the mesh size should be small,
compared to the nodal distance of the associated
eigenfunction.

Let us now define a family of Ã&(S-matrix operators
B(g) by

B(&)X=(aX—&X)/~ ~X—„X~, (D12)

where g is any scalar. Due to the sparseness of A, this
operation is suitable for rapid execution on a high-speed
electronic computer. Let X stand for an arbitrary
X vector, that can be written as some linear combin-
ation of all the eigenvectors Cl, ~ ~ ., CN of A, i.e.,

P . . y m+1/2 y2m+5/2 ~ ~ ' ye+1/2+2(n-1) =0'CQ+2 gJ
B(g)x- g C„(E„—q) e„, (D14)

P . . y sn+I/2 y en+5/2 ~ . ~ y m+1/2+2(n —1)i0+nj n n n

and generally
N

B"(q) X- g C„(E„s)-e„. —(D15)

where r„is the r value of the row i =io+v. For practical
purposes we And that m=2 is sufhcient. io must not be
too large, though, since at points far removed from the
axis, the asymptotic expansion is not valid any more.
To achieve higher accuracy, we 6nd it useful to work
with a smaller h, in the vicinity of i=io.

"See G. Forsythe and W. Wasow, Infinite-D7'terence methods
for Part7'a/ DQferent7'a/ Equations (%'iley-Interscience, Inc. , New
York, 1960), p. 201.

limB(0) "X=e~,

limB(E~) "X=ei,

(D16)

(D17)

lim(B(EN) "B(Ei))"X=e& for any X. (D18)

If the eigenvalue EN is largest in absolute magnitude
(which is usually the case for physical problems), we
can utilize the following set of relations:
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TABLE VIII. The Coulomb energy of a sphere of unit radius
and total unit charge for different values of mesh size b. The value
obtained by extrapolation to zero mesh size is also given. The
exact value is 0.6.

i/16 1/32
0

t/64 (Extrapol) Exact

0.5648 0.5875 0.5968 0.5996 0.6

Since operating by B(E„)on any vector will ideally
eliminate the component 4„in it, we can generalize
Eqs. (D16), (D17), and (D18) and write

The inaccuracies in the first eigenvalues, mill therefore
put a limit on the number of different eigenvalues that
can. be found for each m. In our computations we use
the Control Data Corporation 6600 computer, '4 with
a precision of about 17 decimal figures, where we find,
owing to the above consideration, a limit of about j.2
eigenvalues that can be computed for each value of rn.

APPENDIX E: ACCURACY OF CALCULATIONS

In this Appendix we deal with questions relating to
the accuracy of the calculations reported in the text.

The necessity of operating with each B(E 'l, rr=
1, ~ ~ ~, v many times, when solving for 4„+~stems from
the fact that E~ ~ ~ ~ E„areknown only approximately.
The closer E to its actual value, the lower need P

be in comparison with A. . It is possible in practice to
device criteria for the relative application of the
various B(E ). However, for all small n, we also have

(D20)

These divided into two basically different parts:
Evaluation of single-particle energies and computation
of Coulomb self-energy integrals. Both are further
combined to generate the potential energy surfaces
whose properties (and in particular the SP shapes) are
investigated.

Accuracy is basically achieved and controlled by a
procedure of successive re6nements of the grid, as
described in Appendix D, and extrapolating hyper-
bolically to zero mesh size. An example for such a
procedure, which illustrates the dependence of the cal-
culated eigenvalues on their quantum numbers and the
grid 6neness, is given in Table VI. The extrapolated
values are also quoted. We note the eventual deteriora-
tion of the quality of the calculation with the increase
of the principal quantum number. Nevertheless, we
note that differences between related eigenvalues are
reproduced better than the eigenvalues themselves.

As a test case for which all the exact eigenvalues are
known precisely independently, we take the sphere.
In Table VII, we give the exact eigenvalues under the
el column, and the calculated ones under their respec-
tive magnetic quantum numbers.

The Coulomb self-energy was calculated using the
disc-disc interaction method. Again the spherical test-
case results, which are summarized in Table VIII,
point to the same magnitude of over-all accuracy, which
is slightly better than one part in a thousand.

The determination of coordinates of SP shapes was
essentially done through employing the perturbation
technique described in the text on previously cal-
culated results. Generally speaking, because of the
specific motivation regarding asymmetry, we have
relatively accurate results only for the asymmetry
measuring parameter. We have tried to indicate the
degree of inaccuracy in the figures throughout the
text, although these are only rough estimates.

'4 The calculations were performed at the Atomic Energy
Commission Computing and Applied Mathematics Center,
Courant Institute of Mathematical Sciences, New York Univer-
sity. Earlier computations were excuted on a CDC 1604A com-
puter at the Weizmann Institute of Science, Rehovot, Israel.
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