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Abstract

Exact numerical convergence factors for the two-grid multigrid cycle can be
predicted by local mode (Fourier) analysis. For general elliptic PDE systems with
piecewise smooth coefficients in general domains discretized by uniform grids, it
is proved that, in the limit of small meshsizes, these predicted factors are indeed
obtained, provided a proper treatment is applied at and near the boundaries. That
treatment, it is proved, costs negligible extra computer work and can consist of
just local Kaczmarz relaxation.
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§1 Introduction

Since the earliest days of multigrid development, the “local mode analysis”,
based on heuristic local Fourier decomposition of the error function, has been the
chief tool for the practical design, precise quantitative understanding, and even
debugging, of the various multigrid processes. Although rigorously justified in
very special cases only, the easily-computable predictions of that analysis have
turned out precise for quite general PDE systems discretized on uniform grids,
with quite general domains and boundary conditions. In several important cases,
however, the predicted convergence factors were not obtained, presumably due
to the influence of boundaries, which are usually not accounted for by the local
analysis; domains with reentrant corners are a notorious example.

The purpose of this article is to give a general rigorous framework to the local
mode analysis on one hand, and to the treatment of boundaries on the other hand.
Using essentially the weakest possible assumptions, it will be proved, for general
PDE systems in general domains, that the convergence factors predicted by the
local mode analysis can be obtained. That is, the predicted factors are indeed
obtained, provided a proper treatment, costing negligible extra work (when the
meshsize is sufficiently small), is applied at and near boundaries.

The convergence factors thus proven are not just qualitative; they are quanti-
tatively sharp: they are exactly obtained (or arbitrarily closely approached) by the
worst local mode. By comparison, almost all other multigrid theories (see, e.g.,
[H] and [MMB] and references therein) give estimates which are not quantitative
(containing unspecified constants) or grossly unrealistic, rendering them useless in
practice (see discussion in [G, §14]). Furthermore, these other theories are either
restricted to variational problems ([MMB] and references therein) or require an
unknown, sufficiently large number of relaxation sweeps per cycle to guarantee
convergence (thus actually analyzing much inferior algorithms). Quantitatively
realistic (sometimes even sharp) two-level convergence estimates for general sym-
metric problems, not necessarily on grids, were derived in [AMGT], and for a
very special case also in [Brs], but those estimates — unlike the present theory —
cannot be improved by adding more relaxation sweeps per cycle, and cannot be
generalized to V cycles.

For simplicity and clarity we first (Secs. 2-8) confine our detailed presen-
tations to two-level one-cycle Lo convergence factors for systems with constant
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coefficients and pointwise relaxation. Extensions to variable coefficients, block re-
laxation, other norms (related also to other inter-grid transfer orders), many cycles
(asymptotic convergence), more levels, and FMG algorithms — are then discussed
in the form of comments (Secs. 9-10). The practical implications of our analysis,
including powerful general ways for constructing and debugging multigrid solvers,
are then reviewed (Sec. 11).

§2 Bigrid cycle

The basis and/or the model for any theoretical treatment of multigrid solvers
is the analysis of the multigrid cycle in the simplest case where only two grids are
involved. We assume for simplicity that these are two uniform square girds, with
meshsizes h and H = 2h. The fine grid system of equations (no distinction is yet
made between interior equations and boundary conditions) is written as

Ayl = fh (2.1)

where u and f" are real or complex vector-valued functions on QF, the inter-
section of the lattice {x = (a1,...,aq)h | «; integers} with the bounded prob-
lem domain Q@ C R% More generally, Q" may in fact be staggered; that is,
ul = (uh’l,...,uh’q)T and fP = (fh’l,...,fh’q)T, and each u™J and each fMJ
are scalar-valued functions defined on different uniform grids, Q14 and Q2J
respectively, where each Q™%J is the intersection of the problem domain Q with
a translated lattice

{z = (a1,...,a9)h+ s | a; are integers} (2.2)

for some fixed s*J ¢ R®?. A similar staggered grid may be introduced with
meshsize H = 2h, and the functions defined on it will be denoted uf and f¥. The
coarse-to-fine interpolation of solutions (or approximate solutions, or correction to
solutions) is denoted I I’}; eg,ul =1 guH . The fine-to-coarse transfer of right-
hand sides (or residuals) is denoted If7; e.g., fH =T ,{I fP. An operator (matrix)
AH is given on grid 2k which approximates AP: it may be constructed similarly
to A" by discretizing the same differential problem, or it may be defined by the
Galerkin approximation A” =T ,{I API% (see comments in Sec. ). The orders

of 1 I}j’[ and I the approximation of A" by A and other assumptions will be
discussed below (Sec. 6).

With this notation, the bigrid cycle can now be defined. Reserving the nota-
tion u” for the exact solution of (2.1), we will replace the superscript k by other
superscripts to denote various approximations to u”. The cycle starts with a given
approximation uA, and improves it by the following three steps.

(i) Pre-relaxzation. v relaxation sweeps are first performed using the fine
grid equations (2.1). Typical is the Gauss-Seidel relaxation sweep, where the
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discrete equations are scanned in some prescribed order, each one in its turn being
satisfied by changing a corresponding unknown. This is natural for equations
derivable from a variational (e.g., minimization) principle, where each equation
indeed corresponds to one unknown. For more general cases, more general types of
relaxation schemes exist. A general way for constructing good relaxation schemes
for general discretized PDE systems is described in [G84, §3.7]; the description is
for the interior relaxation, not near boundaries, but that is all one actually needs
(cf. Sec. 4 below).

(ii) Coarse grid correction (CGC). Denoting by u? the approximate solution
obtained at the end of Step (i), and by vB = u" — uPB the corresponding error,
a coarse grid approximation to vB, v#, is calculated by solving the coarse grid

equations
ARy = [H(fh _ pohyB), (2.3)

Then v is used to correct the fine grid approximation:

uC =uP + II}__L[’UH (2.4)

(iii) Post-relazation. Starting with u®, vy additional relaxation sweeps are
performed, yielding the final approximation ub.

In assessing the efficiency of this cycle, one should of course disregard the
work involved in solving (2.3), because in the true multigrid cycle these equations
are solved approximately, by employing recursively one or two similar cycles at
the coarser level.

Notation. The linear relaxation operator will be denoted by R. That is,
vB = R"1y4 and vP = R¥20C, where v4 = vl —ud, vB = uh —uB, vC = uh —uC

and vP = vl — D,

The cycle convergence factor is defined to be

"]

W, (2.5)

A = sup

where the sup is taken over all possible initial approximations u4 # uP. The norm
in (2.5) is the £ norm, which will be used throughout most of the presentation
here, although other norms may often be more appropriate (see Sec. ). Our
purpose is to calculate A\. Another possible purpose, to which we will refer below,
is to calculate the asymptotic convergence factor per cycle, defined by

X' = limsup(|Jo™ /[0 /™, (2.6)

where vl is the error after n applications of the cycle, so in particular [0 = 44

and vt = P,
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§3 Mode analysis in entire space

In case 2 = R™ (and hence also in case of a rectangular domain with periodic
boundary conditions, where the problem can be extended to the entire space R"),
and assuming “constant coefficient” operators A" and A and a “consistently
ordered” relaxation scheme (terms to be defined below), the convergence factors
A and ) can easily be calculated by a mode (Fourier) analysis. That is, the initial
error ’UA, and similarly the error v" at any other stage, can be written as a linear
combination (integral; or sum, in case of periodic boundary conditions) of Fourier

modes

ol = / o"(0)e> do, (3.1)
|0|<m

and the change of the coefficients f)h(ﬁ) under each of the processes in the cycle
can explicitly be calculated, yielding an explicit calculation of A (or \').

The notation in (3.1) is as follows: o = (a1,...,aq) is a vector of integers,
vg = (vg’l, .. .vg’q)T with ’UZ’J = vh’j(ah + Sh’l’j), 0= (01,...,04), 0a =011 +
oo+ Ogay, |0) = max(|61],...,|04]) and
0"(0) = (2m) 74> v, (3.2)
B
Zﬁ denoting summation over the entire grid of integer vectors 8 = (f1,...,Bq)-

As implied by (3.2), 9"(0) = ©"(61,...,604) can naturally be extended as a 2=-
periodic function, i.e.,

0"(6) = 0" (61 + 27,02, ..., 0q) = --- = 9" (01, ..., 041,04 + 2) (33)

for any @ € R%. To be precise, the integration meant in (3.1), and similarly below,
is over one cell of this period, e.g. the cell

- <0 <, (j=1,...,4d). (3.4)

We assume that the decomposition (3.1) exists, as well as the Parseval identity

h 2 = (27 —d Uh 2.
/W PP = 2m) 3o

This is true for a wide class of error functions. We do not prove it here, because
in this section the development is purely formal; a proof will be given later (Sec.
8.1), when dealing with real, bounded domains €.

We use the notation A" and AH for the discrete fine-grid and coarse-grid
operators, respectively, including both interior and boundary operations. In case
of the infinite domain they of course coincide with the interior operators, which
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we denote by L” and L | respectively. That L has “constant coefficients” means
that it has the (block-Toeplitz) form

(LM = Za ul ., (3.5)

where }° is a summation over integer vectors v = (v1,...,74), and each az(h)
is a ¢ X ¢ matrix which explicitly depends on the meshsize h (using it in the
denominator of divided differences). Hence, with the Fourier decomposition (3.1)
for ™, it is easy to see that if 7 = LPv" and

rh = / # ()eife g (3.6)
10| <m
then #"(0) = L"(0, h)o"(0), where

L6, h) = Za h)e?. (3.7)

L8, h), which is an easily computed (easily programmed) ¢ x ¢ matrix of functions
of 8, is called the symbol of L.

The symbol LH (0, H) of the coarse grid operator can be similarly defined
(applied to coarse grid functions v, and hence to Fourier modes exp(ifz/H),
instead of the modes exp(if/h) used in (3.1)). Often, LH and L" are identical
discretizations of the same differential operator, using only different meshsizes, in
which case IA/H(H,H) = Lh (6,2h). Note that when L is applied to a fine grid
function v" (with the fine grid expansion (3.1)), its symbol is LH (20, H).

We thus see that the operator AP = LM does not couple different modes: For

each 6, the Fourier coefficient Lhy h(6) depends only on 9" () for the same 6. This
property also holds for the operation of relaxation, provided the relaxation scheme
is “consistently ordered”, i.e., for any « and -y the point « is relaxed after the point
a— if and only if it is relaxed before a+~. We will however soon extend the class
of relaxation schemes treated by our analysis to include some important schemes
which are not strictly consistently ordered, such as red-black schemes.

On grid H = 2h, the Fourier mode exp(ifa) “aliases” (coincides) with any
other mode exp(if'a) for which § = ¢’ (mod =), i.e., for which each (6; — 0})/m is
an integer, (j = 1,...,d). Such modes, or such 6 and 0, we will call harmonics of
each other. Every intergrid transfer, either 1 }llfi or I}f[, must couple each component
with all its harmonics. If the transfer has constant coefficients (i.e., it repeats itself
at each coarse grid cell), as we will assume, then it will couple only harmonics.
We will therefore consider simultaneously each set of harmonics in the range (3.4).

For this purpose, let 7'1‘ be the binary representation of the integer j,
0<j <28 ie,j Zk— 2d ka, and let 77 = (7'1,...,7'5)71'. Each set of
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harmonics in the range (3.4) includes one frequency 6 in the range
<0k<g, (k=1,...,d) (3.8)

which we will call the lowest harmonic. For each such 6, its set of harmonics in
the range (3.4) is the set of D = 2% components

including the lowest harmonic 0 = 6° itself.

On the coarse grid each 7 appears as §°. Hence, operating with a constant-
coefficient fine-to-coarse transfer I ,? on any fine-grid residual such as 7 in (3.6)
gives

oR-1 o
(1), = / 3" i (7)h (07)e1° ag”, (3.10)
j=0

where [ 0 denotes, here and below, integration over the domain (3.8), with 67
relating to #0 through (3.9), and I f (f) is a g x ¢ matrix of easily programmed

functions of @, called the symbol of I f . Similarly, the correction interpolation I}}I
will transfer the coarse grid solution

0 :
vl = / o5 (09)e0" 4p° (3.11)
to the fine grid correction
oD-1 . o
(o), = / SO (9ot (60 g, (3.12)
§=0

where the ¢ x ¢ matrix of functions I 1’31(9) is called the symbol of I I,}I Note that
if If;{ is the adjoint of I, as is often the case, then IA,ILJ 0) = IAIh{ (G)T (superscript
T denoting conjugate transposition). Most often both these symbols are diagonal.
For I-order multipolynomial interpolation, for example,

A

d
140k = 0k | [ er(cost;), (3.13)
i—1

where ©2(€) = (1+€)/2, pa(€) = (2 + 3¢ — %) /4, ete,

Since harmonics are coupled anyway, we will allow them to be coupled also
by the relaxation process. We thus extend the concept of consistently ordered

-1 -



relaxation to any relaxation operator R such that, operating with it on the error
function (3.1) will give an error function of the form

o D—-1 o
(RuM), = / S R;(0%)0 (0F)e® g, (3.14)
jh=0

This will include red-black (and even 2%-colored) relaxation schemes. Rj (0) are
easily computed ¢ X ¢ matrices (see [MOC, §3.1] or [G84, §1.2] for a simple exam-
ple).

We can now describe, in terms of Fourier transforms in which harmonics are
being blocked together, the entire bigrid cycle. To this end we introduce the follow-
ing block-matriz notation: for any fine-grid error function v (and similarly for any
residual function; each being a vector of g functions), with the Fourier transform
(3.1), 5"(8°) will denote the vector (of length ¢D) (@h(GO)T, . .,f)h(HD_l)Jf)T. In
particular, the initial error v has the block-Fourier decomposition

0 )
vA = / Eq v (0)e™™ do, (3.15)
where E, is the ¢ x gD matrix
Eo = (eI, ... &7 '], (3.16)

I; being the ¢ x ¢ identity matrix. The error at the cycle end has a similar
decomposition

0 .
D / E,oP (0)e™ dg, (3.17)
and by the definition of the cycle we obtain the relation
#P(0) = M(0)52(9), (—g <0; < g i=1,...,d) (3.18)

where M(0) is the ¢D x gD matrix
M) = R(0)2[I — 1% (0)LH (9) LI ()L (6)|R(9)". (3.19)
The block matrices in (3.19) are defined by

full matrix dimension

R(0) x = Ry_1 (651 qD x ¢D
LMO) k= 05 LM (0771, h) qD x ¢D
7o), =176’ q x gD
LH(6) = LH (20, H) qxq
) = I (051 gD x q

Ijk = djk1q gD x gD



where 09, ..., 6P~1 are related to 0 by (3.9), and where J and K are block indices,
pointing to the g x ¢ block at the J-th column and K-th row (J,K = 1,...,D
whenever appearing; the full matrix dimension shown on the right also indicates
their range).

From (2.5), (2.6), (3.15), (3.17), (3.18) and the Parseval identity it formally
follows that

A =sup ||[M(0)] (3.20)
0£0
and
X =supo(M(H)), (3.21)
040

where o(M) is the spectral radius of M (i.e., its largest absolute eigenvalue), ||M ||
is its £ operator norm (i.e., |[M| = o(MMT)/2) and each sup is over the range
(3.8), with # = 0 being excluded. This exclusion is important since most often
LH(0) is singular; the sup is normally still finite since I ,J:I (0)L"(0) is suitably
singular (rank deficient) too. For some bigrid cycles, A may be infinite; on a
bounded domain, as we will see, such cycles can still be used, provided that )\ is
still finite.

It is easy to program the matrix function M (@), hence to calculate (3.20) and
(3.21). Our task is to prove that, for sufficiently small meshsizes and with a proper
treatment of boundaries, the values of A and ) (defined by (2.5) and (2.6)) on
any bounded domain are still given (or approximated as closely as one wishes) by
(3.20) and (3.21).

§4 Treatment of boundaries: general approach

It is well known that the efficiency of the bigrid (and other multigrid) cycles
may strongly be affected by the shape of the boundary curve (e.g., existence of
reentrant corners), by the type and coefficients of the boundary conditions, by
the boundary position relative to both the fine grid and the coarse grid, and
by the discretization and solution processes (relaxation and inter-grid transfers)
employed at and near the boundary. With this enormous variety, we believe it is
unproductive in a general theory to rigorously analyze any one or other particular
boundary situation. We will instead show that, in the limit A — 0, the details
of the boundary processes are never important, since, on one hand, they employ
negligible amounts of computations, and, on the other hand, they can in a simple
way always be chosen so that the overall efficiency (e.g., the convergence factor
per cycle) is just the efficiency dictated by the interior processes.

Aside from simplicity and generality, two related reasons lead to this ap-
proach. First, we aim at an eractly quantitative analysis, i.e., calculating the
actual numerical value (not just upper bounds) of A and ). This would be too
difficult to do when all the details of complicated boundary situations should be
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taken into account. Secondly, from a practical point of view, our approach gives
the more important information: it tells us what efficiency one should be getting
once the boundary processes have been properly adjusted. The analysis below also
shows one general way of making this adjustment, although in practice, in each
particular case some other ways may be more convenient or more effective at large
values of h. (See the treatment of reentrant corners in [Bai, §4] and in [ZN]. For
generality, in our treatment here, we do not exploit any smoothness properties of
the boundary shape and the boundary operators.)

Thus, our approach is to allow the analyzed bigrid cycle to be modified near
boundaries (and similarly also near other singular curves, such as interfaces, ma-
terial discontinuities, etc.; cf. Sec. ) provided the work involved is negligible.
The general way we propose to modify the cycle is to add a certain number of
Kaczmarz relaxation passes over the boundary conditions and over the interior
equations in some small neighborhood of the boundary (see details in Sec. 7). We
will therefore present now Kaczmarz relaxation and its relevant properties.

§5 Kaczmarz relaxation. Partial sweeps

Consider the general system of (real or complex) equations

Au=f or Zaijuj = fi, (i=1,...,n). (5.1)

i=1

Given any approximation u*, a Kaczmarz relaxation step for the i-th equation is
defined as the replacement of u* by the vector closest to it on the i-th hyperplane
(the hyperplane of solutions to the i-th equation). This means that each uj is
replaced by uj, + B;@;;, where 3; = r;/ 2?21 |aij|2 and r; = f; — 2?21 aijuy.
This 77, the residual of the i-th equation just before relaxing it, is called the i-th
dynamic residual. Note that the residual of the equation just after relaxing it is
zero, of course.

Suppose a Kaczmarz relaxation pass is made over the first m equations (1 <
m < n); i.e., for each of those equations in its turn in the natural order, a Kaczmarz
relaxation step is performed. Denote the solution vectors before and after this
relaxation pass by u? and u!, respectively; the corresponding error vectors by WY =
u—u0 and v! = u—u'; the corresponding residual vectors by 70 = f — Au® = Av°
and r! = f — Au! = Av'; and the corresponding normalized residual vectors by
70 and 71, where

n 1/2
j=1

— 10 -



Also, denote by J7 the £ norm of the solution change while relaxing the i-th
equation, and note that

672 = 16;/? Z jaix|?

|7"*|2 (1=1,...,m),

(5.3)

where 7 is the normalized dynamic residual (defined in (5.2)). Using this notation
and the £ norm ||v]|%2 = D vu;]2, we can formulate the following general property
of Kaczmarz relaxation.

Theorem 5.1

012 1112 2
[[07[|* — [Jv7 ] Z|5*I Z\
=1
Zm (5.4)
> maX<70 SHE Y |f}|2)

where
v =[1+7) 1+
M= (=7+)""
1—1

n n
- = e (S ) / 3 laa? 53
i<m
j=1A=1 A=1
n
_ 12
= (30 S antal) /3 o

=i+1 =1

Proof. The proof is analogous to the proof of Theorem 3.3 in [AMGT], which
is the special case m = n. To see that the proof carries over to the case m < n,
observe that the proofs of Theorems 3.1 and 3.2 in [AMGT] are easily modified to
this case. B

The theorem essentially says that the convergence is fast as long as the average
normalized residual of the relaxed equations is comparable to the average error,
averages being meant in the /9 sense. The coefficients vy and 77 can be interpreted
as rough measures for the independence of the relaxed equations.

Remark 5.1. Note that Kaczmarz relaxation, as well as 00, v1, 7, 70 and #!

appearing in (5.4), remain unchanged when each equation is rescaled (multiplied
through by a constant). We can thus decrease v+ (thereby increasing v and 2) in
the theorem to any values obtainable by such rescaling. It is then easy to see that
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for any local operator all 7; are O(1). For example, this is obtained by rescaling
so that Z?:l \aij\2 =1 for all 7. In addition, -y; will be finite for many non-local
operators.

Remark 5.2. Even more important is the correct scaling of the unknowns.
This scaling actually changes the Kaczmarz steps. A typical example is the Stokes
system of equations (AU = P, AV = P, and Uy + V,, = 0, where A is the
Laplacian and subscripts denote partial differentiations. To fit the framework of
this paper this system should be discretized h-elliptically. This can be done either
on a staggered grid, as in [G84, §18.2], or on a non-staggered grid, as in [CM3,
App. C]). Each variable P, in this system should conceptually be replaced by
h P, before Kaczmarz relaxation is applied, basically because only in terms of this
rescaling the CGA assumption can hold (see Remark 6.1 below).

§6 Assumptions

Listed below are all our assumptions about the mathematical properties of the
various multigrid ingredients: relaxation, A" AH T ,1;{ and [ I}EI The discussion will
explain that each of these assumptions is more or less necessary; the main content
of our theory is of course to show, in subsequent sections, that the assumptions
are sufficient — sufficient for achieving the predicted convergence factor (3.20).
Except perhaps for the CGA (see discussion in Sec. 6.1), all other suppositions will
be easily verifiable in any case of interest. They are all qualitative assumptions,
in the sense that their main constants are arbitrary and unspecified. Indeed, the
very point of this article is that such qualitative and necessary assumptions yield
a quantitative and even precise prediction of convergence factors.

An unnecessary assumption which for simplicity we do introduce at this first
part of our presentation is that all interior processes (at distance greater than O(h)
from the boundary) have constant coefficients. This includes Lh LH T ,{{ and

1 I@I’ as well as the consistent ordering of relaxation (extended as in Sec. 3). It is
indeed only under this assumption that the local mode analysis is straightforwardly
defined. The removing of this assumption, and the corresponding extension of the
local mode analysis, are discussed in Sec.

General notation. The letter C' will be used to denote any constant, not
necessarily the same on different occurrences, independent of h. The notation C
will be used in case the constant depends on the integer 4.

The more important (less obvious) assumptions are described first (Secs. 6.1
and 6.2).
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6.1 Coarse grid approximation (CGA)

A necessary condition for the multigrid process to work properly is that errors
which would converge slowly under any relaxation scheme must be well approxi-
mated on the coarse grid. The slower an error is reduced by any possible relaxation
scheme, the better must its coarse grid approximation be. When such a condition
is not satisfied, convergence factor of the bigrid cycle cannot be made uniformly
(for all meshsizes) as small as one wishes by adding more relaxation sweeps (in-
creasing v + v2). Moreover, if such a condition is unsatisfied at all multigrid
levels, the V' cycle cannot be expected to produce convergence factors bounded
away from 1 independently of the number of levels.

The basic relaxation schemes are the point-by-point ones — in the sense that
block schemes, such as line relaxation, employ at each of their steps a solution
process which could itself be multigridded, using a point-by-point scheme for its
relaxation, hence the entire process may be interpreted as based on a point relax-
ation scheme with semi coarsening (see [G, §4.2.1]). For simplicity we will therefore
refer below to point schemes only and defer discussion of block schemes to later
comments (see Sec. ). Now, any point-by-point relaxation scheme introduces
changes to the solution based on the size of the local residuals relative to the size
of the coefficients of the corresponding equations, hence any such scheme must ex-
hibit slow convergence when an error vector v develops for which the normalized
residuals 7 are small, i.e., when ||7|| < ||v]|.

Unlike the geometric notation of Secs. 2 and 3, we have used in Secs. 4 and
5 the algebraic notation, where the unknowns u are arranged in one long vector,
and the fine-grid operator A" is correspondingly arranged as a big matrix A, with
(Au); = Ya;ju;. Keeping this notation, and motivated by the above discussion, we

now introduce the normalized operator Ah, corresponding to the matrix A defined
by

(Au); = (Au);/ O lagi[*)M/2. (6.1)
J

Thus, Ahy = r, and the above condition, which should be satisfied by any multigrid
algorithm employing point relaxation, can be put as follows.

Coarse Grid Approximation (CGA) condition. Denoting by v2 and vC
the algebraic error vectors before and after the coarse grid correction, respectively,

for any € > 0 there exists 0 = 6(¢), independent of the meshsize, such that, if
|47 B < 8[|vB || then o€ < el[o?].

We will assume this condition to hold. This will enable us to avoid dealing
with many different cases and with details of boundary conditions. Indeed, the
main point in this paper is to show that quantitatively sharp convergence factors
(A, X') can be derived from qualitative assumptions, such as this CGA assumption.
The CGA, and in fact much stronger conditions, are normally assumed or proved
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in any multigrid theory, without having formerly yielded any realistic convergence
constants at all, let alone the sharp constants of the local mode analysis. CGA
proofs can usually be derived for any discretization scheme for which a convergence
proof exists, containing some estimates of the fine-grid truncation errors in terms of
the continuum-solution smoothness: by analogy, the coarse-grid truncation errors
can be estimated in terms of the fine-grid error smoothness. It is in those proofs

that one needs to deal with details of boundary and near-boundary situations (cf.
Sec. 4).

Note that the CGA condition conveniently unifies boundary and interior equa-
tions. By using the normalized operator we put them all on the same footing. Also
note that we have required a very weak form of the condition, allowing the decrease
in § (as a function of €) to be arbitrarily fast. In fact, the preceding arguments
indicate that this is the weakest possible condition when pointwise relaxation is
used, in the sense that without it one cannot indefinitely increase the convergence
factor of the bigrid cycle (uniformly for all h) by increasing v, nor can one generally
expect h-independent convergence of the V' multigrid cycle.

Remark 6.1. In case of systems (¢ > 1, in the notation of Sec. 2), the CGA
can often hold only when the different functions are properly scaled relative to each
other. In case of the Stokes system (see Remark 5.2), for example, in terms of the
original set of functions (U, V and P) the CGA condition cannot be satisfied: For
instance, an error v2 which consists of no error in U and V and a highly oscillating
error in P cannot be much reduced by any coarse grid correction (because it is
highly oscillatory), although it does satisfy ||A"vB| < O(h)||vB]||. The CGA will
only be satisfied when the function P is replaced by hP. In some other systems,

more involved changes of variables, and perhaps also recombinations of equations,
may be needed before the CGA can hold.

6.2 Inter-grid transfer orders

Another necessary condition for a multigrid cycle to work properly is that
suitable orders are used for the coarse-to-fine correction interpolation operator I ;LI
and for the fine-to-coarse residual transfer I f . By “work properly” we mean that
the convergence is not degraded by CGC amplifications of high frequencies. As
explained in Sec. 4.3 of [G], this implies a set of necessary rules. Our rigorous local
mode analysis will in fact prove those rules to be also sufficient.

The rules deal with interior (not boundary) interpolations and depend on
the interior finite-difference operators L" and L¥. Assuming that (2.1) in the
interior approximates a system of g differential equations in ¢ unknown functions,
we denote by m;; the highest order of differentiation of the j-th unknown function
in the i-th equation (i,7 = 1,...,q). This means, in terms of the notation in
Sec. 3, that X

M) ; < Ch™id. (6.2)
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The order of the i-th equation is m;, = maxj<j<q m;j-

We assume for simplicity that the residuals of each of the ¢ equations are
transferred to the coarse grid separately from those of other equations, and we
denote the order of transfer of the i-th equation by m; (i = 1,...,¢q). By this we
mean that

IH° + 1%, = 6;;0(0°™),  (k=1,...,D-1). (6.3)

Note that k = 0, for which 7% = 0, is excluded from (6.3).

In our present simple demonstration we are interested in A, the Ly convergence
factor of one bigrid cycle. In this case the inter-grid transfer rules are reduced to
the simple requirement

m; > M- (6.4)

Indeed, it is easy to see that O(1) high-frequency errors, in the j-th function
before the CGC, contribute to the right-hand side of the i-th coarse-grid equation
(and hence also to the error at the end of the cycle) smooth components whose
magnitude is O(h"™i~™ii). Therefore, to ensure that the cycle reduction factor
cannot be constrained by this type of error, we must assume (6.4). We could relax
(6.4) by using error norms other than Ly (see Sec. 10.1) or by considering the
asymptotic convergence factor )’ instead of A (see Sec. ), but for simplicity of the
first presentation we assume for now (6.4).

6.3 Properties of Ah

It will be assumed that A" is a local operator. Namely, if we relate our
algebraic notation to geometric locations through

(A () = agju(y;) (6.5)
J
then
a;; =0 for lz; —y;| > Ch. (6.6)

For the interior operator L”, defined by (3.5), this means that a,};(h) = 0 for
v > C.

More precisely, it is enough to assume a somewhat weaker assumption. It will
only be needed that +; is finite (see Remark 5.1) and that (6.7) in the following
lemma is satisfied.

Lemma 6.1. If A" is a local operator, then for any vector-valued grid func-
tion v and scalar continuum function ¢

1A% (pv) — @AM < Cllv||  max_ |p(z) — ¢(y)- (6.7)
lz—y|<Ch
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where A" is the normalized operator (cf. (6.1)).

Proof. By (6.5) and then (6.6) and the Cauchy-Schwarz inequality,
2

AP (o0)] (1) — o) APu(ar)| = |3 asjle(w;) — olao)lo(y;)
J

< max o) — o@D el Y. oy

T |lz—y|<Ch -
le=vl< J |zi—y;|<Ch

Hence, dividing through by ) j |al~j|2 and then summing over i, (6.7) is obtained,
since each |v(z;)|? will appear in the sum in at most ¢(2C + 1) terms. N

It will also be assumed that the interior operator L" approximates a dif-
ferential operator (of the first or higher order). More precisely, defining the
normalized interior operator L" as the interior part qf the normalized operator
A" (cf. (6.1) and (3.5)), and denoting its symbol by L"(#) (cf. (3.7)), it will be
assumed that .

IL"#))| -0 as  max(h,|0]) =0, (6.8)

where, as usual, || - || is the £5 matrix norm. Indeed, it is easy to see that if L” is
a difference approximation to a ¢ x ¢ differential operator (where each individual
discrete equation approximates one of the g differential equations), then

L O < OBk 4 ). (6.9)

For some (e.g., Hermitian) finite element formulations, some of the unknown
grid functions which do not correspond to continuum unknowns may have to be
properly scaled for (6.8) to hold. Anyway, we use (6.8) only to show that the
contribution of v/ to % is small (see Sec. 8.4), which should be true for any
reasonable type of approximation.

6.4 Stability

An obvious requirement that should be imposed is the stability of all the cycle
processes in the norms of interest — L9 norms in the present theory. Thus, we
will assume that, for any fine-grid error v and residual r” and for any coarse-grid
vH and rH | the following holds.

IR < C|lo"| (6.10)
1A~ T Al < Ol | (6.11)
IZE R < (6.12)
(AT | < ol H| (6.13)
1507 < ol (6.14)
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In addition we will also assume stability of relaxation in terms of the residual Lo
norm, i.e.,

|AP RV || < C||ARP|. (6.15)

For explicit processes, such as Ah, I }IL{ , Iz and Jacobi-type relaxation, these
stability requirements are easily established. For non-explicit relaxation schemes,
such as Gauss-Seidel and Kaczmarz, stability (6.10) or (6.15) can usually easily be
checked by a version of local mode analysis (applied to the interior process, and
adopting if necessary an approach similar to the one described in Sec. 4 above for
handling boundaries): First stability is checked for the marching, point after point,
within one line; then for the marching, line after line, within a plane (relating line
Fourier decompositions of the errors); etc. It is, incidentally, quite important to
check this stability, because sometimes in the search for schemes with minimal
smoothing factors one can easily run into unstable ones.

Usually then, the only stability requirements which are not easily verified are
(6.11) and (6.13). A vast literature treats the latter, so here we can indeed simply
assume it. Condition (6.11) is listed here only for convenience: it is actually
implied by the CGA assumption. (Because, if v" violates (6.11) with sufficiently
large C, a suitably small multiple of it can be added to vZ in the CGA condition
and cause the latter to be violated.)

The stability assumptions together with the CGA assumption imply the fol-
lowing.

Lemma 6.2. For any ¢ > 0 and c« > 0 there exists d1(e,cx) > 0 such that,
if the error at the beginning of the cycle satisfies

lv? < c. (6.16)

and )
| AP0 < 61(e, ¢), (6.17)

then the error at the end of the cycle satisfies
WP < e (6.18)

Proof. The stability requirements (6.10)—(6.15) imply that there exist h-indepen-
dent constants Cy, Co, C3 and C4 such that |[oB| < Ci|vd|, ||A*B| <
Col| M2, [P < C3llo”|| and [[vP|| < Cal|v®]|. Define

€ €
) h =
CoCs (e1), where €1 010,

and where 0(eq) is the function defined by the CGA condition (cf. Sec. 6.1). If
|vB]|| < €/C3 then (6.18) trivially follows. If not, then by (6.17)

C5C5d1
€

61 (67 C*) ==

14707 < Col| A" < Cady < [v7 ]| = 6(en)llo”]I
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By the CGA assumption it thus follows that ||[vC|| < er||v?||, and hence

0P| < e1C4||vB]| < 1C1C4lJv?]] < €1C1Cucy = .

6.5 Mode-analysis expressions

For each explicit and local process, each term in its associated symbol (cf.
Sec. 3) is of course a linear combination of trigonometric functions of the form

eifa — pi(an01+-+aqba) a| = max || < C. (6.19)
J

This is therefore true for each term in the matrices L"(6), Iv}{{ ), L7 () and
I"(9), and also R(f) in case R is a Jacobi-type relaxation. For more general
relaxation schemes, R(f) can be expressed as a product of such matrices (whose
terms are linear combinations of trigonometric functions) and inverses of such
matrices. Hence each term in R(6) is a rational function of trigonometric functions
(6.19). We will assume each of those terms to be bounded. This assumption, which
can easily be checked and trivially holds in all familiar schemes, is equivalent to
requiring

IR(0)| < C, (uniformly in [0] < g), (6.20)

which largely overlaps assumption (6.10) above. (More precisely: (6.20) implies
(6.10) in the interior. The latter, however, unlike (6.20), would allow ||R()]| to
be unbounded for |#| — 0 in a way which is not characteristic to usual relaxation
schemes. The theory below allows a condition weaker, but more complicated to
state, than (6.20).)

A more delicate condition should be required from L% (). Since its inverse
will be used, we should roughly require that L (9) is nonsingular for § # 0,
which is a sort of ellipticity requirement. More precisely, we can use the weaker
condition

det LH(@)#£0  for |9 > hl~o (6.21)

with a certain sufficiently small o, > 0. This condition expresses ellipticity on
scale H?* (see [G, §2]). Such conditions are easily checked and trivially satisfied
by all discretized elliptic systems; but we can substantially further weaken them
here.

Observe that det L (6) is a polynomial in trigonometric functions (6.19),
hence, for small |6| it is approximately a polynomial in 6, and its derivatives with
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respect to # are again polynomials in . Ellipticity therefore yields that, for any
non-negative integer £,

~ _ 1 e 7['
0L (O)7Y) il < Ceb®101 ¢, (0< 18] < 5) (6.22)

where 8% is any f-order derivative with respect to 6 = (01,-..,04), and x and &’
are independent of £. In fact we will use the much weaker condition

O (L O) T OV L (0)j] < Cob™ 10| *F (W17 < 6] < g) (6.23)

where x and x’ are independent of £ and o, > 0 sufficiently small. (The value
o« = 1/(2max; m;,) will be shown suitable in the proof below.) This condition
is much weaker because it would normally hold for non-elliptic systems as well,
especially under assumption (6.4).

Thus, ellipticity is not explicitly used here. It is, however, related to the
CGA and (6.13) assumptions, and to the size of A (defined by (3.20)) that can be
obtained. Real extensions to non-elliptic problems are discussed in Sec. .

Finally, we need to express in terms of symbols another assumption which
in fact results form the CGA and (6.4) assumptions. The former implies that
sufficiently smooth components are reduced as far as one wishes by means of
the CGC step, while the latter, together with (6.13), imply that harmonics of
sufficiently smooth components are practically unchanged by that step (since, by
(6.2), (6.3) and (6.4), those harmonics contribute negligibly little to the right-hand
side of the coarse-grid equations). Hence, the two assumptions together imply
that, for [§] — 0, the CGC action on the error components Eq o7 (0)e?® (i.e., the
component # and its harmonics) practically gives EoT(0)o7 (0)e®, where T'(6)
is the ¢D x gD matrix defined by

T0)jx = 6;xTO+7171)Ig

0 if-2<0;<% forj=1,....d (624
T(O):T(Ol,...,ad):{l ;theiw?sej g forj

Thus, as [#] — 0, M(0) ~ M, (6) =R()"T(9)R(A)*2, and, in view of (3.20), we
can make it our assumption that

limsup  |[R(0)2T(0) R(6)"1]| < A (6.25)
max(|6],h)—0

Although actually resulting from other assumptions, (6.25) can separately be
checked.

Incidentally, 7(f) represents the ideal performance of the CGC step: for
sufficiently good I,J:I, AH and IIZ one would expect M (0) ~ M, () for all || < 7 /2.
In that case N ~ @%, where

i, = sup (o(My(0)))". (6.26)
0| <7 /2
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This 7, is the familiar “smoothing factor” |G, §3.1], which can thus be used as
a rough efficiency predictor. It is a very useful predictor because it is simpler to
calculate than \ or )’ (especially in case relaxation is strictly consistently ordered,
in which case 1z,, does not depend on v and its calculation is reduced to computing
q X q instead of Dg x Dgq matrices) and, more important, it tells you what is the
ideal performance one can obtain with a given relaxation scheme. Hence it allows
a precise separate design of optimal relaxation. This design can usually further
be reduced to the design of relaxation schemes for simple scalar equations (the
factors of the principal determinant of the matrix operator; see [G84, §3.7]).

§7 Modified cycle and main theorem

As explained in Sec. 4, the bigrid cycle which we will actually analyze is a
modification, involving negligible extra work, of the cycle (i)—(iii) defined in Sec. 2.
To define the modified cycle we introduce a constant 0 < o7 < 1 (whose value will
further be specified later) and a small “distance from the boundary” p = h!, and
for any p’ > 0 we denote

Qy ={a|zeQz—y|>p forany y¢Q}. (7.1)
Ah o oh
oh =t —ah. (7.2)

The steps of the modified cycles are the following. First, K¢ passes of Kacz-
marz relaxation are performed in Qgp. Then steps (i), (ii) and (iii) of the unmod-
ified cycle (Sec. 2) are carried out.

The number K of boundary passes, to be specified below, will be independent
of h, hence the total extra work involved will be at most O(h°!) compared to
the work in any of the other steps of the cycle. Ky will in fact depend only
on local properties of the fine-grid operator Ah (actually only on the quantity
1 defined in Theorem 5.1 and Remark 5.1) and on the accuracy € to which we
want to approximate the mode-analysis convergence factors by the modified-cycle
convergence factor. This is the content of our main theorem.

Theorem 7.1. Let A be the mode-analysis convergence factor (3.20). Then,
under the assumptions of Sec. 6, for any e > 0 there is Ko = Kq(¢), independent
of h, such that

il
— < A+t (7.3)
[l

where v and U are the error functions (vectors) before and after the application of
the modified cycle, and || - || is the £y norm.

§8 Proof

— 20 -



8.1 Cutting away the boundary

Let K1 = (y102) ™" for some constant dy = d3(€) which will be selected below,
where 71 is defined in Remark 5.1. Denote by v[¥] the error vector obtained after
k Kaczmarz boundary passes, and by || Avl¥|| 3p the £ norm of Avl*] confined to

the relaxed domain Qé’ » where A = A" and the normalized operator A is defined
in (6.1). Then, for some 1 < k < K7,

| Av¥ |13 < 8 v]|?, (8.1)

because otherwise, by Theorem 5.1, each Kaczmarz sweep would reduce the square
error norm by more than ~y;ds||v||?, so the K; sweeps would reduce it below 0.

Thus, taking Ko < K1 to be that k for which || Av!¥|| 3p is minimal, and denoting

plEo] by v%, we get

A 2 2
[Av%][3, < daflv]|® and %] < [[o]. (8.2)

The second inequality is the result of the error-decreasing property of Kaczmarz
relaxation (see Theorem 5.1).

We next note that, instead of calculating the final error v that results from
applying Steps i) ii) and iii) starting with v® as the initial error, it is enough to
calculate the final error T resulting from an initial error

v’ = v, (8.3)

where ¢ is a C* function defined on R% such that 0 < ¢ < 1, ¢(z) = 0 for z ¢ Q,,
¢(z) =1 for z € Qg, and, for any z and y,

p(z) = ¢(y)| < Clz —yl/p. (8.4)
Indeed, from (8.4) and Lemma 6.1 it follows that

[A@W® — 0| = [JA1 - 9)v%(|3,
~ h
< [140"l3p + CI10"| (8.5)
< C(82(e)Y? 4+ n1=o1)|v]|

the last inequality resulting from (8.2). Hence, for h sufficiently small and choosing
d2(€) < [61(€/2,1)/(2C)]?, by (8.2) and Lemma, 6.2 we get that

R S €
o -2 < & ol (5.6)
The error function v®, which vanishes outside QZ, can now be extended to the

entire space R?, by defining v(z) = 0 for z ¢ Q. This extended function has
the Fourier decomposition, similar to (3.1),

e / %(6)e?> do (8.7)
10|<m
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where

(0) = (2m)™% ) " whe P, (8.8)
B

Zﬂ denoting summation over the entire grid of integer vectors 8 = (f1,...,8q)-
As implied by (8.8), #%(6) is 2n-periodic (cf. (3.3)), and the range of integration
meant in (8.7) is over one period, e.g., over the range (3.4). The ezxistence of the
Fourier transform (8.7) is trivial, since v? has a bounded support and therefore
9°(0), defined by (8.8), is smooth and therefore also it is permitted, upon substi-
tuting (8.8) into the right-hand side of (8.7), to exchange the order of summation
and integration. The integration then clearly vanishes unless o = 3, hence the
summation yields the left-hand side of (8.7).

8.2 Separating away fringe components

Numerical processes which are fully local, such as Jacobi relaxation sweeps,
will operate separately on each Fourier component (i.e., they will produce a new
error function, whose new value for the Fourier amplitude 9(6) will depend only
on the old value of 9(f) for the same @). This is because such operators can
directly be extended as constant-coefficient operators to the entire domain, at least
for error functions vanishing near the boundaries. Other type of point-by-point
relaxation sweeps, such as Gauss-Seidel and Kaczmarz, can also be so extended
with negligible error (as we will see below), at least for error functions vanishing
outside Q’[} where p > h. The inter-grid transfers I f and 1 1@[ are truely local
operators, but since they connect grid A with grid 2h they couple harmonics (see
Sec. 3). The only truely non-local operation in the multigrid cycle is (AH)~1 —
the solution, in Step (ii), of the coarse-grid equations. The main idea of our proof
is the observation that even (AH )_1 can be regarded as a local operation, provided
it is confined to error functions vanishing outside Qfo‘ (except for possible residues
smaller than any power of h) and having non-vanishing Fourier components (6)
only in the range || > h/p. Since p = h! >> h, this range includes all components
except for very smooth ones. Our next step in the proof is therefore to separate
from v® those very smooth components, for which special estimates (using their
smoothness rather than mode analysis) will then be applied.

The general form of v0, the very smooth part to be separated from vP, will be
o / ¥ (6)5°(0)e> do (8.9)
0|<m
where 9 is a 2m-periodic function (cf. (3.3)) such that

@) =1 for ||<nyg and @) =0 for m <[ <= (8.10)

and where A1 791 < 1y < n1. The choice of 19, 71 and other properties of ¥ will be
described below. Since in the bigrid mode analysis each component 6 is coupled to
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its “harmonics” 6/ = #+7J (mod 27) (j = 1,..., D —1; see Sec. 3), we should also
separate from v® the harmonics of the very smooth components, i.e., the functions

vl = /¢(9+Tﬂ')@b(9)ei"°‘ o, (j=1,...,D—1). (8.11)

On the coarse grid these functions become very smooth, so their analysis, as we
will see, will be a combination of mode analysis (in relaxation) and the use of
smoothness-dependent estimates (in the coarse grid correction).

The remaining function
D-1 .
v¢ =0b — Z v, (8.12)
J=0

which represents the bulk of the error, will be analyzed by mode analysis. To do
this, however, we need that v¢, like v, (very nearly) vanishes in a sufficiently large
neighborhood of the boundary (so that the deviation of the multigrid processes
from having constant coefficient over the entire space will have negligible effect).
This is obtained by choosing sufficiently smooth . Specifically, we choose 1; =
Mo + 72 With

N = O(hl_"?), Ny = O(h1_03), and 1> 03> 09 > 01, (8.13)
and then construct 1(f) € C* such that
0<¢p@)<1 and  [9%(9) < Cmy* (8.14)

for any € and any /-order derivative 8£, (£=0,1,2,...; the exact values of 72, 79,
o9 and o3 will be further specified later). As we will see below this entails that v¢
practically vanishes outside QZ /2°

Since all our cycle processes are linear we can apply them separately to v°

and to v® = J-D:_Ol vJ and estimate their separate contributions to the final error

7. We denote these contributions by 7¢ and ¢, respectively.

8.3 Estimating the main error ¢

By (8.12), (8.9), (8.11) and similarly to (3.15), the main error v® can be
decomposed as

0 .
e = / Y0(0) Eqi®(6)e*? do (8.15)

where () = 1 — () and 9°(6) is the vector
#0) = @P%71,..., 0P~ HDHT, (8.16)
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Applying the bigrid processes to v¢ in the infinite domain would successively

produce the functions v¢!, v2 ... v0 defined by
0 .
vt = / Yo (O)ELM(0)52 ()% do,  (t=1,...,6) (8.17)

where My (0) = R(0)", Ma(0) = L"(0)My(6), M3(6) = If (0)M2(6), Ma(6) =
L7 (0) 71 M3(0), M5(0) = I};(9)Ma(9) and Mg(6) = R(6)"*[M1(0) — M5(0)] =
M(9) (cf. (3.19)) and E} = E? = E} = ES = E, while E3 = EX = I,. We have
to prove that, with negligible differences, the same functions will be produced
by applying the corresponding real processes, in the real domain QM with its
real discrete boundary conditions. Since the boundary conditions for the error
functions are always homogeneous, it is enough to prove that each v* practically
vanishes outside QZ /2° Indeed, its j-th component, vJ | is a function which, by

(8.17), has the general form

Ct,j — Z Z 'Ub k / (H)Mtjk(eﬁ h)eie(a_ﬂ) de; (.7 - 1a ey Q) (818)

where 1, (0) = 1 —1(0Y), 8° denoting, here and below in this section, the lowest
harmonic of 0, i.e., =5 < 9? < % and (6; — 9?)/71’ is an integer (¢ =1,...,d). By
(8.14) and (8.10),

0 < u(8) <1, [8%x(0)] < Cyny*

. (8.19)
and 9¥«(0) =0 for |0"| < np.

By the assumptions in Sec. 6.5, each My;(0, h) is a rational function of trigono-

metric functions of @, unbounded only at 70, ..., 7P~ satisfying
—r 0 —f— _ 7
0 My (8, h) < Ceh™ |6°777¢, (h1 77 < |6°] < ) (8.20)
where 8¢ is any f-order (partial) derivative with respect to § = (61,...,04), and K
and «’ are independent of £. Choosing for each 8 an index 1 < jg < d such that
|ajﬁ — ,Bjﬂ\ = |a \ = max; |a;; — B;| and then integrating by parts £ times with

respect to 0, the 1ntegral in (8.18), one obtains

"Ugt’j| < C’Z‘fv ‘ ‘a—ﬂ| E E ['@b*( )Mt]k(ea h):|
o |9|< 90
/ — i
<O YW = B0 Y ngt )
Bk 0<e'<t

the second inequality resulting from (8.19), (8.20) and from assuming oy < 03
(hence h1=%* < 19, hence the applicability of (8.20) for any |#°| > ng). Now,
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for any o ¢ QZ /2 and any S such that vg’k # 0 (hence B € Q’;) we clearly have
|ah—Bh| > p/2 = h° /2. Hence, for £ > d/2, applying Cauchy-Schwarz inequality
and using magnitudes (8.13) for 72 and 79, the inequality above yields

|,Uct,j| < Cg”’l)b” max h(al—1)d/2—m’—(1—03)&—}—(02—01)(6—8’)—}—(02—01)6'
¢ 0<er<e

< Cph~ Ho2mol )

where x” is independent of /.

Thus, for o ¢ QZ /2 since £ is arbitrary, we see that |v§t’j | is smaller than any

power of h. Hence, each v satisfies the homogeneous boundary conditions with
an error smaller than any power of A. Due to the stability of the bigrid processes
(6.10)—(6.14), we can therefore conclude that, for any desired £,
[0 — | < Ch|0°)). (8.21)
In addition, by (3.19)—(3.20) and the Parseval identity,
[0l < Alloe]l (8.22)

which together with (8.21) yields the required estimate for v°.

8.4 Estimating fringe error o

Applying step (i) (v1 relaxation sweeps) to v4 one obtains v¢, defined by
0 . .
o = / D(0)EoR(6)"15°(8)e b, (8.23)

and, as before, it is immaterial whether the relaxation incorporates the boundary
conditions or not, since v¢ practically vanishes outside QZ /2° Observing that 79 =
0 in (3.16) and writing E, = E + E,, where E = (I;,0,...,0), the smooth part
of v¢ is v/, defined by

vl = / " Y(O)ER(0)15°(0)e0 do. (8.24)

Since v/ practically vanishes near the boundary and its transform, by (8.24) and
(8.10), contains Fourier components e?® only in the range 6] < g = h1~%3, our
assumption (6.8) implies that, for h sufficiently small and any desired constant
€9 > 0, ~

| A" 7| < 8(eo) [0 |- (8.25)
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Hence, by the CGA assumption, applying CGC (the coarse grid correction step)
to v/ will give contribution smaller than ep||vf||. Since clearly |[vf|| < |[v¢| <
C||v?|| < C||v]|| (the second inequality resulting from (6.20)), by (6.10) the contri-
bution T of v/ to T¢ satisfies

_ €
|| < Ceollv]| < vl (8.26)
where the second inequality is obtained by a suitable choice of .
The non-smooth part of v¢ is v9 = v€ — v/, given by
0 )
vf, = / () B R(0)50(8)c df

. (8.27)
= / (0)EqT(0)R(0)"13°(0)e®0 df.

(see definition of T'(6) in (6.24)). Since the only non-vanishing Fourier components
in (8.27) are of the form expi(6 + 77), with [#| < no and 7 > 1, it follows from
(6.2) and (6.3) that

125 L 09);l < Cng =™ |09

. (8.28)
< ORI o9,
the second inequality resulting from (8.13) and (6.4). Hence, by (6.20)
[ILP0]] < ORI=o9me o0, (8.29)

where m, = max; m;. Since, for reasons as before, I ,J:I LMv9 practically vanishes
near the boundary (being smaller than any power of h in QZ /2), it would be

obtained whether A" and I ,{J are applied with or without the real boundary con-

ditions (A" = L" in the later case). We now apply to it the real (including
boundary conditions) (A)~!. Using (6.13), (6.14) and (6.10) we conclude from
(8.29) that

|R72 I (AT TH Lhyg|| < ORl=osms|pb)). (8.30)

Choosing o3 < 1/ms and a sufficiently small h, the right-hand side of (8.30) is
smaller than {5||v|| and hence, by (8.26),

[ = B9 < Zlo"). (8.31)
By (8.27), and whether boundary conditions are used in R or not, we have
0 .
R¥yf = / D(0)EoR(0)72T(0) R(0)' 5" (6)ei do.

Hence, using (8.14), (6.25) and the Parseval identity,
IR"209]| < M, (8.32)

yielding, together with (8.31), the required bound on 7.
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8.5 Summary

The Fourier components of v® are only in the range 7/2 > 0] > 11 = 19 + 72
and its harmonics, while those of R¥2v9 are in the range |#| < ng and its harmonics.
The only overlap (in terms of lowest harmonics) is thus in the range 79 < 6] < 7y,
whose volume is less than O(n2/n9) = O(h?372) compared to the volume of either
{10] < mo} or {|0] > m}. Hence, writing 79 = n+h' =73, we can choose 1 < 7 < 2
such that the components in the overlap contribute at most O(h?3792) to either
|v°6)|? or ||R¥2v9||2, so that

[0 + R209|1% < ([[o®? + |R"209||*) (1 + Ch7* 7).
Using (8.21) and (8.31) we hence have, for sufficiently small h,
b||2

= l[p* + %2

< ([0 + R*209|| + gllvbll)2

[v

< (o) + |R"209||*) (1 + Ch7372)

2
€nb 6 € 2
+23||v (o] + [[R7Z07]]) + %Hv”ll

Hence, by (8.22) and (8.32)

2¢ 2

b2 2 2 2 —

1% < A2 ([l +[lv*1) (1+Ch7 ”2)+g||vb||f\(llvc||+llvd||)+%IIUb||2- (8.33)

Furthermore, since in (8.9) and (8.11) 0 < ¢ < 1, the Parseval identity yields
[0°117 = [lo® + o> > Jlo°]? + [lv?]%, (8.34)

and therefore
[0 < 19°0, (v < [19°]l- (8.35)

For sufficiently small h, by (8.33), (8.34) and (8.35)

_ _ 4e €2
17 < N2[|[vP)|2(1 + Ch737%) + (3)\ + %)Ilvbﬂ2

€
< (A5 (8.36)
€
< O+ S0l
the last inequality resulting from (8.3) and (8.2). Thus, using (8.6), we obtain
(7.3). 1
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§9 Extension to variable coefficients

Using essentially the same proof, various modifications and extensions can be
introduced to the above theory, strengthening Theorem 7.1 in various directions.
We discuss below several of the important extensions, one at a time. The various
technique we show for modifying the theory can then also be used in combination
with each other, to prove any combination of the discussed extensions.

Extensions to variable coefficients are discussed in more detail in this section,
others are described in Sec. 10.

9.1 Zero-volume discontinuities

The above theory allows the coefficients of the discrete operator A" to have
arbitrary behavior, including discontinuities, in some neighborhood of the bound-
ary, provided that that neighborhood tends to have zero relative volume as the

meshsize h tends to zero: e.g., the width of the neighborhood can be O(h(ahl)), for
any o1 > 0. Actually, the proof did not use the fact that that neighborhood was
just a neighborhood of the boundary. Thus, the coefficients can change arbitrarily,
including discontinuities, provided this happens in a region whose relative volume
tends to zero—and provided, of course, that the CGA assumption still holds. The
local mode analysis is then simply applied separately in each subdomain where A"
has constant coefficients. When the coefficients are strongly discontinuous (jump-
ing in their order of magnitude), the satisfaction of the CGA assumption is not
trivial; it is indeed obtained only when special coarsening techniques are used (like
those described in [ABDP] or [G, §4.4]; see related remarks in Sec. below).

9.2 Smooth coefficients

The interior discrete operator Lh (i.e., the operator outside those vanishing
neighborhoods where the behavior of the coefficients can be arbitrary) was assumed
to have constant coefficients (in each subdomain, the subdomains being separated
from each other by interfaces with vanishing total volume). In fact, it is enough
to assume that the coefficients are sufficiently smooth (in each subdomain). To
show this, we first have to reinterpret the local mode analysis itself by freezing
coefficients (as in [BD, p. 98] or [G, §4]). That is, the mode analysis of Sec. 3
above is first applied to L” (x), the discrete operator in the infinite space whose
constant coefficients are those of L at the point z. In this way a convergence
factor A(z), defined by (3.20), is calculated for every x. From this

A= sup A(z) (9.1)
x€Q,
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is determined (in practice by a simple maximization routine). This A is the mode
analysis predicted convergence factor, which should be used in Theorem 7.1 for the
variable-coefficients case.

To extend to this situation the proof in Sec. 8, we introduce a Garding-type
partition of unity on scale s, = h°?, where

0<o01<0p<og<o3 (9.2a)

(subscript p for “partition”). That is, we introduce a set of scalar continuum
functions ¢"¥(x), (k = 1,2,..., K"), satisfying for any z € Q and 1 < k < K"
the following conditions:

0<MFz)<1 (9.2b)

Kh

> @) =1 (9-2¢)

k=1

ok (z) =0 for |z —1tl| > s, (9.2d)

9 ¢ 9 b4, hik —(b14-+£q)

|(6—a:1) tees (B—a:d) 4" (x)] < Cpy gty Sp 4 (9.2e)

the last inequality holding for any vector of non-negative integers (41, ...,44). For

each k& we then apply to vPF = @Mkyb the same proof steps formerly applied
to vP, defining vOF, oIk ok otk etk ok gdik gek o Fik gk pdik and
otk = 5ok 4 5%k analogously to the definition of the corresponding functions in
Secs. 8.2-8.4. Each of these functions is produced from a previous one by a certain
operator, for which the following 3 claims should be proved.

Claim I. Applying the real (possibly variable-coefficient) operator produces, up
to a negligible error, the same function as applying the corresponding frozen-
coefficient operator, i.e., the infinite-domain constant-coefficients operator whose
coefficients coincide with the real ones at tz.

Claim II. The support of the function is practically unchanged by the operator,
i.e., if 03 — op > 03y > 0 then, for

& — th] > sp(1+ h7%) (9-3)
the value of the function at z is smaller than any power of A.

Claim III. Except for negligible errors v%% = ¢

ohskyct etc.

h;k, 0 ,cik _

WY, v _(ph;k)

’UC, ,Uct;k —

It is enough to discuss here how these three claims are proved in the step
of applying (AH)~1 (the step of producing v°4¥), because all other steps are
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simpler and require less smoothness of coefficients. In terms of this example we
will also describe the claims in more concrete terms, specify what is meant by
“negligible errors” and “practically unchanged”. Denote by Lf the constant-

coefficient operator L (t’,;) To prove Claim I we have to show, for any €, > 0,
that, for sufficiently small H = 2h,

(AT — (L) || < e (L)~ o). (9.4)

Since we assume that Claim I has already been proved for all previous steps,
we know that v®3* is made of Fourier components etz/H only in the range
2np < 0 < 7 (the factor 2 appearing because we are dealing here with the coarse
grid H, and hence it is H = 2h that we use in the exponent denominator). As in
Sec. 8.3 it can therefore be shown that, with negligible error,

£ty = [ @) o) s, 95

where MJ(0) is the symbol My(0) for coefficients frozen at ¢; and where it does

not matter whether LkH employs the real boundary conditions or describes the
infinite-domain operator. Thus, instead of (9.4) it is enough to prove the following
condition.

Coefficient Condition 9.1. For any ex > 0 and 0 < 03 < 1 there exist Hy > 0,
0 < oy < 03 and a positive integer £ such that, for all 0 < H < Hy, the inequality

1A HLE — AT < el (9.6)

holds for any v having the Fourier representation

ol = vH (aH) = ot (9)e?>dp (9.7)
hi=o3<|0|<m
and satisfying
T (z)|| < C,HE for all |z — 0| > CHOP. (9.8)

This is a qualitative coefficient-smoothness condition that we can most sim-
ple assume to hold. But we can also make the following observations about its
translation into more familiar coefficient smoothness requirements.

If A® is uniformly continuous, it is clear that ||(L£1 — AH)yH|| can be made

arbitrarily small (compared to ||A# v ||) by choosing sufficiently small H, since the
subdomain (9.3) can be made arbitrarily small. Unfortunately, if Lﬁ — AH is not

smooth enough, then, for some particular functions v#, the function (LkH —AHH
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may turn out much smoother than A7 vH  hence the former may be amplified
much more than the latter upon being operated on by (Af)~L. This is not a
mere theoretical trouble: it can actually happen, and in such a situation the local
mode analysis predictions can indeed be inaccurate. (Hence the above Coefficient
Condition 9.1, or at least some weaker form of it, is a necessary condition). Thus,
to satisfy (9.6) it is necessary to assume enough smoothness of A,

For example, if A is uniformly elliptic and its coefficients have uniformly
bounded derivatives (or difference-quotients) of sufficiently high orders on scale
sa (i-e., sﬁ times any /-order derivative of any coefficient is uniformly bounded,
for all £ < fmax, fmax being sufficiently large), where s4 = h°4 and opp > 04 > 0,
then (9.6) can be proved by infinite-space Fourier Analysis. The proof is given in
Sec. 9.2.1 below. (Notice that it indeed contains a proof of Claim II, too.)

The smoothness requirements on A can be reduced by employing higher
Sobolev norms instead of the Ly norm used here. Such norms give less weights
to smooth components (cf. Sec. below). In particular, if a high enough norm
is used, then the fact that (Lf — AMYoH is smoother than AHvH makes its
norm correspondingly smaller, too, and consequently the trouble described above
disappears. So, with a suitable norm, (9.6) may be proved for any AH which is
uniformly continuous on scale s 4.

Once Claim I has been established for (A¥)~!, Claim II can easily also be
proved, by applying the proof in Sec. 8.3, with M, f (0) replacing My(6) and op
replacing 1. Claim III is also easily established since, following Claim I, it needs
only be proved for the constant coefficient operator in the infinite space, and only
for vH of the form (9.7), where, by (9.2a) the wavelengths in v are much shorter
than sp, the scale on which ©"* is infinitely smooth. The proof is given in Sec.
9.2.2 below.

That proof, written for the operator (LkH )71, is easily adapted to simpler
operators (for which the restriction on the Fourier transform support, appearing
in (9.7) as a restriction of the integration domain, neither always holds nor is
needed); such as the operator (8.9) of separating away the smooth part vV from
the error v®, which now analogously separates v%¥ from v%*. (The proof here uses
(8.14) for £ = 1, (8.13) and the relation oy > 0p). Thus we get v0* = k0,
and similarly v/% = oPFkyl (j = 1,...,D —1). We then prove Claims I, II
and III subsequently for v“% (t = 1,...,6) and for R¥1v%F &k ofik 9k and
RV299%% in the same manner demonstrated above for v*4%. Claim I implies that
for each of these we can obtain estimates analogous to those in Secs. 8.3-8.5. These
estimates (together, in fact, with estimates in Claim I itself, such as (9.4)) thus
yield, analogously to (8.36),

2
_b: € .
71> < (A(tﬁ) + 5) lo®]12. (99)

Using this together with (9.1), (9.2¢) and Claim III (applied to 5%F), it follows
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that (upto negligible errors)

o) = Z\vaﬁ

= ZZW(M)}%&F

a k
= 2>

a  k
=3 |[a¥F|?

k
<(A+ 5>2Z [o%*|2

()\+ ZZ [ (ah)]?|vl |2

:(,\+_) ||vb||2
<A+ ) lo]|?, (9.10)

the last inequality resulting from (8.3) and (8.2). Since the derivation of (8.6) did
not depend on A having constant coeflicients, we can use it here, which together
with (9.10) yields (7.3).

9.2.1 Proof of Coefficient Condition 9.1. As stated above, we want to
prove (9.6) under (9.7)-(9.8), assuming A to be uniformly elliptic and sufficiently
smooth on scale s4, where

sa=h%4 and o3> 0p >0y >0. (9.11)

We will first write the ellipticity and smoothness assumptions in terms of the
symbol of AH | which is the ¢ x ¢ matrix &g (0) defined by

(AH gH gify | — g (9)5H it (9.12)

o

holding for any constant g-vector 9. Thus, each term in &g (0) is a trigonometric
polynomial in 6 with coefficients depending on the grid point «, reflecting the
coefficients of A7 at «.

Without loss of generality we can assume, by simple translation, that tz =0,
so that '
(LHH i), = afl (9)oH et (9.13)

With the support of v hence being essentially |aH| < CH??, it then follows
from the Fourier inversion

= (2m)" 4 vfleie (9.14)
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that o (0) is a very smooth function, and in particular, using the Parseval identity,
that

[/ 16" (9) = 8 (0 — m)|[2d6]"/? < Cln| HOP~H[o™|. (9-15)
|0|<m

Also, without changing the smoothness-on-scale-s 4 of A” | we can then assume

all()=0 for |aH|> Csy (9.16)

(87

(since the support of vl is far smaller than that). Hence hatal (9) as a function
of a, has the Fourier expansion

fl0)= [ aln.o)eedn, (9.17)
In|<m

where

0 (n,0) = (2m)™4> " agl (0)e=", (9.18)

The assumption that A™ is uniformly elliptic means that there is a polynomial
Py such that Py(w) > 0 for any w # 0, for which

H (- 01\~
CHOREIACS] (9.19)
and o
. 6
jatt o) < ora (7). (9.20)
where we have introduced, for any 6 = (61, ...,604), the notation
10 = max 10+, 0jl« = min |0; — 27k,
1<5< integer K
and where || - || is the /3 matrix operator norm. Furthermore, since X (6) is a

smooth function (a trigonometric polynomial, in fact) in 6, we can also assume,
for any |n]« < %|0|*, that

A |77|* ‘9|*
IaZ(0) — ol (0 — )l < C' 3= Pa (H)

By (9.18) and (9.16), this can also be expressed as

670, ~ 11,0~ ) < 2 py (112 (22"
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or, by (9.19),

d
laff 0 a0 - a0 -l < e (34) . a

Similarly, from (9.20) and (9.19), together with (9.18) and (9.16), for |¢'|« < C|6|«

d
laff 00" .0l < (%) (9.22)

The assumption that A™ is smooth of order £ on scale s4 can be written as

. 0]« —
oot 1 < cra( )3 (923

for any 0 < £ < fppax, where (92 is any f-order difference-quotient operator on the
grid @ = z/H. Let n = (n1,...,7mq) and let j = j, be such that |n;|« = [n]«. The
summation in (9.18) includes a summation over ;. Since GZ (¢) has a bounded

support, we can perform £ summations by parts on that a; summation, obtaining,
by (9.16) and (9.23), the estimate

. O\ — -

Ja (.00 < Copa (5 )z /16 1) s/ )
9.24
t—dp (101«\ a—¢ - 929

< CyeH ™ Py T )%A /]
Or, by (9.19),

. 14 0"« \" oA _

Jaff0) 1" o)l < G| 1+ () |ty )

where « is independent of /.

Having expressed the assumptions, we proceed to derive (9.6), but first in a
simplified form in which (LkH)_1 replaces (AH)~1. By (9.7) and (9.17),

(o) = [ [ 4,000 (0)c 0 dy
3

_ (9.26)
= // a(n, 6 — )™ (6 — n)e*>do dn,
3

where [, denote integration over a domain m > [o|, > CH1793, in which of
course |0|, = |@|. The latter equality in (9.26) is obtained by shifting 6 by 7,
(i.e., substituting 6 for # 4+ n). This shift leaves the integration domain effectively
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unchanged since, by (9.24) and (9.11), a¥ (n, §) practically vanishes (faster than
any desired power of H) for |n|x > O(H'~93). Hence, by (9.13) and (9.17),

(L — AT ) / / (n,0)9™ () — a™ (n,0 — )™ (0 — n)]e®*do dn,

and hence

LAY @LH - Al H =71 12 T3 1 T, (9.27)

where, for o specified later,

Tl = / eiforgH (9)~1 / aH (n,0)0H (60) dydo
3 n|> =75

12— [ <oeafio) | 4% (1,0 — )0 (6 — m)dndo
3 nl>H1-5

TS = / efafl (0)~ / &' (n,0 — n)[o" (9) — 07 (0 — n)]dn do
3 In|<H'~°B

T = / 03l (6)~1 / 6™ (n, 0) — a (1,0 — n)]o (0)dy db.
3 |n|<H!=°B

In all these integrations |n| < =, hence |n|« = |n|. By the Parseval identity, then
the Cauchy-Schwarz inequality and then (9.25), for any £ > d/2 and for some k1
independent of /

IR = fladot [ a0 0| as
n|>H*'= 5"

< Ol |2 / / H ()16 (1, 0) | dn d
In|>H*'~ "B

< Cg“’UH” HK,]_-{-?Z(O'B—O'A).

Similarly

||T2||sc/(/ 1t (6)" 4™ (n, 6) ||2dn)/|| (6 —n)|2dndo
In|>H'~7B

< Cg”’UH“2Hm2+2Z(GB_UA).

Again, by the Parseval identity, then the Cauchy-Schwarz inequality, then (9.22)
(which is applicable here since we will choose op < 03, hence || < |0] in the
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integrations below), and then (9.15).

1732 = / || / 6l (0)" 1" (1,0 — n)[6™ (9) — 9" (0 — m))dn|[2d
3 Jin|<H'~°B

<c / ( / lad (0)="a" (n,0 - n>||2dn)
3\J|n|<H'=°B

x ( / 167 (6) — 6 (6 - n)||2dn) a6
In|<H'~"B
< CHoa=Dd d(1-0p) / / 167 (0) — 67 (0 — )|12d0 dn
In|«<H=°B

< CHd(QUA—UB—1)+2(Up—1)||UH||2/

2
ol <H=7E [n|” dn
M=

< CH2[dUA+0p_(d+1)UB] ||’UH||2

Finally, by the Parseval identity and (9.21)

4= [ e [ a6 0.0) - 6 (.0 - ) dnl*d9
3 In|<H=°B
< CH2[d(oA—1)+(d+1)(1—03)—(1—03)] ||1)h||2

— CH2[d0A+03—(d+1)UB] ”,UH||2

By (9.11) we can choose op such that o4 < op < (dog + 0p)/(d + 1), hence
(d+1)op <dog+o0p <dog+ o3 and op < 3. Then, by choosing ¢ sufficiently
large, the final exponents of H in the estimates for ||T1|, ||T2||, ||T3| and ||T?||
are all positive. Hence, by (9.27), for some op > 0,

1Bo" || < CHP 0" (9.28)

where
B= (LI YLHE - AH) =1 — (Li)~14H. (9.29)

Next, observe that the application of the operators A and (L,Ij )=, and
hence also of B, leaves practically invariant the space of functions defined by
(9.7)-(9.8). Indeed, by (9.26) and (9.24), for any o3 > g, > 04, if vT satisfies
(9.7) then A”vH (upto an error smaller than any desired power of h) has Fourier
components only in the range 8] > A!=93[1 — O(h?3~%4)]. Since AT is local it
surely preserves (9.8). The operator (LkH )~ certainly preserves (9.7), since it has
constant coefficients. To show that it also preserves (9.8) one has to repeat the
argument of Sec. (8.3), which indeed proved that, upon operating by (LkH )~1, the
support of any function is extended at most by O(h°!), for any o1 < 03. Using
this for o3 > 01 > o, it follows that the support (9.8) changes by as small a
fraction as one wishes.
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This implies that (9.28) can repeatedly be applied. More specifically, it im-
plies that for any m > 0 and €4« > 0 one can choose H sufficiently small and N
sufficiently large so that

|B™|| < (ex/2)"||0T||, for n=1,...,N—1

and so that
IBN V| < cH™|]vH.

Using these two inequalities, together with (6.13) and the identity
(AL - A") =B+ B>+ + BN+ (AL BY,

yields (9.6).

9.2.2. Proof of Claim III. Given v of the form (9.7) and ¢™¥*(z) satisfying
(9.2), and the constant-coefficient elliptic operator L = L,If , we need to show, that
there exists o > 0 such that

ST lMFL Lo — Ltk 2 < CHOLTW R (9.30)
k

The ellipticity condition implies that the symbol L of L satisfies

L)~ = LO+n)~ o]l < C%Ilﬁ(ﬁ)_lﬁﬂ (9-31)

for any 2|n| < || < m and any g¢-vector 9.

To prove (9.30) we use the Fourier expansion of ¢"* on grid h

o el = [ graern (9.32)
¢ |n| <
where .
¢F () = (2m) Y pliem e,
«
This ), includes a summation over a;, , where |n;, | = |n|. Summing that partic-

ular summation £ times by parts and using (9.2e) one obtains

" ()| < Culn| = (H/sp)*", (9.33)

for any positive integer £. By (9.2a) we can choose o4 and o such that o, < 04 <
or < 03. By (9.33),

¢ ()| < CuEATa o) r=1) for any |y > H' g
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hence the contribution of such components is smaller than any power of H, and
can thus be neglected. We can thus replace (9.32) by

L (9:34
In|<H'~7a
By (9.7) we can partition v in the form
ol =N " Hi,

with
vl = / o8 (6)e*0d,
Dj
where the domains D; have the following properties:
i) D;C{0:10—67|<H'=or},  5H793 <|pJ| <.
(ii)  The volume of Dj is O(H41—0r)),
(iii)  For the j # k, the volume of D; N Dy, is at most O(H(d-1)(1—or)+1-0q),

By (9.34), the Fourier components of L™1¢FvHJ | as well as those of pF L=1vHJ,
can also be assumed to be contained in D; (enlarging the latter at most by
O(H'=97) in each direction, hence still observing the above properties). Since
the volume of D" = U;,(D;j N Dy,) is O(H%7~74), the domains D; could in fact
further be chosen so that the relative contribution of components from D" to the
square norms on either side of (9.30) is only O(H?r~%¢), hence negligible. It is
therefore enough to prove (9.30) for each v?J instead of v™. Hence it is enough

to prove (9.30) for v of the form v = wH e for some |§] > H'=73 where

wl = wH (aH) = / (n)et%dn). (9.35)
In|<H!=or
For such v we first have, by the Parseval identity and then by (9.31)

IL(0) o™ — L7 1™ = /| wm [L(0) ™" = L(0 + m) "o () O+ el
n|<H=°r

= [ IR - L+ ) o)y
In|<H1=or
< cHH3 o) || L(0) LT |12,
(9.36)
Similarly (i.e., like (9.36), but with w’? being replaced by ¢FwH)
IL(0) kv — L1 (pFo™)|12 < CH23 7o) L(0) " ko |12, (9.37)
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By (9.2¢) and (9.36)

Z”L -1 k H kL 1 H||2 ||L( ) 1’UH—L_1’UH||
(9.38)
< CH =) L() 1o .

By (9.37) and then (9.2¢)

ZHL oo — LR |2 < CHAOsTO) N | L(0) Tk o |2
k (9.39)
= CHYo3=o0)|| [(9) Lo | 2.

Using (9.38) and (9.39), and then (9.36) again, one immediately obtains (9.30)
with o = 2(o3 — oy).

9.3 Algebraic singularities

Observe that the only coefficient smoothness condition really needed in Sec.
9.2.1 is that, for any coefficient a(z) of A, and for any sufficiently high £ and
¢-order derivative 8%, there holds

0%a(z)| < Cyh" AL, for any z € Q) (9.40)

where x is independent of £. As in Sec. 9.1, the only requirement on this Q(h)
is that the volume of Q — Q") tends to zero as h — 0. In particular, choosing
Q) = Q, (cf. (7.1)), with p = Rt and 04 > o1 > 0, it is easy to see that (9.40) is
satisfied by any coefficient of the form a(z) = b(z)r(z)®, where b(z) is sufficiently
smooth, 7(z) is the distance of z from a fixed point (or line, etc.) on the boundary,
and « is an arbitrary real power. Indeed, since r > Ch?! in Q,, for any £ > o we
have
10a(z)| < Cpro—t < Cyhor(e=0 < g poale—t),

Thus, any type of algebraic singularity in coefficients is admissible. The only
restriction to watch, of course, is that the CGA condition (Sec. 6.1) is still satisfied.

9.4 Finite elements and non-uniform discretization

Uniform finite elements give rise to difference equations directly amenable
to local mode analyses. Those analyses can then be rigorously justified by the
methods described above. Moreover, for reasons similar to those in Secs. 9.1, the
rigorous analysis can be extended to piecewise uniform grids, with tending-to-
zero-volume discontinuities. Most application of finite elements, especially those
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which one would multigrid, or indeed exactly of this kind: the elements are uni-
form within each of the initially-given superelements, modified sometimes near
boundaries and singularities.

Piecewise uniform finite-difference grids could of course similarly be analyzed.
Moreover, within each piece the grids (or the elements) can smoothly vary (e.g.,
by some transformation): this is equivalent to (and can be viewed as) having a
uniform grid with smoothly varying equations, hence it can be analyzed by the
methods of Sec. 9.2-9.3.

Systems with arbitrarily ordered elements cannot be analyzed by the local
mode analysis. (They are also inherently much less efficient then the partially
ordered ones, especially with multigrid solvers). But we believe that their analysis
should better still be a local analysis, like the present one. The traditional finite
element multigrid analyses lose much insight by being global. They lose sight of
the central fact that the potential multigrid efficiency is essentially independent
of boundaries, singularities, etc.

For completely disordered grids, a quantitative two-level rigorous analysis,
with realistic but not sharp constants, is given in [AMGT]. It cannot be localized,
nor can it be extended to a multi-level theory, because it deals with systems that
violate the CGA condition.
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