The Scope of Multiresolution Iterative Computations

By Achi Brandt

Some of the major bottlenecks in science
and technology today are computational in
nature. To calculate the mass of elementary
particles from first principles, for example,
would require millions of computing years on
a modern supercomputer with state-of-the-art
algorithms, Any refinement of the theory could
increase computational demands by orders of
magnitude. Or consider the determination of
the three-dimensional form into which given
proteins fold, which is needed for an under-
standing of their biological interactions and
would possibly pave the way to the develop-
ment of precise methods for designing new
proteins. In principle this is just a computa-
tional task—but in practice current computa-
tional capabilities fall short. Likewise, many
central engineering endeavors, from the design
of fusion reactors and airplane maneuvers to
the search for oil in the ground or tumors in a
body, would be greatly facilitated if infinite
computer power were available—or if much
better algorithms could be devised.

Why do we need zillions upon zillions of
computer operations to solve such problems?
Are there some general mathematical approaches
that would allow us to compute fast the pro-
cesses that nature brings about so readily and
surely?

Spatial Calculations: Origins of
Computational Complexity

Most computational superproblems have one
feature in common: They are spatial problems,
that is, their variables are functions defined on
the physical continuum of space and/or time.
Alternatively, the problems can have a host of
discrete variables—particles—each attached
to a position in space, possibly changing in
time. Closer examination reveals that the com-
putational complexity of these problems re-
sults directly from this spatial nature, in sev-
eral general ways that come up again and again,
in different guises, with a tendency to com-
pound each other many times over.

For a spatial problem to be treatable by
computers, it must first be discretized: The
continuum is replaced by a discrete set of
points—a grid—and each continuum function
is replaced by a grid function (or “configura-

tion™), represented by a set of discrete vari-
ables, each attached to a certain point of the
grid. The physical laws of the continuum are
replaced by a system of computable algebraic
relations between these discrete variables: a
system of algebraic equations in some cases, of
statistical relations in others. (This discretiza-
tion is of course more trivial when the original
problem is already stated in terms of particles.)

The first,and most readily understood, source
of the enormous computational complexity of
spatial problems is the sheer size of this alge-
braic system: To properly approximate the
continuum and resolve the interesting phe-
nomena, the grid must be sufficiently fine. The
number, n, of discrete variables thus tends to be
huge, especially in full four-dimensional space/
time problems (not to mention the problems of
much higher dimension that quite often arise in
physics). The number of algebraic relations
between the variables must of course be equally
large.

The complexity is greatly increased, some-
times even squared, by the procedures for
processing these algebraic relations in order to
extract from them the desired information.
This is easy to see when the interactions are
global, i.e., derived from long-range physical
forces such as gravity; in such cases each alge-
braic relation couples all, or O(n), variables, so
that the total number of terms in the systen is
O(n*). The number of computer operations
needed to solve such a system of global equa-
tions seems to be at least O(n?), and is often
much larger.

In many cases the basic physical laws can be
cast as [ocal relations, such as partial differen-
tial equations, or local statistical rules (a
Hamiltonian composed of local interactions).
When discretized, the resulting algebraic sys-
tem will be local too; each algebraic relation

will involve only a small number of neighbor-

ing variables. The total number of terms in the
system will then be only O(n). If, for example,
each algebraic relation is actually a linear
equation, the system will be described by a
sparse n X nmatrix containing only O(n) nonzero
entries.

In this case, however, the complexity is
increased in another way. To preserve the spar-
sity of the relations, the numerical processing
is usually local too. For example, each step of
the processing may consist of satisfying one

discrete equation (or simulating one statistical
relation) by changing one unknown; at most, it
may consist of treating several neighboring re-
lations by changing several neighboring vari-
ables, Passing with such local processing over
the entire grid is called a relaxation sweep (or
a Monte-Carlo sweep, in the statistical case).
The purpose of iterating such sweeps is to drive
the system toward a solution (or to produce a
statistically representative sample). The diffi-
culty is that this goal will necessarily be at-
tained very slowly. Many sweeps will be needed

Each grid supplies correc-
tions to the equations of
the next coarser grid, and
to the approximate solu-
tion of the next finer one.

to reduce an initial error substantially (or to
produce a new representative sample, essen-
tially independent of the initial one). This mal-
ady, called “slow convergence” by numerical
analysts and “critical slowing down” by statis-
tical physicists, is a direct corollary of the local
character of the processing. Indeed, it is the
nonlocal features—such as smooth compo-
nents of the grid functions—that are slow to
converge (or to change, in the statistical case).

A further source of increased complexity is
the need to repeat the calculations many times
over. In statistical simulations, for example, it
is not enough to produce one representative
sample; each such sample is likely to exhibit a
large statistical deviation from any average
quantity to be extracted. To average out these
deviations sufficiently, many statistically in-
dependent samples should be produced; their

. numbers often run into the millions. The solu-

tion of a system of equations is also routinely
repeated over and over, for a variety of rea-
sons—to optimize and/or identify some para-
meters on which the system depends; to solve
an inverse problem; to follow the bifurcation
diagram or the time evolution of the solution,
etc.

Remedy: Multiresolution

Other major maladies of spatial calculations
are mentioned below, but for readers who are
becoming impatient, a discussion of some reme-

dies is in order. The comnerstone of all such
remedies is the archvillain itself: the spatial
origin of the problem. Any problem with that
origin can be discretized and treated not only
on one grid, but on a hierarchy of increasingly
fine grids with, for example, a scale ratio of
1:2. With such a system of grids (or “levels™),
it is possible-to design numerical procedures
that greatly benefit from intergrid (interscale)
iterative interactions. This is true even when
the original problem is given in terms of par-
ticles; increasingly coarse grids that describe
increasingly smooth collective motions of the
particle ensemble can then be constructed.

Perhaps the best known example of such
multiscale iterative processing is the multigrid
solver for steady-state differential equations.
As mentioned above, the usual local process-
ing of the equations on some given fine grid is
inefficient because it only very slowly affects
nonlocal features of the solution. The starting
point of the multigrid solver is the observation
that these nonlocal features that cause the
trouble on the fine grid are exactly the ones that
could be resolved, and inexpensively proc-
essed, on suitable coarser grids. The solver
thus involves relaxation sweeps not only on the
given grid, but also on all coarser ones, with
intergrid transfer of information. Typically,
each grid supplies corrections to the equations
of the next coarser grid, and to the approximate
solution of the next finer one.

This process leads to a solution of a system
of n local equations (the equations of the finest
employed grid—whether linear or nonlinear)
in just O(n) computer operations. Such a solver
is also ideally suited to parallel processing ma-
chines: Using O(n) processors, it will typically
require only O((log n)?) parallel steps.

An analogous algorithm can be used in sta-
tistical simulations. Employing Monte-Carlo
sweeps on grids covering all the scales of the
problem, the algorithm will require only O(n)
operations to produce a new, statistically inde-
pendent configuration.

What about the case of global equations,
including discretized integral equations, or
particle problems with long-range forces, all of

.which seem, by definition, to be of O(n?)

complexity? Interestingly, multigrid solvers
have been designed that, again, need only
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O(n)—sometimes O(n log n)—operations to
produce a solution. They are based on the
natural smoothness of interactions between
distant variables: the greater the distance, the
coarser the grid needed to represent their inter-
actions with enough accuracy.

Surprisingly, a multiresolution approach can
also eliminate most of the above-mentioned
work related to the repetition of calculations
many times over. In the statistical case, for
instance, it is the less local features (e.g., the
smoother components) that actually require
more sampling; local features are already
abundantly sampled in every single configura-
tion, since they recur spatially, in each small
subdomain. Hence, it is only at the coarser
levels of a (properly structured) multigrid Monte-
Carlo simulation that many repetitions are
needed, and there they are very inexpensive.

In evolution problems, e.g., in fluid dynam-
ics, fine-scale flow structures are, to a first ap-
proximation, just convected by large-scale
streams; hence, over long periods, calculations
can be confined to coarse levels, provided
certain terms of fine-to-coarse defect correc-
tion (fine-grid corrections to the coarse-grid
equations) are convected with the flow, repre-
senting the effect of the finer structures. Only
once in a great while, and only locally in space,
should calculations at finer levels be performed
to find the deformations in those structures and
to update the defect-correction terms corre-
spondingly.

More generally, large problem domains should
almost always be treated only by suitably coarse
computational grids, with rare and localized
activation of finer grids, in a careful hierarchi-
cal manner. In this way the number of active
discrete variables can be vastly reduced. What
makes it possible to activate finer levels very
sparingly is the basic idea that their task is to
correct the coarse-grid equations rather than
the coarse-grid solution.

Typical of autonomous systems, the coarse-
grid equations produced by such a process in
one region can serve equally well in others, if
the size of the region increases appropriately
with the level of coarsening. In particular, this
leads to a computational method for deriving
macroscopic equations from microscopic phys-
ics. Unlike group renormalization methods,
which attempt to derive such equations once

and for all, in the multigrid approach a certain,
suitably bounded amount of iterativeness will
usually remain. Namely, at certain extreme
conditions the coarse-level processing will locally
transfer control to recursively finer levels,
which in turn will update the coarse-level
equations. It can be shown by examples that
this iterativeness is essential for keeping the
coarse equations simple: They need not once
and for all foretell a/l possible relations. The
amount of work required to activate finer lev-
els can be kept modest compared with the
normal coarse-level work, because it can be
done sufficiently rarely. This can also be viewed
as a computational tool for overcoming the
problem of closure of large-scale equations.

Several generic types of relations between
fine and coarse emerge. A finest level consist-
ing of particles may give rise, after several
coarsening steps, to equations equivalent to
those obtained by discretizing differential equa-
tions. Conversely, a discretized differential
equation (e.g., a wave equation) at larger scales
may produce particles (or rays). A finest-level
stochastic system may become deterministic
after several coarsenings. Conversely, negli-
gible microscopic stochasticity may be quickly
amplified by coarsening, yielding macroscopi-
cally a stochastic system. This latter process
may prove to be an effective approach for com-
puting chaotic spatial problems.

Some additional important tasks for multi-
resolution processing stem from other major
factors of inefficiency that plague many spatial
calculations. One of them arises typically in
optimization, or energy-minimization, prob-
lems, such as protein folding and discrete
optimization. At each step in the iterative solu-
tion of such problems, some local unknowns
are changed so as to lower the energy. Much
like the relaxation sweeps mentioned above,
this local processing is doomed to converge
slowly. But this is often not the main difficulty.
Far more troublesome is the fact that the pro-
cess is likely to be attracted to a false basin,
which does not contain the desired minimum at
all. Such false attraction basins can sometimes
be escaped through the addition of a certain,
gradually diminishing amount of stochasticity
to the process, a technique called “simulated
annealing.” But spatial problems are likely to
exhibit multiscale attraction basins: small ones
within larger ones within still larger ones—
corresponding in fact to scales of moves in the
physical space. Simulated annealing is then

ineffective and should be replaced by an inter-
esting multiresolution iterative process called
“multilevel annealing.”

A multiresolution algorithm has been de-
signed that can calculate in O(n log n) opera-
tions the determinant of an n X n matrix of grid
equations, a crucial task that needs to be re-
peated at each step of elementary particle cal-
culations. Other very effective types of multi-
resolution procedures are being developed in
such diverse fields as image processing, to-
mography, and mathematical programming (for
problems of a spatial nature).

More challenging problems await further
research in the evolving field of multiscale
computations, The research, on the one hand,
exhibits the usual interdisciplinary and cross-
fertilizing role of applied mathematics, in that
various underlying relations and algorithmic
ideas are carried back and forth between widely
varying areas of applications. On the other
hand, it has its own internal systematic devel-
opment, gradually increasing our understand-
ing of the various types and operational modes
of interscale interactions, through analytical

and computational studies of carefully selected
model problems. .

For further reading and references, see the au-
thor'sarticles “Multilevel Computations: Review and
Recent Developments” (in Multigrid Methods: The-
ory, Applications and Supercomputing, edited by S.F .
McCormick; Marcel-Dekker, 1988) and “The
Weizmann Institute Research in Multilevel Computa-
tions: 1988 Report” (in Proceedings of the Fourth
Copper Mountain Conference on Multigrid Methods,
edited by Mandel etal.; SIAM, 1989). A good perspec-
tive on the basics of the multigrid solver can be
obtained from the bestseller A Multigrid Tutorial by
William L. Briggs (SIAM, 1987).

The upcoming Multigrid Short Course, to be held at
the University of Colorado, Denver, May 14-18, 1990,
will feature in-depth coverage of the topics discussed
in this article (see the advertisement in SIAM News,
January 1990, page 10; for further information,
contacr (303) 556-4807, (303) 556-2341, or
cliu@copper.colorado.edu).
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Composite grid: five patches, one patch per
level; refinement factor = 2.
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