Proc. IMACS 1st Int. Conf. on Comp. Phys., Boulder, Colorado, June 1990

Multilevel Computations of Integral Transforms

and Particle Interactions with Oscillatory Kernels!

Achi Brandt

Department of Applied Mathematics & Computer Science
The Weizmann Institute of Science
Rehovot 76100, Israel

Content

Page

1. Introduction e 2
1.1 Review: types of multiscale computation 2

1.2 The present Papert 3

2. The task: fast multiplication by a dense matrix..................... 4
3. Smooth kernels e)
4. Asymptotically smooth kernels............. L. 8
4.1 Requirement A. variable particle density........... 9

4.2 Requirement B. softened kernels........ 10

5. Oscillatory kernels. 12
0.1 The task. ... e 12

5.2 One dimensional caset 13

5.3 The generalized task....... ... i 14

5.4 Derivation of coarsening............cooiiiiiiiiiiiiiiiiiiii i 15

5.5 The algorithm ... 17

0.6 Proofs e 18

0.7 Total Work e 21

6. FFT evaluation of convolutions 21
7. Fourier transform on arbitrary sets.................... 23
References ... e e 24

1 Research supported in part by the Air Force Office of Scientific Research, United States Air
Force, under grants AFOSR-86-0126 and AFOSR-86-0127, and by the United States National
Science Foundation under grant NSF DMS-8704169.

1.

Introduction

1.1 Review: types of multiscale computation

Multiscale (multilevel) computations have evolved into an independent disci-

pline by itself; interacting with other computational methodologies, it has its own
internal development, gradually increasing the understanding of the many types
of multi-scale interactions, their modes of operation and domains of applications.

Beyond the traditional multigrid fast solvers for linear elliptic equations, ex-

tremely efficient and highly parallelizable multilevel techniques have recently been
developed for the following types of mathematical tasks:

1.

10.
11.

Solution of general nonlinear steady-state partial differential systems in gen-
eral domains, discretized on locally-adaptable grids. (The multigrid effi-
ciency traditionally achieved for simple elliptic problems has recently been
extended to general non-elliptic systems, including high-Reynolds flows.)

Solution of inverse problems (at cost comparable with that achieved for
direct problems).

Solution of time dependent partial differential equations (with rare local
activation of the fine scales, and with full parallel processing possible not
only at each time step, but across the entire space-time domain).

Solution of integral equations (in O(n) operations, where n is the number
of gridpoints).

O(n) (instead of O(n?)) calculation of the interactions of n bodies, and any
associated steady states.

O(nlogn) calculation, and O(logn) updating, of the main diagonal terms
of the inverse, and the value of the determinant, of n x n systems of grid
equations.

Global optimization of systems with a multitude of local optima, having
multi-scale attraction basins (in which case solution by simulated annealing
would require exponential solution time), including in particular discrete
optimization.

Image reconstruction.

Constrained optimization and linear programming, at least for geometrically
oriented problems.

Fast Fourier transforms of functions on non-uniform grids.

Computing behavior of statistical fields (especially where usual Monte-Carlo
techniques suffer from critical slowing); calculating thermodynamic limits
to accuracy € in O(¢~2) operations.

- 92

12. Derivation of macroscopic equations from microscopic (e.g., atomic) physics
(especially where traditional closed-form derivation, as in continuum me-
chanics, is impossible, and where group renormalization methods are too
complicated).

In all these cases the expected parallel-processing efficiency of appropriate
multi-level computation is poly-log; i.e., the number of unparallelizable steps is
theoretically only O((logn)?), where n is the number of variables in the system
and 1 < ¢ < 3. In many cases the re-solution of a problem (upon some changes
in the data) is much faster yet. The multilevel structure also helps in formulating
more efficient discretizations, thus lowering n.

The multi-level methodology starts to impact in a very fundamental way
several sciences, including statistical physics (elementary particles in particular),
quantum mechanics, general relativity, molecular dynamics (including understand-
ing of proteins), solid state and material sciences, electromagnetics, semiconduc-
tors, image processing, fluid dynamics and elastohydrodynamics.

The main ideas of multilevel computations and review of recent developments
can be found in [5], [6], [7], [8] and [3].

1.2 The present paper

A new type of multilevel algorithm will be developed here. It is an extension
of algorithms developed earlier for tasks such as 4,5 and 10 in the list above. These
earlier algorithms are presented again in Secs. 3 and 4 below. Their main idea was
first stated in Sec. 8.6 of [4]; their brief description first appeared in Appendix
A of [5], and their detailed description, including results of numerical tests, in
[9]. Other, more specialized (dealing only with potential-type kernels) multilevel
algorithms for performing tasks like 4 and 5 have appeared in [1], [15], [2], [13]
and [11].

The innovation of the mew algorithm, presented in Sec. 5 below, is that it
deals with oscillatory kernels, important in many wave theories.

Another, well-known approach for performing the same task, in the special
case that it can be presented as periodic convolution on a uniform, decomposable
grid, is based on the Fast Fourier Transform (see, e.g., [14]). The FFT can in fact
be regarded as a special case of multilevel (or multigrid) algorithms (see [10] and
[16]). Relations between, and combinations of the algorithms presented in this
article and the FFT evaluation of convolutions are discussed in Sec. 6.

The Fourier transform itself can be performed by the algorithms presented
below, with the main gain compared to conventional FFT being obtained for the
case of irregular set of points and also for cases of narrow bandwidth: see Sec. 7.

- 8 —

2. The Task: Fast Multiplication by a Dense Matrix

We will generally be concerned with the fast calculation of the m-vector
v = Gu, given the m X n matrix G and the n-vector u; often » = n. If the
matrix G has arbitrary entries, each of them must enter the calculations, hence
nn operations must be used, and no way can exist which is significantly faster
than the straightforward multiplication. In most applications of interest, however,
G has certain special properties that can be used. In particular, in most physical

problems G;; = G(z;,;), where z; € R? and yj € R% (i.e., z; = (le,:c?, .. .,:U;-j),
yj = (y}, y?, ey y;l) where z{* and yf are real numbers) and the “kernel” G(z,y)

has some smoothness properties; usually d = d and y; = xj. Such kernels arise
in many-body interactions, where y; is the position of a particle with “charge”
uj = u(y;) (electrostatic charge, mass, etc.), and v; = v(z;) is the total effect
(potential, force, etc.) of all particles at point x;. Such kernels also arise when
integral transforms, or integral equations, or integrodifferential equations, are dis-
cretized on grids. In such a case, unlike that of particles, the points x; are usually
the points of a uniform grid, and so are the points y;.

In some particular cases, {x;} and {y;} are not scattered in some open region

of R% and R?, but are actually concentrated in some special manifold, such as
the boundary of a region in R%. This is typically the case in boundary-element
discretizations.

The given task, in any case, is to evaluate

v(z;) = ZG(mi,yj)u(yj), (i=1,...,n), (2.1)

i=1

to a certain accuracy € given G(z;,%y;) and u(y;), where u(y;) are arbitrary but
G(z,y) has certain smoothness properties. For convenience, “accuracy &’ will
mean that an error upto € is allowed in each of the summed terms. Generally,
each u(y;) can be a g-vector, each v(z;) can be a g-vector, and each G(z;,y;) a
g x g matrix. For example, u(y;) can be the 3-component dipole moment at y;
and v(z;) the 3-component electric field at x; (thus § = ¢ = 3). For convenience,
the algorithms are described in this paper in terms of the case ¢ = ¢ = 1, but in
the general case they are essentially the same.

The fast algorithms described below are almost the same for particles and
for gridpoints, for an open region in R% and for other manifolds. We will distin-
guish, however, between three different situations regarding G(z, y), with increas-
ing complications: smooth kernels, asymptotically smooth kernels, and oscillatory
kernels. Most kernels in physics belong to the latter two categories; the case of
smooth kernels serves however as the easiest introduction to our technique. It also
has important applications, one of which is discussed in Sec. 7 below.

,4,

3. Smooth kernels

The algorithm will be based on a sequence of increasingly coarser uniform
grids, employed recursively. By “uniform” we mean a rectangular grid, with con-
stant meshsize in each grid direction.

As a first step it will be shown that if G(x, y) is suitably smooth as a function
of 9, then, in the calculation of (2.1), the set of locations {y; };L:l can be replaced

by another set {YJ}]},:]_ which constitutes a coarser and/or uniform grid.

That is, in case {yj}g-‘zl is itself already a set of points of a uniform grid

(the fine grid), the set {Yj}yzl will be chosen as a natural coarsening of that
grid, sufficiently extended (as explained below). For example, this coarser grid
can be obtained as a one dimensional coarsening of the fine grid in one of the grid
directions; that is, it is obtained by omitting from the fine grid every other of its
hyperplanes (e.g., every other gridline) perpendicular to that direction. Higher
dimensional coarsening can also be used, although, as noted by Ton Lubrecht, a
simpler and more efficient algorithm is obtained by one dimensional coarsening at
a time.

n

In case the original points {y; j=1 are at arbitrary locations (representing,

e.g., particles), the grid {YJ}{]VZI will be constructed, whenever possible, as a
uniform grid with a comparable “density”, i.e., comparable number of points per
unit volume. (A modification for the case of a very non-uniform particle density
is discussed in Sec. 4.1 below). It is not even necessary in this case that N < n;
the main gain here is not in reducing the number of points, but in the transition
to a uniform grid; transitions to coarser grids will then be performed at later steps
of the algorithm. In various cases, however, such as those where {y;} is given
on some complicated manifold, it is impossible to cover it by a uniform grid, and
then {Y;} will be a coarser grid, not quite uniform, but regular enough to allow
convenient interpolations (as discussed below).

A function f(y) will be called suitably smooth on the scale of the (coarser)
grid {Y;} if,

(Y)?[0P f ()] < O(e) for some p=Oflog -), (3.1)

for any y and any p-order derivative 0P, where v is a constant in the range
% < 7 <1 (see below) and h is the meshsize of {Y;} (assumed for simplicity to be
the same, or at least comparable, for all directions; otherwise (vh)POP should be
replaced in (3.1) by yP(h{* 07" - - - KL?0%?), where hg is the meshsize in direction
yP, g = 8/81/'3 and p; + --- 4+ pg = p). This means that f can be interpolated
from that grid with O(e) error by using p-order multi-polynomial interpolation;
i.e., interpolation which is done one direction at a time, using at each direction p
points (to interpolate from) and polynomial of degree p — 1. The well-known error
estimates (see, e.g., page 276 in [12]) imply that if v = 1 in (3.1), O(e) error is

— 5 -

obtained whenever the interpolation target point is in the convex hull of the set
of points from which its value is interpolated. If central interpolation is used, i.e.,
if the interpolation order is even and the interpolation points are always chosen
as symmetrically as possible around the target point, then O(e) error is obtained
even if ¥y = 1/2 in (3.1). Thus, in any of these cases, one can write

flyj) = Y wisf(Ys) +0(e), (3.2)

JEUJ'

where w;; are the interpolation coefficients, and {Y;} Jeo; is a set of gridpoints
in the neighborhood of y;, containing y; in its convex hull and large enough to
perform p-order interpolation. Namely, in case of one-dimensional coarsening, this
set contains only p points (which is exactly why such one dimensional coarsening
is advantageous). For full d-dimensional coarsening (required in case of particles),
the set will include p? points.

Note that the (coarser) grid {Y;} should be extensive enough to allow per-
forming (3.2) at all given points y;. Note also that the requirement that {Y;}
constitutes a uniform grid is imposed, wherever possible, mainly for the purpose
of having simple interpolation formulae. In fact, as a result, for each and any y;,
the set of coefficients w;; can usually be calculated in O(pd) operations. In case
{y;} is also a uniform grid, these coefficients repeat themselves: the same set of
coefficients applies for any two points y; and y which occupy the same position
in their respective coarse cells; hence w;; can be read from a small pre-calculated
table.

Assuming G(z,y) to be a suitably smooth function of y, so that (3.2) can be
applied to it, it follows from (2.1) that

v() =Y Y wigGlxi, Yy)uly;) + O(e),

J JeEo;

or

v(zi) =) Gz, Y))U(Yy) + Ofe) (3.3)
7

where

U(Yy) = Z wju(y;)- (3-4)
béa,

Thus, the coarse-grid function U, defined by (3.4), is obtained by multiplying
u with the matrix w?, the transposed—or adjoint—of the interpolation matrix
w. We therefore call this operation adjoint interpolation, or anterpolation. Note
that the summation in (3.4) is over all j such that J € o;. The most efficient
programming of (3.4) is to order it primarily by j, not by J. Namely, starting with
all U(Yy) = 0, for each j in its turn add w;ju(y;) to U(Yy) for all J € o;. The

- 6 —

number of sequential operations to perform anterpolation in this way is O(npd)
for d-dimensional coarsening. (Parallel processing would require some obvious
modifications).

Thus, with this number of operations, the original task (2.1) has been replaced
by the task (3.3). If G(z,y) is also a suitably smooth function of z, we can also
replace the set {z;}" ; by a coarser and/or uniform set {X I}?f:l. Denoting its
meshsize by h, for any function f(x) which is suitably smooth (satisfying (3.1)
with A instead of h, and perhaps some P instead of p) we have

Flzi) =) @i f(X1) +0(e). (3.5)

Ieo;

(In most applications the given sets {z;} and {y;} are identical, and G(z,y) has
the same smoothness with respect to z and y, in which case the set {Xr} can be
taken the same as {Y;}, and then h = h, W;; = w;; and &; = 0;.) Applying (3.5)
to G(z;,Yy) in (3.3) we obtain

v(zg) = Y @i V(X) + O0(e) (3.6)
Ico;
where
V(X)) =) G(X,Y)U(Y)). (3.7)
J

Observe that (3.7) is a coarse (and/or uniform) grid version of (2.1)

The entire algorithm is first to calculate U by the anterpolation (3.4), then
to calculate V defined by (3.7), and then perform the interpolation (3.6). The
calculation of (3.7) is done by recursion: similarly to (2.1) it is calculated through
the use of still coarser grids, as long as G is suitably smooth on the scale of those
grids.

For sufficiently smooth kernels the recursion can proceed until such a coarse
grid is reached for which the calculation of (3.7) costs little compared with the
rest of the algorithm. The cost of the entire algorithm is then essentially the
execution of (3.4) and (3.6) on all the grids of the recursion. Since the work
decreases geometrically on increasingly coarser (uniform) levels, the total cost is
comparable to that of executing (3.4) and (3.6) on the finest level. Thus, the

total cost is O(np® +7p?) in case of particles, and O(np +7p) in case of uniform
grids (employing one dimensional coarsening at each level, alternating of course
the coarsening directions).

It should be noted that, in the present case of “sufficiently smooth” kernels,
the intermediate levels described above are not really needed: one could interpolate
directly from the coarsest grid to the finest (or to the particle locations). The
intermediate levels are essential, however, for extending the algorithms to the
cases discussed below.

-1 -

4. Asymptotically Smooth Kernels

Most kernels G(z,y) appearing in physical applications are not smooth
throughout; they usually have unbounded derivatives as y — x. On the other
hand, in most cases (except for those discussed in Sec. 5 below) the smoothness of
G indefinitely increases with |y — x|, the distance from y to z. Generally, we will
call G(z,y) asymptotically smooth as a function of y if, for any positive integer p
and any p-order derivative 85 with respect to y = (y1,---,Yd)s

PGz, y)| < Cprd™P, 4.1
y D

where g is independent of p, Cy, depends only on p, and r = r(z, y) is the distance
of y from a finite set of points, which may depend on z (but whose number is
bounded independently of z); in most cases r(x,y) = |z — y].

Asymptotic smoothness of G(x,y) as a function of z is similarly defined:
08G (z,y)| < CprI P, (4.2)

where 7 = 7(z,y) is the distance of from a finite set of points depending on y.
Usually, in fact, G(z,y) = G(z —y) and asymptotic smoothness in both z and y is
then expressed by |0PG(z)| < Cp|z[97P, where |z|2 = (z1)2 4 --- + (2%)2, so that
T(z,y) =r(z,y) = |z —yland g =g.

If G(z,y) is asymptotically smooth as a function of y, then it clearly satisfies
(3.1), but only for r(z,y) > O(h). The transition (3.3) to a coarser grid {Y;}
can then still be performed, provided a correction is made to account for the large
errors in calculating the contribution to v(z;) from wu(y;) at those points y; for
which

min 7(z;,Yy) < cph, (4.3)
JEUJ'
where ¢, = O(C,l,/ P) and hence for all kernels of interest ¢, < O(p). Thus, for each
x; the number of points y; satisfying (4.3) is at most O(p%), hence the total work
of these corrections is properly bounded (see below).

If G(z,y) is also asymptotically smooth in z, the further transition to (3.6)
can also be made. Here large errors are made, and corrections are needed, for the
contribution to v(x;) from wu(y;) for which

min 7(X7,y;) < cph. (4.4)
I€o;

Thus, if G(z,y) is asymptotically smooth in both x and y, the entire algorithm
for calculating (2.1) is recursively defined by the following 4 steps.

(i) Calculate the coarse grid function U(Y) by the anterpolation (3.4).

- 8 —

(il) Compute V(Xj), as defined by (3.7). Since (3.7) is a coarse version of
(2.1), its computation is done by the same algorithm, except when {X;}
and {Y;} are so coarse that executing (3.7) directly is cheaper. The latter
is true when the grids have only O(p) intervals in each direction.

(iii) Interpolate

i(w) = Y wiV(Xp). (4.5)

Ieo;

(iv) For each x;, correct the contribution to ¥(z;) from all u(y;) at points y; such
that (4.3) and/or (4.4) hold. The efficient calculation of these corrections
is discussed below.

We want to keep the computational cost of the corrections at most comparable
to the cost of steps (i) and (iii), which is at most O((n+7)p®). (The lower operation
count obtainable for steps (i) and (iii) by one-dimension-at-a-time coarsening is
usually not applicable to step (iv). It is natural to assume here p = O(p) and
d = d.) This is obtained by fulfilling the following two requirements.

(A) Per point z;, the number of points y; which satisfy (4.3) should on the

average be O(p%). Similarly, per each y; the same should on the average be the
number of z; for which (4.4) is satisfied.

(B) The calculations should be organized so that the corrections cost O(1)
operations per pair (v(z;), u(y;)).

4.1 Requirement A. Variable Particle Density

The first requirement (A) is automatically satisfied if the density of the grids
{Xr} and {Y;} is comparable with that of {z;} and {y;}, respectively. This is
obtained by, and is the very reason for, the algorithm having a sequence of levels,
with bounded (e.g., 1:2) coarsening ratios.

In case of particles whose density substantially vary over the domain (e.g., a
galaxy of stars with high increase in density toward its center), a modification in
fact is needed. Instead of a sequence of increasingly coarser uniform grids which
cover the same domain (the domain of all particles), some of the first (i.e., finest)
grids in the sequence cover only part of the domain. That is, the coarsening ratio
(e.g., 1:2 coarsening in each dimension) of the uniform grids remain the same, but
each grid cover only that part of the domain in the interior of which the particle
density (averaged over O(p?) cells) is at least comparable to (i.e., at least a given
fraction of) its own density. By the “interior” of a grid we here mean that region
to which good p-order interpolation from the grid can conveniently be constructed.
As a result, the subdomain covered by any grid is contained in those covered by
any coarser grid. (Also, points may be added to coarser grids at the boundary, so

-9 —

that each grid is so removed from the boundary of the next coarser grid that the
same central interpolation formulae can everywhere be used between them).

The algorithm with this sequence of non-coextensive uniform grids remains
basically as before, but with differently defined points at each level. The finest level
{y;} is still the given collection of particle points. The next level {Y;} includes the
gridpoints of the finest uniform grid, together with all the particle points not in
the interior of that grid. Similarly, each subsequent level includes the gridpoints of
the corresponding uniform grid, together with all particle points not in its interior.
Steps (i), (iii) and (iv) of the above algorithm are of course executed only at that
region (the interior of the current uniform grid), because outside it these steps
mean “do nothing”.

4.2 Requirement B. Softened Kernels

The main difficulty in satisfying the second requirement (B) is of course
not in calculating the correct contribution of wu(y;) to v(z;), which is simply
G (i, yj)u(y;), but in calculating its erroneous contribution to v(x;), which should
be subtracted out. This contribution is proportional to u(y;), so it can be denoted

G (x5, yj)u(y;)-

In the case that G(z,y) = G(z —y) and {z;} and {y;} are uniform grids, the
calculations can easily be defined so that G (z;, yj) depends only on z; — y; and
on the position of x; and y; relative to their respective coarse-grid cells. Since
the vector x; — y; is itself on a given uniform grid, and since there are only few
different possible positions of a fine gridpoint relative to the coarse cell (e.g., only
2 such positions in a one-dimensional coarsening with 1:2 coarsening ratio), there
are actually only O(pd) values of G different from each other. The values can
thus be read directly from a small (O(p?)) pre-calculated table. In fact, instead
of the value of G one can store in the table the corresponding values of G — G,
immediately giving the needed correction. This is the method that was used in
the numerical experiments reported in [9].

The calculation of G (wi,y;) in other cases, e.g. particles, is less convenient.
A simple way out (suggested by Dinshaw Balsara [17]) is to use a softened kernel.
Namely, perform steps (i), (ii) and (iii) of the above algorithm with a kernel
G"(x,y) instead of G(z,y), where G(z,y) = G(z,y) except in a neighborhood of
radius O(h) around the singularity, in which G"(x,y) is constructed so that G is
everywhere “suitably smooth on scale h” in both z and y (cf. definition (3.1)). The
corrections in step (iv) will then be corrections not of interpolation errors—those
have the necessary O(e) bound—but only of the difference G — G". This of course
is a straightforward calculation.

For example, in the quite usual case that G(z,y) = g(|z — y|), the function

— 10 —

G"(z,y) = g"(|z — y|) can be defined by

gh’(r) =g(r) for r > p'h

R = (45)
g(r):Zggr for 0 <r <ph
4=0

where the coefficients g, are determined so that ¢g”(r) and its first p— 1 derivatives
are continuous at r = p’h, and where p’ = O(p). Usually it turns out that

gh(r) = g(r/h)h® for 0<r<yph. (4.7)

Note that steps (i) and (iii) are not really modified, since they are independent
of G. Note also the dependence of G" on h; the softened kernel is different on
different levels, although it may be similar (cf. (4.7)). In practice, though, a
softened kernel will usually be used only at the finest level involving particles; at
coarser levels, involving only uniform grids, the pre-calculated tables of G — G can
normally be used.

When G(zx,y) cannot be written as a function of just x — y, a softened kernel
may not be simple and efficient to use. A general way to satisfy Requirement B is
to arrange the points z; in disjoint blocks, each block containing all points x; falling
in a cube of linear dimension O(ph), i.e., O(p?) points per block. For each such
block B, a block B’ of points y; 1s assigned so that, for any z; € B, é(xz, yj) need
be calculated only for y; € B’. The block B’, to contain all points y; satisfying
(4.3) and/or (4.4) for any x; € B, should be considerably larger than B, but it
still has O(ph) linear dimension and contains O(p%) points. The calculation of
G (w,y;) proceeds by essentially repeating Steps (i), (ii) and (iii) of the algorithm,
but only for points y; € B', z; € B and the points Y; and X associated with
them by anterpolation/interpolation formulas. Step (ii) in this case is of course
executed by a direct calculation of (3.7). It is easy to see that each step costs
O(p2d) operations, hence Requirement B is satisfied.

— 11 —

5. Oscillatory Kernels

5.1 The Task

In various wave theories, in acoustics, in light and other electromagnetic scat-
tering problems, etc., the matrices that arise, either in particle simulations or in
discretizations (including boundary-element discretizations), are oscillatory. Gen-
erally, the computational task here is the evaluation, to O(g) accuracy, of v which,
instead of (2.1), has the form

n

v(z) =Y Glzg,yy)e™eiVilu(y), (i=1,...,7) (5.1)
j=1

where G(z,y), as before, is asymptotically smooth in both z and y, and where &
is some given positive constant—the wave number. (The i preceding k will always
denote v/—1, unrelated to i appearing elsewhere.) We can assume here d = d, i.e.,
T,Y, Ti,Yj € RY, so that z = (z!,...,2%) and |22 = (z1)2 + --- + (2%)2. The sets
{xi}iﬁ:p {y; };-1:1 are again either gridpoints or arbitrary particle locations, and

the same type as before of uniform and/or coarser grids {X I}[N:1 and {YJ}]le
are constructed.

Actually, here we will construct the grids {X;} and {Y;} so that (for simplic-
ity) they have the same meshsize h, and so that

pkh <mn, (5.2)

ensuring at least O(p) = O(log %) meshsizes per wavelength. The constant n will
be determined later. Usually the given sets {z;} and {y;} would properly resolve
the wavelength 27 /k; otherwise (5.1) cannot represent a meaningful discretization
of order p. Hence, the uniform grids {X;} and {Y;} constructed to satisfy (5.2)
will still have density at most comparable to that of the given sets {z;} and {y;}.
If on the other hand the given {z;} and {y;} overresolve the wavelength, the
uniform grids can be constructed with pkh < 7. The algorithm can then start
with several coarsening steps of the type described in Sec. 4 above, until the
meshsize approaches the bound (5.2), at which stage the algorithm described in
this section must be switched on.

Due to (5.2), the “total kernel”

GroTar(z,y) = G(z,y)elo—vl (5.3)

as a function of y satisfies (3.1) for 7(z,y) > O(h), and similarly as a function of
x, so transition to the coarser grids {X;} and {Y;} could be made in the same
way as in Sec. 4 above, with the same corrections (step (iv) there). However, the

- 12 —

recursion (step (ii)) to still coarser grids would not be possible: with substantial
violation of (5.2) due to coarser meshsizes, the total kernel is no longer suitably
smooth. In many cases of convolution, i.e., when G(x,y) = G(x — y), by suitably
choosing {X;} and {Y;}, the recursion can be replaced by an FFT approach: see
Sec. 6. More generally, the recursion can proceed in the modified way presented
below.

5.2 One Dimensional Case

To clearly see the main device for dealing with the oscillatory exponential, we
first study the one dimensional (d = 1) case. In this case (5.1) can be written as

v(wi) = e"F iy (2;) + €FFio_(ay) (5.4)
where
vi () = Y G, yj)e™iu(y;) (5.5a)
Jj2t
v () = Y Gz, yj)e” iu(y;). (5.5b)
j<i

Introducing the notation

u+(y5) = e uly;) (5.6a)
u_(y;) = e~ *Fiu(y;) (5.6b)
Gla) = { V) V22

_J0 y>x
G—(zy) = {G(a:,y) ry<zx

we can rewrite (5.5) in the form

vi(mi) = Y Gy (i, yj)ut (y5) (5.7a)
J

v (@) = Y G_(w, yj)u—(y;) (5.70)
J

Clearly, if G(z,y) is asymptotically smooth, so are also G+ (x,y) and G_(z,y).
Hence (5.7) can be evaluated by using (twice) the algorithm of Sec. 4 above. The
entire algorithm for evaluating (5.1) is thus first to calculate (5.6), then evaluate
(5.7) by the algorithm of Sec. 4, then compute (5.4).

Thus, in the one dimensional case one needs to add only O(n + 7) operations
to the previous algorithm, executed twice. The main device here is to incorporate
the oscillating factors into u and v. This is done by separately treating the two
directions z —y > 0 and z — y < 0.

— 138 —

5.3 The Generalized Task

The one-dimensional case is of course too simple. At higher dimensions we
will need to separate out more directions of — y. The main idea is to increase
the number of such directions, by the factor 291, at each coarsening level. A
coarser grid of u, and similarly of v, will be defined and calculated for each of
these directions. Since the number of points in each grid decreases by the factor
24 at, each level of coarsening, the overall work will still be reasonably bounded,
as we will see. It is assumed hereinafter that d > 2.

To make our description fully recursive, we will generalize the task (5.1), giv-
ing it the more general form it would acquire at any coarser level of the algorithm.

Let e1,ea,...,ey be the set of directions for our present task. [The original
task (5.1) will correspond to the special case A = 1|. These directions satisfy
ep € 0% = {e € R%: |e| = 1}, and they cover the unit sphere ¢¢ in some regular
manner, with distances between neighboring directions not larger than some 4.
For example, in the two dimensional (d = 2) case, e, = (cosfy,sinfy), where
Op=2r(£—1)/A, (£=1,...,)), hence § = 27/ \.

We introduce p-order interpolation, of any function ¢ defined on the grid of
directions {6@}2‘:1, by writing, for any direction e € ¢,

ple) = Y wile)p(er), (5.8)

lEs

where {es}scs is some complete subset of directions close to e. By “complete”
we mean that it contains enough points to indeed define a p-order interpolation,
and by “close” it is meant that |ey — e| < O(pd) for all £ € s. In case d = 2,
for example, the interpolation is actually a usual (one dimensional polynomial)
interpolation from {fy}scs to 0, where e = (cosf,sinf), and s denotes a set of
p consecutive indices such that 6 is in the convex hull of {6,},cs. Note that the
notation explicitly show the dependence of the interpolation weights w; (e) on the
choice of the subset s: in the final algorithm below a particular s = s(e) will be
used, where {eg}scy(c) is the complete subset of directions such that e belongs to
its central interval; but in the derivation of the algorithm, interpolation from other
subsets to the same e will be used as well. Thus, in case d = 2, s(e) will denote the
subset of p subsequent indices for which e is in the central interval of the subgrid
{ee}oes(e)- Note also that the interpolation (5.8) is well defined also when A is
small; e.g., in case d = 2 it is well defined even if A < p, because the set of angles
{0y} is actually periodic. In case A = 1, for example, the p-order interpolation
would thus collapse to just wj(e) = 1. [This is the case corresponding to the
original task (5.1).]

For any pair (z;,y;) we will introduce the notation e;; = (y; — =;)/|y; — =,

— 14

and s;; = s(e;;). The generalized task can now be defined as the task of evaluating

n
(i) = Y Gz, yy)e™iVilw) () 7 wni (eij)um(y;) (5.9)
j=1

meEs;;

for all i = 1,...,m and all £ = 1,...,A. Clearly, the original task (5.1) is the
special case A = 1.

Relation (5.2) will also be generalized, taking now the form
pdkh < nq, (5.10)

where 7, is proportional to 7; e.g., 71 = 27y in case d = 2. This of course
assumes that 9, the size of the interval in the set of selected directions, is reduced
proportionately to the increase in h at each coarsening level, i.e., by the factor 1:2,
implying an increase of A by the factor 2¢-1.

5.4 Derivation of coarsening

The algorithm below will show how to evaluate (5.9) by using a similar eval-
uation on the next coarser level. The integer A, functions such as s(e) and wj(e),
variables such as x;,y;,e¢, vg and uy,, and notation such as e;; = (y; —;)/|y; — ;|
and s;; = s(e;j) will all have coarse-level counterparts, denoted by the corre-
sponding capital letters: A = 2971\ S(E), WE(E), X1, Yy, Er, Vi, Upp,
E;;y = (Yy— X1)/|Yy — X;| and S;y = S(Ery). In particular, {E;} will be
a set of A = 2971\ directions, at intervals & /2 on o®, and an interpolation from
the subset {Ef,}res to any other direction E will have the weights WE (E). For
the purpose of deriving the coarsening relations, we introduce the auxiliary kernels

Gijom(,y) = Gz, y)eFe—ylre=emy) i (o)i (2, y), (5.11)

where w§(z,y) = wi((y — 2)/|y — z|) and egz = ejz’ + - - - + edx?; for example in
two dimensions ey - z = (cos0p)z' + (sin 6y)x2. From (5.9),

ve@) =3 D Gijom (@, yj)eFEmbimeem iy, (). (5.12)

Jj MES;;

It will be shown below (Sec. 5.6.A) that for fized indices (i, j,£,m), and in the
subdomain where

|z —y| > h/(dn2), (n2 to be determined) (5.13)

— 15 —

the kernel G, (7,y) is suitably smooth (cf. (3.1)) in terms of both z and y.
Hence it can be interpolated (cf. (3.2) and (3.5)) from the (coarser) uniform grids
{X1} and {Y}, so that (5.12) can be approximated, to O(e) accuracy, by

B =Y Y YN @iw;sGijem (X1, Yy)eHlembimeetiy (),

j mEsij Ieo; Jeo;
Hence from (5.11),
vp(z;) = ZwiIeikee(Xz—wi) ijJG(XI, YJ)eik|XI—YJ|
I 3J
wzij(XbYJ) Z ’wfrij(XI,Yj)eikem(yj_YJ)um(yj).

meEs;;

(5.14)

It will be shown below (in Sec. 5.6.B) that wm,(y;) and e?*em®i=Y7) are suffi-
ciently smooth on the grid of directions (i.e., as functions of m), and that hence
their interpolation from {em}mes;; can be replaced, to O(e) accuracy, by an
interpolation from any other close subset of {en,}, so that in (5.14) the string
> mesy; wy? (X1,Yy) could for example be replaced by > omes(Ery) w/frg,EIJ)(EIJ).
Alternatively, that interpolation could as well be replaced by an interpolation from
the set {Eps}ares,,;, provided up,(y;) were defined on {Ej} instead of on {es, }.
To achieve just that we use the fact that wu,,(y;) is suitably smooth on {e;,} and
interpolate it to a function @ps(y;) defined on {epr},

i) = > wn™ (Er)um(y)), (5.15)
mEs(EM)

whereupon (5.14) can thus be replaced by

o) = ST IR0 S G,)
I

J»J
Sij Sry tkEyn (yi—=Yy) (5'16)
w," (Bry) Y Wit (Ery)e® Wiy qy, (y;).
MeSry

We will also show below (in Sec. 5.6.C) that the final result of the algorithm,
upto the permissible O(e) error, is not changed when the interpolation coefficients
w,” (Ery) in (5.16) are replaced by any p-order interpolation coefficients to the
same E7j from any (other) close set. In particular they can be replaced by coef-
ficients of p-order interpolation via the set {Fp}; i.e. a p-order interpolation from
{es} to {EL} followed by a p-order interpolation from {Ey} to E;j. The term

w,” (Ery) in (5.16) can therefore be replaced by 3" wz(EL)(EL)WE(E”)(EU),

— 16 —

where the summation is over all L such that £ € s(Ef). Introducing this replace-
ment we obtain

where

VL

(i) = Y et X2y, (xy), (5.17)
Ieo;

nxn= Y w" (E)VL(X) (5.18)
Eégéé;)

N
(Xp) =Y G(Xp, Yy)e X Yolwor (g) N Wil (B Un(Yy)
J=1

MeSyy
(5.19)
Un(Yy) =) wjse™ErWi=Y) g, (y;). (5.20)
j s.t.
JEUj

Since (5.19) is exactly a coarse-grid version of (5.9), we can now define the recursive
algorithm.

5.5 The algorithm

Having replaced the task (5.1) by the more general task (5.9), the algorithm
for performing it is defined recursively by the following 6 steps. We assume here
full d-dimensional coarsening; for one-dimensional coarsening at a time—see Sec.

5.7.

Angular density interpolation: using (5.15), calculate {ups(y;)}j—; for all
M=1,...,A.

Density oscillatory anterpolation: using (5.20) calculate {UJ\/[(YJ)}J}]=1 for

M =1,...,A. (For the efficient way of performing anterpolation—see Sec.
3.)

Recursion: compute Vi, (X), as defined by (5.19), for all I = 1,..., N and
L =1,...,A. Since (5.19) is a coarse version of (5.9), its calculation is

done by the same algorithm, except when {X7} and {Y;} are already the
coarsest grid (see below).

Angular field anterpolation: using (5.18), calculate {f/g(XI)}Iﬁzl for £ =
1,..., A (programmed also in the manner explained in Sec. 3).

Field oscillatory interpolation: using (5.17), calculate {v(z;)}", for £ =
...\

— 17 -

(vi) Field corrections: For each x; correct the contribution to vy(z;) from um, (y;)
for all y; satisfying both

[z; — yj| < h/(0n2) (5.21a)
and
DI eyl < mgps, (5.21b)
ly; — 4

where the constant 73 is defined in (5.22). Corrections are of course due
only for the relevant values of m, i.e., those satisfying

Yj — T

< m3p0. (5.21c)
|yj - xz'

em_

The ways these corrections can be calculated efficiently is described in
Sec. 4.2 above. (Softened kernels are usually used on the finest level only,
if at all, hence softening can be done to G, not to Grorar1,, since etklz—yl
still has on that level the required smoothness.)

Requirement (5.21a) results of course from (5.13). The restriction of y; to the
range (5.21b) is possible since outside that range wzij (i) = wgij (X7,Y;) =0, so0
the contributions of u, (y;) to both vy(z;) and ¥(x;) vanish (cf. (5.9) and (5.14)).
Within that range of y; the values of m for which the contribution of u,(y;) does
not vanish is given by (5.21c), because for other values wj? (eij) = wyd (X71,Yy) =
0 (cf. again (5.9) and (5.14)).

The coarsest grid is reached when subdomain (5.21a) is comparable to the
entire problem domain. In that case (5.19) is calculated directly.

5.6 Proofs

A. We first need to show (cf. Sec. 5.4) that, in the subdomain (5.13), the
kernel G;j¢m(z,y), defined by (5.11), is a suitably smooth function of y on the
scale of the grid {Y;}, i.e., that it satisfies a relation like (3.1). Smoothness in =
can be proved similarly. The proof is needed of course only for that subdomain
over which Gyjpy, (,y) is actually interpolated, i.e., for points = at distance upto
C1ph from z;, and y at similar distance from y;, and for m (and similarly £) such
that wy? (%i,y;) does not vanish, i.e., |em — e;;| < Copd. This implies, under
(5.13), that

‘ —
ly — x|

The constant C7 and Cy are easy to compute; in case d = 2, for example, C7 =
2-1/2 0y = 5.

- em‘ < m3pd, (n3 = Co +2C11m2). (5.22)

— 18 —

Since G(z,y) is assumed to be suitably smooth, it is enough to show such
smoothness for each of the other factors of G;jpm (z,y), i-e., to demonstrate that

om(z,y) = eik(|””f?/|_emy) and wy? (z,y) are suitably smooth functions of y. The
smoothness of wZ” is proved similarly.

To check the smoothness of ¢,,, observe that, by (5.22),

B _ P
. y Z
ik (m—%) Pm

< n3pdk.

‘ dom(z,y) ‘

oyP (5.23)

Each additional differentiation produces, at worst, a similar factor, hence
|WPOPp(z,y)] < (n3hpkd)? < (mn3)P, due to (5.10). This implies the needed
relation analogous to (3.1), provided 7 (hence 71) and 7y (hence 73) are chosen so
that mn3 < 1. Reasonable choices in case d = 2, for example, are 1o = .12 and
n = .04, corresponding to n1n3 = .21. Since these are worst-case estimates, the
practical values of n and 79 can be substantially larger.

To see the smoothness of wy? (z,y), take again the case d = 2. Let
(y —x)/|ly — x| = (cos B, sinf) and observe that
me (z,y) = 59m (cos 6, sin 0)@ (5.24)

< 7720(]7’_1)7

since the first factor in (5.24) is O(6~1), while the second is O(ly — z|~1) <
noO(h~16), due to (5.13). Each additional differentiation with respect to y yields
essentially another such 79O (h~1) factor, since further differentiation of the 80 /8y
term in (5.24) produces a much smaller contribution. It can thus be shown that,
with 72 chosen small enough, the requirement analogous to (3.1) is satisfied. N

B. Next it should be proved that {um (y;)}}_; and {e*emWi=YoA _ for
fixed y; and Y; such that |y; — Y;| < O(ph), are suitably smooth on the grid
of integers {m} (mod A). For the exponential function, this follows immediately
from (5.10). For uy,(y;) we prove this by induction on the levels. On the finest
(A = 1) level this is trivial. Each higher level is formed from the next lower one, so
to prove our assertion by induction we assume {um, (y;)}{ to be suitably smooth

on {m}, and we need to show that {Um(YJ)}f is suitably smooth on {M}.

The function {BM(yj)}jl\, defined by (5.15), is certainly suitably smooth on
grid { M}, because it is an interpolation, of exactly the desired order, of the func-
tion {um(yj)}{‘, which is smooth even on the scale of a grid twice coarser. The

function {eikEM(yj_YJ)}f, to0o, is suitably smooth, due to (5.10). Hence, by (5.20),
so also is {Upr(Y7) 1. 1

C. Finally it should be shown that the results of the algorithm, to O(e)
accuracy, are not affected by a set of changes {(Svg}@‘:l introduced to {W(l’i)}é\:1

— 19 —

at any fixed point z;, if these changes are such that), dvptpy = O(e) for any
function {W}é‘:l which is suitably smooth on the grid of integers {£/} (mod \).
This is trivially true for the original level (A = 1). To prove it by induction on the
level number, we assume it to be true for fine level changes {dv,}, and we need to
prove its validity for changes {(5VL}%:1 introduced to {V, (X I)}%=1 at any fixed
X7; i.e., given that

A
Z 0Vy, ¥y, = O(e) for any suitably smooth {\PL}f, (5.25)
L=1

we need to show that the effect of these changes on the final results is O(e).
Indeed, by (5.17)—(5.18), the changes {0V} cause fine level changes

Svg(w;) = wypetheeXr=mi) { " wz(EL)(EL)(SVLa (t=1,...,))

L s.t.
Les(ErL)

at each point z; such that I € ;. Hence, for any z; and any function {v, (a:i)}i‘zl,

X
> Svglwi)e(mi) = wir 6V Yy, (5.26)
=1 L
where
U= Y wl P (B
Les(ErL)
and

g = Py(ay)elFeeXrmas),

If {4py(a;)} is suitably smooth on {£}, so is also 9, (by (5.10), since | X — z;| <
O(ph)). Hence {¥}, which is just a p-order interpolation of {¢,} to a grid twice
finer, is suitably smooth on {L}. Hence, by (5.25) and (5.26),

A
> dvg(wi)e(wi) = wirO(e). (5.27)

/=1
We have thus shown that for every {1,(z;)} suitably smooth, (5.27) holds. By the
induction hypothesis we can therefore conclude that the changes dvy(z;), caused

by 6V, will have only O(e) effect on the final results. |

— 920 —

5.7 Total work

Steps (i) and (iv) of the algorithm require O(Anp) operations each. Steps
(ii) and (v) cost O(Anp?) in case of particles and O(Anp) in case of grids with
one-dimension-at-a-time anterpolation/interpolation. (Steps (i), (iv) and (v) are
of course performed only once per d such one-dimensional steps (ii) and (iv).)

But the main cost is that of step (vi). By (5.21a-b), for each ¢ and £, correc-
tions are made from O(6~4)O((pd)%1) = O(p?~16~1) points yj, and, by (5.21c),
for each such y; this is made for O(p) values of m. Since there are n values of 4
and A = O(017%) values of £, the overall work of step (vi) is O(6~%np®). Now, this
step is performed at each coarsening level. At each such level § is reduced by the
factor 1/2 while n decreases by the factor 2¢. Hence, unlike the non-oscillatory
case, the work remains the same at all levels. The same is also the cost
of the direct evaluation of (5.19) on the coarsest level. Hence, the total cost of
the algorithm is mainly the number of levels times the cost of step (vi) on, e.g.,
the finest (original) level, where § = O(1) and n is the number of points in the
original task (5.1). Conclusion: The calculation of (5.1) to O(e) accuracy costs
O(np%logn) computer operations.

This count is based on the assumption that uniform grids with density com-
parable to that of the given sets {z;} and {y;} have meshsize hy comparable
with the meshsize h of {X;} and {Y;}. More generally, n should be replaced by
N = O((ho/h)%n), where h = O((pk)™1) (see (5.2) and the discussion following
it), and the operation count becomes

O((kho)%p**nlogn) = O((kho)%(log %)Mn logn). (5.28)

In one dimension (d = 1), the cost is only O(n log %) operations (see Sec. 5.2).

6. FFT Evaluation of Convolutions

A special but important class of kernels are those of the form G(z,y) =
G(z — y), in which case the task (2.1) is called convolution. The task (5.1) is
then of coarse also a convolution. Most such convolutions can be performed by an
approach which combines the one described above with another based on FFT.
For some cases, especially in performing (5.1), better efficiency can thus be gained.

The convolution will be called periodic, with period b = (bl, cee bd), if, for any
integers v1, ..., v%, G(z+ (v'bl, ..., v%%)) = G(2) for all z and if all points z; and
y; fall in one period, i.e., in a rectangular parallelopiped of dimensions blx---x b
A grid will be called decomposable (with respect to the period b) if it consists of all
points of the form a + (i1hy,...,ighy), where a € R% and (h1,...,hg) € R? are

— 921 —

fixed and each ig is an integer in the range 1 < ig < Ng = bﬁ/hg, and if each Ng is
a power of 2 (or some other highly composite number). The task (2.1), and hence
also (5.1), will be called decomposable periodic convolution if G(x,y) = G(xz — y)
is periodic and both {z;} and {y;} are decomposable grids with respect to the
period b.

A decomposable periodic convolution (2.1) can be executed by the following
Fourier method (see, e.g., [14]): Calculate the Fourier transforms G(¢) and a(¢)
of G and u respectively, then the inverse transform of 4(¢) = G(€)a(¢) will give
the desired function v (times a constant).

Each of the three transforms in this algorithm is a d-dimensional one, and can
be calculated by a sequence of d one-dimensional transforms, each of which uses
an FFT procedure for every row in the grid. The total operation count of such
an algorithm is about 3Cxdnlogn, where CxNglog Ng is the operation count of
the FFT on Ng points. Note that this algorithm does not require any smoothness
property of the kernel.

A non-periodic convolution can often be completed into a periodic one by
adding points. In particular, if the given {z;} and {y;} are scattered in some
open domain of IRd, one can contain that domain in a rectangular parallelopiped
of dimensions a! x - -- x a%, and then extend it to a rectangular parallelopiped P
of dimensions b! x -+ x b%, where b8 = 248, (8 =1,...,d). It is straightforward
to extend G(z,y) = G(x — y) to all points =,y € P so that the extended kernel is
periodic with the period b. There are of course cases where such a transition to
a periodic convolution is not possible (without increasing the volume by orders of
magnitude); e.g., when {z;} and {y;} are defined on more complicated manifolds,
such as boundaries.

If the convolution is periodic but its grids are not decomposable, one can use
(one level of) the algorithm of Sec. 4, choosing the next coarser grids {X;} and
{Y;} to be decomposable. Instead of Step (ii) of the algorithm (the recursion),
one can then use the Fourier method. This approach can be used also in the
oscillatory case (5.1), provided the grids {X7} and {Y;} are constructed so that
their meshsize h also satisfies (5.2). The operation count of such an algorithm in
dimension d > 2 is

O(di + NlogN) = O(n(kho)dde + n(khgp)d logn)

6.1
— Oln(khotog Lyt(og Lyt 4 gy, Y

where hg 4 is the number of gridpoints {x;} and {y;} per unit volume (cf. Sec. 5.7).
In the non-oscillatory case, and also in the one dimensional (d = 1) oscillatory case,
the operation count is

O(Np? 4+ Nlog N) = O(n(log %)d + nlogn). (6.2)

— 929

For low enough accuracy (relatively large €), the work (6.2) exceeds the
O(n(log%)d) work required by the full algorithm of Sec. 4. At high accuracy
their work is approximately the same: the most expensive part (the transition to
uniform grids) is common to them, except in cases of variable density (cf. Sec.
4.1), or when the uniform grids need to be much larger to obtain periodicity and
decomposability, in which cases, again, the algorithm of Sec. 4 will be faster. If,
however, the given convolution is already periodic and decomposable, the pure
Fourier method can be used, costing only O(nlogn) operations, and will be faster
at high enough accuracy (small ¢); indeed, its accuracy is only limited by round-off
errors.

In the oscillatory case, the work (6.1) would usually be less than (5.28), so
the Fourier method should be used whenever possible. The types of problems in
which it cannot be used, so that the full algorithm of Sec. 5.1 should be employed,
are those in which G(z,y) cannot be represented as G(x — y), or where the points
{z;} and {y;} are given on complicated manifolds (boundaries).

Even when the Fourier method can be employed and is faster, the full multi-
level coarsening may sometimes be preferred because it better fits other tasks one
may like to perform along with the evaluation of Gu, such as solving the equa-
tions Gu = v, or performing multilevel Monte-Carlo or processes governed by a
Hamiltonian of the form u*Gu.

7. Fourier Transform on Arbitrary Sets

Consider the task of calculating the Fourier transform

n
B(zm) =AY ePmVia(y;), m=1,...,7, (7.1)
j=1
on arbitrary sets {z;,} and {y;} of real numbers. Define the bandwidth and the
conjugate bandwidth, respectively, by

B = ; — mi ; d B= — mi .
19en TG M 1Smen ™ 1<men ™
Introducing =+ = (maxy Ty +ming, £m)/2, ¥« = (max; y; +min; y;)/2, v(zm) =
e~ MYz, u(y;) = e @ Yid(y;) and A = e""@*Yx A, the task (7.1) can be
rewritten as

v(a:m) — A Z 6i($m—$*)(yj_y*)u(yj), m = 1, R T (7.2)
j=1

Using the terminology of Sec. 3, the kernel G(z,y) = Aetz=z)(y=yx) i5 4 suitably
smooth function of y (respectively x) on a grid with meshsize h (respectively h),
if

——1

h<mnB = and h<nB! (7.3)

— 923 —

(see the choice of 7, below). The calculation of (7.2) to accuracy e can then be
replaced by the calculation of (3.7), where { X} and {Y;} are uniform grids with
meshsizes h and h respectively, U(Y7) is formed from u by the anterpolation (3.4),
and v(zy,) is obtained from V(X) by the interpolation (3.6).

To roughly minimize the work, the order of both the interpolation and an-
terpolation should be taken as p =~ log %, and in (7.3) the value 7, = 4/e = 1.47
should approximately be taken. The overall number of points in {X;}, and also
in {Y}, is then N > BB/n.. By choosing in this range the smallest N which
is a power of 2, (3.7) can be executed by a conventional FFT procedure, costing
O(N log N) computer operations. Thus, the overall operation count is

O((n +) log % + BBlog(BB)). (7.4)

Even when the given sets {z;} and {y;} are both equidistant, this procedure
to evaluate (7.1) is preferable to direct FFT whenever the bandwidth product BB
is small and the desired accuracy is not too high.

Instead of calculating (3.7) by a conventional FFT, one could split the set
{X1} into two equal (or about equal) subsets with about half the conjugate band-
width each, hence allowing the calculation of each of them on a y grid with meshsize
2h. Each of these two tasks can similarly be split into two tasks that can be cal-
culated on meshsize 4h, etc. This would give a new fast way of calculating Fourier
transforms; but the above approach, which uses a conventional FFT after the first
step, is faster.

The extension to a general dimension (arbitrary z;,y; € IRd) is straightfor-
ward.

References
[1] AW. Appel, SIAM J. Sci. Stat. Comput. 6, 85 (1985).
2] J. Barnes and P. Hut, Nature 324, 446 (1986).
(3] R. Ben-Av, A. Brandt, M. Harmatz, E. Katzenelson, P. Lauwers, S.

Solomon and K. Wolowesky, Fermion simulations using parallel trans-
ported multi-grid. Submitted to Phys. Rev. Lett. Aug. 1990.

[4] A. Brandt, Guide to multigrid development. In: Multigrid Methods
(Proc. Koln-Porz, 1981), edited by W. Hackbusch and U. Trottenberg,
(Lecture Notes in Math. 960, Springer Verlag, 1982), p. 220.

(5] A. Brandt, Multilevel computations: review and recent developments.
In: Multigrid Methods: Theory Application and Super-Computing (S.F.
McCormick, ed.), Marcel-Dekker, 1988, p. 35.

,24,

[11]

[12]
[13]
[14]

[15]
[16]

[17]

A. Brandt, The Weizmann Institute Research in Multilevel Computa-
tion: 1988 Report. In: Proc. 4th Copper Mountain Conf. on Multigrid
Methods, (J. Mandel et al, eds.), SIAM, 1989, p. 13.

A. Brandt, The scope of multiresolution iterative computations, STAM
News 23, 8 (1990).

A. Brandt, M. Galun and D. Ron, Optimal multigrid algorithms for cal-
culating critical temperature and thermodynamic quantities. Report,
The Weizmann Institute of Science, Rehovot, Israel, August 1990.

A. Brandt and A.A. Lubrecht, Multilevel matrix multiplication and fast
solution of integral equations, J. Comp. Phys. 90, 348 (1990).

W.L. Briggs and V.E. Henson, The FFT as a multigrid, SIAM Rev. 32,
252 (1990).

J. Carrier, L. Greengard and V. Rokhlin, STAM J. Sci. Stat. Comput. 9,
669 (1988).

G. Dahlquist and A. Bjorck, Numerical Methods, Prentice-Hall, 1974.
L. Greengard and V. Rokhlin, J. Comput. Phys. 73, 325 (1987).

P. Henrici, Fast Fourier methods in computational complex analysis,
SIAM Rev. 21, 481 (1979).

V. Rokhlin, J. Comp. Phys. 60, 187 (1985).

Y. Tsuria, Bilevel Properties of Fourier Transform, M.Sc. Thesis, The
Weizmann Institute of Science, Rehovot, Israel, Nov. 1988.

D. Balsara and A. Brandt, in: Multigrid Methods III (Proc. 3rd European
Conf. on Multigrid Methods, Bonn, October, 1990) (W. Hackbusch and
U. Trottenberg, eds.), Springer, 1991.

— 925 —

