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An approach is presented for effectively separating the solution pro- 
cess of the elliptic component of high-Reynolds incompressible steady 
entering flow, for which classical multigrid techniques are well-suited, 
from that of the non-elliptic part, for which other methods are more 
effective. It is shown by analysis and numerical calculations that such 
an approach is very effective in terms of asymptotic convergence as 
well as reduction of errors well below discretization level in a 1 FMG 
algorithm. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

Multigrid methods for the numerical solution of elliptic 
partial differential equations have been studied extensively. 
Although research continues, there is already much 
evidence to indicate that the solution of general elliptic 
systems with general boundary conditions can be obtained 
in just a few minimal work units, which are defined as the 
number of operations required in the simplest discretization 
of the system on the finest grid. However, attempts to apply 
these same techniques to systems which have non-elliptic 
components, such as steady state incompressible flows at 
the inviscid limit, have met with more limited success. 
Although such methods are usually much more efficient 
than comparable single-grid methods, the goal of solution 
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in just a few minimal work units has not been attained. 
Indeed, many reported solvers require hundreds of minimal 
work units. But even the more successful approaches, such 
as Mulder’s steady Euler equations solver (see [11, 12]), 
are still far less efficient than elliptic-system multigrid 
solvers, especially with high-order discretization schemes. 
This is due both to the time-stepping approach and to the 
slow convergence per time step, the main reasons for which 
are elaborated below and, from a different perspective, 
in [7]. 

There are usually a number of factors which contribute to 
increase the required work to large proportions. One of 
these is the insistence on reducing residuals to extremely 
small values rather than just the level of truncation errors. 
But as it is not the algebraic solution on the given grid that 
is sought, but rather the approximation to the differential 
solution, the lion’s share of the invested effort does nothing 
to improve the solution. The amount of work needed to 
reduce residuals to such small values is usually quite large, 
whereas a 1FMG algorithm (described below) should 
normally suffice to obtain a solution that approximates the 
differential solution virtually as well. 

The important first step in constructing a solver for the 
flow equations (indeed, for any complex problem) is the 
realization that the many different features associated with 
the problem need to be examined separately, numerically as 
well as analytically (see [4, Section 2.21). Commonly 
chosen model problems, such as the driven cavity problem, 
include so many of these features (recirculation, boundary 
layers, singularities, poor approximation of some com- 
ponents), each of which requires its own special handling, 
that it is quite impossible to conclude from the results which 
of these is slowing down the solution process. 
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Treatment of problems associated with singularities were 
introduced in [l] and applied to incompressible flow 
problems in [17]. Treatment of boundary layers is dis- 
cussed in [4, Section 2.41, and problems associated speciti- 
tally with recirculation are presented in [9]. The present 
research deals with the treatment of entering flows-flows 
with a well-defined general orientation that enter through 
some part of the boundary and leave through another. It 
is shown by analysis in Section 3 and by numerical 
experiments in Section 4 that, by employing relaxation in 
the downstream direction and thus using it as a salver rather 
than as a smoother for the non-elliptic part of the system, it 
is possible to obtain asymptotic convergence rates with 
second-order accurate discretization that are comparable to 
those obtained for the Poisson equation. Since this solution 
process essentially decouples the elliptic component of the 
system from the nonelliptic one and solves the latter 
directly, problems arising in cases of strong alignment of the 
flow with the grid (described in [2] and more explicitly in 
[12]) are eliminated. These results also suggest that more 
advanced methods, such as characteristic relaxation, can 
similarly be employed to obtain efficient solvers for steady- 
state and time-dependent problems with very little artificial 
diffusivity. These methods can be used in problems (or parts 
of problems), where the flows are of the entering type, while 
problems (or parts of problems), where the flow is separated 
or recirculates, are dealt with by other techniques, such as 
are presented in [7]), or possibly a combination of these 
techniques and the present approach, preliminary research 
of which appears in [S]. 

The method analyzed in Section 3 requires employment 
of an upstream difference scheme for the advective term. 
More precisely, the scheme must conserve the physical 
phenomenon of dependence (at the scale of the mesh-size) 
only on upstream data. If there is considerable phy.sicaZ 
viscosity on the scale of the grid, the present approach is no 
longer necessary, since the coarse grid will then provide a 
good correction of all smooth components. In the numerical 
experiments in Section 4 “narrow” upstream difference 
schemes are employed. While these are not an essential part 
of the approach, they are highly recommended, both due to 
their relatively small truncation errors (the flow being 
generally more nearly aligned with the grid) and due to the 
fact that the (linearized) equations remain locally decoupled 
at and near the outflow boundary without need of any extra 
processing. These points are elaborated in Section 4, 
Appendix A, and Appendix B. 

In some applications, especially if the proposed methods 
are to be extended to compressible flows, it may be 
necessary to employ conservative schemes. Conservative 
upstream schemes are easily obtainable and appear in many 
publications. In particular, conservative narrow schemes 
have been developed and tested in [ 13-151, which can be 
employed in a similar fashion, although with somewhat 

greater complication in the implementation of the DGS 
relaxation. 

2. THE MULTIGRID SOLVER 

Consider the solution process of a single scalar equation, 
discretized by finite differences: 

LhUh = j-h, (1) 

with appropriate boundary conditions. The classical multi- 
grid cycle for grid h (the grid with mesh-size h), employing 
the full approximation scheme (FAS), is recursively defined 
as follows [2]: 

1. Begin with some initial approximation to the solution 
on grid h. Smooth the error corresponding to this 
approximation by v1 relaxation sweeps, thereby decreasing 
the amplitude of error components of such high frequencies 
as cannot be approximated on the next coarser grid. The 
mesh-size of this coarse grid is normally chosen to be 2h, 
and this is the convention below. The smoothed approxima- 
tion is denoted by iih. 

2. Transfer the problem to the coarser grid. That is, 
solve the following problem on grid 2h: 

L2hfi2h = f 2h + $, 
(2) 

where L2h and f 2h are some coarse-grid approximations to 
Lh and fh, respectively, and rib is the fine-to-coarse defect 
correction defined as 

q = pyj$-jh) - zy(Lhq. (3) 

Here 1s and Zr are some line-to-coarse transfer (restric- 
tion) operators, which need not be the same. 

The approximate solution to the coarse-grid problem ti2h, 
with boundary conditions that approximate the fine-grid 
boundary conditions (including, generally, a t correction 
similar to that at the interior), is obtained by y multigrid 
cycles for grid 2h, starting with the approximation fihiih. 
The solution on the coarsest grid is obtained either by some 
direct method or by repeated relaxation sweeps. 

3. Interpolate and add the correction calculated on the 
coarse grid to the line-grid approximation: 

-h u new = fib + z;h(fi2h - &“). (4) 

Z’;h is a coarse-to-tine transfer (interpolation) operator, and 
ii” must be the same as above. 
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4. Smooth the error again, employing v2 relaxation 
sweeps. 

The multigrid cycle is thus characterized by three 
parameters: the number v1 of pre-relaxation sweeps, the 
number v2 of post-relaxation sweeps, and the “cycle index” 
y. The cycle is denoted P’(v,, v2) if y= 1 and W(v,, v2) 
if y = 2, reflecting the appearance of their respective 
flowcharts. 

Multigrid cycles are usually incorporated into an outer 
process, the FMG algorithm, whose object is to enable the 
reduction of the algebraic error uh - iih below the level of the 
discretization error, which is the difference between uh and 
the solution to the differential equation. In the FMG algo- 
rithm the problem is first solved on the coarsest grid by 
repeated relaxations or direct solution and interpolated to 
the next liner grid. Now some number of multigrid cycles 
are performed, and the resulting solution is interpolated to 
a still finer grid. This process continues until a solution has 
been obtained on the finest grid desired. The number of mul- 
tigrid cycles performed at each level before the solution is 
interpolated to a finer level characterizes the FMG algo- 
rithm. The aim is usually to obtain a final solution with a 
1FMG algorithm, that is, with a single multigrid cycle per 
level. 

In many cases the 1FMG algorithm with Vcycles suffices 
to yield a final solution with algebraic error that is much 
smaller than the discretization error. In some problems, 
however, the coarse grid does not approximate well certain 
components of the line-grid solution. High-Reynolds flow 
problems, for example, where the discretization scheme will 
have some effective artificial diffusivity unless the flow is 
consistently aligned with the grid, fall into this category. 

Consider the advection-diffusion equation 

-&Au+a Vu=0 (5) 

over the full space, where E = 0 + (positive but infinitesimally 
small), and a is such that the characteristics are not 
consistently aligned with the grid. Here V is the gradient 
operator and A = V* is the Laplacian. Suppose that the 
equation is discretized by a first-order upstream discretiza- 
tion. The viscosity term will then be roughly twice as large 
on the coarse grid as on the line grid. A smooth charac- 
teristic error component, that is, one for which the reduced 
equation a VU = 0 is (nearly) satisfied, only receives about 
one half of the required correction, and the multigrid cycles 
used must therefore have an index y of at least two in order 
to solve the coarse-grid equations suflicieiitly well, and even 
then its asymptotic convergence factor is 0.5 at best (see 
[3]). Nonetheless, a 1FMG algorithm still suffices to 
reduce the errors well below the discretization level. This is 
frequently the case in such problems, since the very same 
line-grid components that the coarse grid approximates 

poorly are those for which the tine grid does not 
approximate the differential solution well. In higher-order 
discretizations, however, the discrepancy between the line- 
grid error and its coarse-grid correction is even greater for 
such components. A greater y is then required for the multi- 
grid cycles, and also more than one multigrid cycle per level 
may then be necessary. 

When the characteristics enter through the boundary, the 
problem of poor coarse-grid correction should be con- 
sidered from a different point of view, as the influence of the 
inflow boundary must be brought into consideration. The 
most important factor in determining the quality of the 
coarse-grid correction is how well the smooth characteristic 
components with cross-stream frequency w are advected 
from the inflow boundary into the domain. The main 
problem is again the increased numerical viscosity on the 
coarse grid, which causes a greater damping or smearing of 
these cross-stream components on the coarse grid than on 
the fine grid. As will be shown for the linearized flow 
equations in Section 3, a characteristic component with 
cross-stream frequency 0 must suffer a numerical viscosity 
with an effective coefficient, 

&h,r(q) = O(b’i h’o’- ‘1, 

where r is the order of approximation. As a result, the 
component loses a substantial fraction of its amplitude at 
a distance 

dh,,(0)= O(o-‘-‘h-‘) 

from the inflow boundary. This implies that the multigrid- 
cycle index y should satisfy 

> ddw) ~ 2r 
’ d,h,,(~) ’ 

for cross-stream component frequencies o whose “survival 
distance” dh,,(co) is of the order of the domain size or 
smaller. 

2.1. Incompressible Flow Equations 

In the case of entering characteristics, the solution of (5) 
does not really require a multigrid process. By employing 
upstream discretization and performing the relaxation 
in a downstream ordering (piecewise, if necessary), the 
discretized equation can be solved in a single sweep. The 
incompressible Navier Stokes (INS) system, however, 
introduces several complications. In two dimensions the 
INS system can be written as 
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where u and u are the velocities in the x and y directions, 
respectively, p is the pressure, and the advection-diffusion 
operator Q is given by 

Q = - d A + ~8, + ud,, (6a) 

Re being the Reynolds number. 
One of these complications is the fact that we must deal 

with a system of coupled equations rather than a single 
equation. We must modify the relaxation process accord- 
ingly, so that relaxation of one equation will not affect the 
residuals of the others significantly (the alternative of 
relaxing the equations simultaneously, apart from being 
generally more expensive, is not well suited for the present 
application). A second complication is the nonlinearity. 
However, this is automatically treated by the use of FAS, 
and since it suffices to relax just the principal part of the 
system (i.e., to simply use some old values for u and v in 
(6a)), no linearization is necessary even in the relaxation 
(see [2]). The FMG algorithm plays an important role in 
obtaining a sufficiently good first approximation on the fine 
grid, which may be essential for convergence of the non- 
linear problem. The operators on the coarser levels of this 
algorithm have large inherent viscosity coefficients, which 
gradually become smaller as liner grids are used. Thus, the 
FMG algorithm acts as a continuation process by gradually 
decreasing the measure of ellipticity and also gradually 
increasing the relative amplitude of the nonlinear terms. A 
third complication is the appearance of an elliptic compo- 
nent in the system: 

det L= QA. (7) 

The problem of smoothing is solved by employing dis- 
tributive Gauss Seidel (DGS) relaxation [2, 61. This entails 
an implicit change of variables that yields a triangular 
operator. It is formally done by multiplying Lh (the discrete 
form of L) from the right by a distribution operator Mh, 
given by 

yielding 

i 0 -ah 
Mh= 0 1 -ah , 

i 1 0 0 Q” 
(8) 

LhMh= (!;; ;;; ;j, (9) 

where the h superscripts denote discrete approximations to 
the differential operators. Here the discretization of A is 

determined by that of a, and aY in Lh. On the staggered grid 
employed in the calculations presented in Section 4, Lh is 
equivalent to the usual live-point star discretization of the 
Laplacian. Thus an equivalent system is obtained with the 
triangular operator LhMh and new variables ti, v^, and $, 
whose relationship with the original variables is given by 

lu\ lti\ 
( v)=Mh[ i). (10) 
\pl \fi/ 

The resulting equations for the new variables are relaxed 
consecutively by Gauss Seidel relaxation, by introducing 
changes in the original variables as implied by the distribu- 
tion operator Mh. This means that the momentum equa- 
tions are relaxed first in the usual manner, but then the 
continuity equation is relaxed by changing several variables 
simultaneously as implied by (9) and (10). Examples are 
given in Section 4. 

The asymptotic smoothing factor of the system (see, e.g., 
[2]) can be shown to be the largest of the smoothing factors 
of the operators on diag(LhMh). By employing upstream 
differencing and downstream marching, the smoothing 
factor of Q” is almost reduced to 0, as the residuals are 
nearly eliminated for all components. Therefore, the overall 
smoothing rate is expected to be equal to that of the discrete 
Laplace operator. 

3. TWO-LEVEL HALF-SPACE FMG MODE ANALYSIS 

An analysis of the solution process must take into 
account the effects of the flow-entrance boundary. There- 
fore, the usual infinite-plane analysis that is commonly per- 
formed for elliptic systems is not appropriate. Instead, a 
half-space FMG mode analysis is performed. The analysis 
will incorporate the effects of special interest here, i.e., those 
of the potential malignant behavior, and for simplicity it will 
ignore others. Its full justification will be in the comparison 
with numerical experiments (Section 4). For a similar 
analysis for Eq. (5) see [ 33. The general analytical approach 
is expounded in Sections 7.4 and 7.5 of [2]. 

3.1. Linearized Equations 

In order to apply the mode analysis we must first linearize 
the flow equations. Let us therefore consider the following 
linearized steady incompressible flow equations with 
prescribed inflow velocities at the limit of very high 
Reynolds number over the half-space x > 0, -co < y < co, 

(11) 
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with boundary conditions prescribed to be the Fourier 
component: 

(lla) 

Here 

&= --EA+aa,, 

where a is a positive constant and E =O+. Note that no 
generality is lost by choosing the characteristic direction to 
be x, since the orientation of the grid will be assumed to be 
general, and since the boundary (x=0) is arbitrary: we 
analyze and compare the development of the differential, 
the discrete, and the multigrid solutions starting at some 
imaginary line perpendicular to the flow. The analysis could 
be carried out also for a more general characteristic 
direction, but would not give an interestingly different 
comparison. 

3.2. Differential Solution 

We first calculate the differential solution to (11). 
Assuming it is of the form 

u UO 

0 0 

u (x, y) = u. e-ax+iw~, 

P PO 

we obtain 

--E(a2-u9)-acr 0 --M 
0 - E(a2 - 0’) - acr io 

a -iw 0 

uo 

00 

1 

= 0. 

Jo 

(12) 

Therefore, the condition for a non-trivial solution (vanish- 
ing of the determinant) is 

[ -~(a’ - co*) - acr](a2 - w2) = 0. (13) 

Solving for ~1, while imposing the condition that the solution 
remain bounded as x tends to infinity (non-negative a) and 
neglecting high orders of E, yields two values for a: 

aI z Ed/a and a2 = 0. 

The corresponding solution is therefore 

elw.v, (14) 

with p=m/a and, by (lla) 

u. - iu, 
A,=- 

iv, - pu, 

1-p ’ 
A,= 

l-/l . 

3.3. Discrete Solution and Discretization Error 

We simplify the analysis of the discrete approximation to 
(11) by approximating the discrete advection operators by 
their first differential approximations (see [ 18, 3, or 2, Sec- 
tion 7.53). For the other operators in (1 1 ), i.e., the pressure 
derivatives and the continuity-equation operator, we sub- 
stitute the corresponding differential operators, under the 
assumption that the effect of the errors due to the discretiza- 
tion of these operators is small and benign compared to that 
of the advection-operator discretization (and is not the 
focus of our attention here). Moreover, we shall consider in 
our analysis only the limit of zero physical viscosity, which 
is the case for which the coarse-grid approximation of the 
tine-grid operator is generally the poorest (since the elliptic 
viscous terms are approximated very well), thereby 
reducing the calculations. Thus, an rth order upstream 
difference scheme 0” approximating Q on grid h in the 
inviscid limit is represented by 

0” = -Ed,+ l(&, ay) + aa,, (15) 

where the first term on the right-hand side represents the 
first truncated term in the discretization of &. T,, 1 is a 
polynomial of degree r + 1 of the form 

(16) 
j=O 

and 1~~ 1 = O(h’). Ed and the coefficients aj are determined by 
the particular discretization and angle of nonalignment 
(remember that the flow is not aligned with the grid). Sup- 
pose, for example, that aa, is discretized on a Cartesian grid 
with coordinates 2 and 9, where the characteristic direction 
x is constant and forms an angle 0 d q Q 7c/2 with 2, so that 

a, = cos cpa2 + sin pa.p. 

Consider the standard first-order discretization as defined 
in (35). The first terms in the truncation error of this 
discretization of a, are 

-i (COS cpa,Tl + sin cpa.c.c). 

Transferring back to the characteristic coordinates we find 
the corresponding E,, T, to be given by 

EhT2(a*, a,) = 2 [sin cp cos cp(sin q + cos cp) ayy 

+ 2sin q cos cp(sin cp - cos cp) axy 
+ (cos3 cp + sin3 cp) a,,]. 
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A “narrow” scheme, the diameter of whose stencil on a 
plane perpendicular to the characteristic direction is small 
compared to that of the standard schemes, will generally 
have a smaller corresponding Jsh 1. For convenience we 
choose E,, so that a, = 1, e.g., E,, = (h/2) sin cp cos &sin cp + 
cos cp) in the example above. This is only possible if the 
highest cross-stream derivative in the truncation error does 
not vanish, as happens when there is consistent alignment of 
the flow with the grid (e.g., when cos cp or sin q vanish in the 
example above), and also in certain nonaligned cases (see 
Appendix A). In these cases, however, the coarse grid 
approximates the line-grid solution well for all components, 
so the troubles investigated here do not appear. 

The solution on grid h satisfies (12) with (~(“-0~) 
replaced by T,, I( -tl, io), and E replaced by a&,,. The 
condition for non-trivial solution is now 

[ -&,,aT,+ 1( -c(, io) - aa](c? -co’) = 0. (17) 

Once more we consider only solutions which remain 
bounded as x -+ co. The second factor in (17) therefore 
yields a2 = w. The first factor may have up to r + 1 roots, but 
simple dimensional analysis shows that the absolute values 
of all but one of these are 0( 1~~ 1~ ‘lr) = 0( l/h). When the 
real part of c( is large and negative such values imply 
instability (or perhaps a boundary layer near the outflow 
boundary in a finite domain). When tc is purely imaginary, 
they imply spurious oscillations. Finally, if the real part of 
a is large and positive, such components decay very close to 
the inflow boundary. Hence, the relevant roots are 

ffl z -Eh(iO)‘+ l, cI2=0, 

and the solution is 

(18) 

with p,, = -&,,(iw)r+l/m and 

T,+,( -w, iw) r+l 
s r+1= (io)‘+l 

= C ijaj, 
j=O 

u. - iv, A?=- ivO - ph uO 

l-Ph’ 
A;= 

l-Ph . 

Note that a stable scheme requires sh to be such that the real 
part of pLh is nonnegative. 

The second term in solution (18) loses most of its 
amplitude at distance @w-l) from the boundary, and for 
most frequencies it quickly becomes much smaller than 
the first term. The first term’s “survival distance” is 
O(p,‘w-1) = O(w PI- ‘h -‘), as noted in Section 2. 

The discretization error is defined as the difference 
between the differential solution (14) and the discrete 
solution (18). 

3.4. Multigrid Solver and Algebraic Error 

Next we will calculate the approximation to the differen- 
tial solution (14) obtained by the two-level 1FMG 
algorithm, defined by the following steps: 

1. Obtain an approximation to the differential solution 
on the coarse grid (mesh-size 2h) by solving the equations 
resulting from the coarse-grid discretization. 

2. Interpolate the solution to the line grid (mesh-size h). 
3. Perform v, DGS sweeps. In each sweep the momen- 

tum equations are relaxed first, or rather integrated in 
downstream ordering with a fixed pressure field in the first 
sweep. Then the continuity equation is relaxed, while the 
momentum equation residuals remain unaffected. This 
property is not satisfied near the inflow boundary, and it 
may be advisable to follow up the continuity-equation 
relaxation with another sweep of the momentum equations 
(see Section 4.2). 

4. Calculate the residuals of the continuity equation and 
transfer them to the corresponding right-hand sides on the 
coarse grid with some suitable restriction operator. The 
momentum-equation residuals need not be transferred, 
as they are negligibly small compared to the continuity- 
equation residuals after the final momentum-equation 
sweep. 

5. Solve for the corrections on the coarse grid. 
6. Interpolate the corrections to the line grid and add 

them to the current line-grid approximation. 
7. Perform v2 DGS sweeps. 

We simplify the analysis of this algorithm by neglecting 
errors introduced by the inter-grid transfers. For elliptic 
problems their effect can be shown to be small if they are of 
the proper order (see [ 51). In the present system some of the 
assumptions in [5 J do not hold. Full inclusion of the inter- 
grid transfers in the present FMG analysis can be accom- 
plished for a finite number of levels by taking into account 
the coupling of modes (much the same as in the usual full- 
space two-level analysis). But such an undertaking is only 
reasonable if the effect of relaxation is also included (since 
high-frequency errors are then also considered), leading to 
very complicated calculations which would obscure rather 
than clarify the main issue: the problem of poor coarse-grid 
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correction to smooth characteristic components and its while the residuals of the momentum equations are 0. The 
solution. residuals of the continuity equation are transferred to the 

When the coarse grid solution is interpolated to the tine coarse grid, and the resulting coarse grid equations for the 
grid, the initial algebraic error in the pressure on the tine correction are 
grid, defined as the difference between the current 
approximation (obtained from the coarse grid) and the cy 0 
discrete solution (18) is t2h 

E::=P2h-ph=a~hKhe-““ti”.~, (!(I 

cz = 0 ) (21) 
Cs R; 

where p2h is the pressure field as given by (18) with ph with Ct” = Cy = 0 at the inflow boundary. Here L2h is 
replaced by p2h = -&2,,(iw)r+ ‘10 and the coarse-grid approximation to L in which we again 

approximate the advection operator with the first differen- 
((t- *Xuo-i~o \ tial approximation as in (15), with sh replaced by E?,~ = tsh, 

Kh = \ + s,+ ,(iv,- Phuo(5 + 1) + (PhJ2 w31/ while the other discrete operators are again approximated 
(l-bh)(l-ph) 

1 by their corresponding differential operators. 
This system is satisfied by 

with 5 = ~~~~~~ z 2’. 
Now, after a sweep over the momentum equations is per- 

formed on the fine grid, the algebraic errors in the velocities 
satisfy 

with fib, fib denoting current approximations on the fine grid 
and uh, vh as the exact solutions of the fine-grid equations. 
Integration of (19) yields 

with boundary conditions Eh, = Ej: = 0 at x = 0. Here 

Eh, = ch - uh, Ei = fib -oh, 

2 

\ 

+“( 

-i e - 0,x 

a(bhsr+l-l) 

ph 

+ B, -i e-ph<ox 
erwp, (22) 

aclh(5 - 1) ) I 

Eh,= 
with B, , B,, and B, determined by the boundary conditions 
and the right-hand side to be 

where we have again assumed that solutions with 0(1/h) 1 - tbhj2 -1 
frequencies do not appear. A single sweep of the momentum B2=(1-bh)(1+ph)’ B3=l+/Lh. 
equations suffkes to obtain these values for the algebraic 
errors in the velocities, since these equations are integrated Accordingly, the algebraic error in the pressure after the 
in a downstream direction. correction is added is 

Now the continuity equation is relaxed v, times with 
DGS relaxation. This does not affect the residuals of the 

Eph+E;+CpZh= aKhbh)’ 
( 

(t- *)(sr+l - 1) 
momentum equations (except near the inflow boundary), 

l-b,sr+l (l-bh)(l+ph)e 

-*,~ 

and we also neglect in the present analysis the effect of this 
relaxation on the velocity-error components. Since we are 5-l ~ 
only dealing with smooth error components, the effect of the 

_ - e Phone + O(pLh) eiwr. 
l+ph > 

relaxation on these components is very small. The residuals 
of the continuity equation after the fine-grid sweep 
therefore 

( 

are The error in the pressure is seen to be reduced to 
O((,U,)~). After another sweep of the momentum equations, 
this holds for the velocities as well. Also, the ratio between 
this algebraic error and the discretization error of the 

20) 
velocities is O(pLh) for all values of o and x; e.g., the 
discretization error corresponding to uh, calculated from 
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the difference between (14) and (18), is proportional to 
1 -,-Pwx= O(p,,wx) (plus higher-order terms in ,+), 
whereas integration of the x derivative of the new pressure 
error yields at worst O((P~)~ ox). Since only components 
for which p,, G 1 are approximated well by the scheme, 
having survival distances of more than just a few mesh-sizes, 
this implies that the algebraic error is reduced well below 
the discretization error for all relevant components. 

4. NUMERICAL EXPERIMENTS 

The prediction of the half-space analysis was tested by 
numerical solution of the INS system (6) with 0 right-hand 
side on the unit square [O, l] x [0, 11. At the inflow 
boundary, the velocities u and v were prescribed to be of 
the form 

40, Y) = FAY) v(o3 Y) = vOFi(Y). (23) 

Several functions F,(y) were tested, leading to solutions 
with varying degrees of smoothness: 

F,(y) = 1 + 0.5 sin(27cy) 

0.25 < y < 0.75 
otherwise 

i 

2y - 0.5, 0.25 < y < 0.5 
FJy)= 1.5-2y, 0.5 < y < 0.75 

0, otherwise 

I 

16y2 - 8y + 1, 0.25 < y =S 0.375 

F,(Y) = 1+ 
-16y2+ 16y-33.5, 0.375< ~~0.625 
16y2 - 24y + 9, 0.625 < y < 0.75 
0, otherwise. 

Note that F, is analytic, F2 is discontinuous, F3 is in Co, and 
F4 in C,. Also, several different values of v0 were tried in 
order to test the effect of the angle of non-alignment. 

The outflow boundary condition in all the calculations 
was 

and periodic boundary conditions were imposed at (x, 0) 
and (x, 1): 

This choice of periodic boundary conditions is very impor- 
tant, as it precludes boundary layers which might obscure 

the phenomena examined here. Also, it facilitates control of 
the angle of non-alignment. 

The exact solution to the reduced system, i.e., in the 
inviscid limit. is 

U(x,Y)=Fi(Y-v~xh 

u(X, Y) = VoFi(y - VOX), P(X, Y) = 0. 
(24) 

4.1. Discretization 

The equations were discretized on a square staggered grid 
as in [2] (see Fig. 1). The p variables are located at cell 
centers, and also in the outflow boundary, where they are 
located at the centers of the vertical cell sides. The u 
variables are located at the centers of the vertical cell-sides 
and the v variables at the centers of the horizontal cell-sides, 
and also in the inflow boundary, where they are located at 
the nodes. Thus, pi,j is located at point (h(i- $), h(j+ 4)) 
in the interior and also at (1, h(j+ i)) in the outflow 
boundary; z+ is located at (hi, h(j+ f)) everywhere, and 
vi,j is located at (h(i- i), hj) in the interior and at (0, hj) 
in the inflow boundary. 

The continuity equation is centered at the cell-centers and 
discretized by short (i.e., based on distance h, not 2h) 
second-order differences. The x and y momentum equations 
are centered at the u and v locations, respectively, and 
discretized by narrow upstream differencing (NUD) for 
the advection terms, with short central differencing for 
the p derivatives except px at the outflow boundary, which 
is discretized by upstream differences due to the changed 
location of p. The general NUD is defined in Appendix A. 
In the present problem, where u, v, and u - v are positive 

inflow outflow 

FIG. 1. A part of the grid is shown, including the inflow and outflow 
boundaries. The variables in small print are examples of those defined on 
the next-liner grid. 
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throughout the domain, first-order NUD for the advection 
of u in multiplied form is defined by 

h(Utl,+UU,):j=(Ui,j-Uli,j)(Ui,j-uj~l,j) 

+vi,j(l(i,j-ui~l,j-l), (25) 

where fii, j is an interpolated value for ui, j, given by 

v”i,j=“~25(ui,j+ui+l,j+ui,j+l+ui+1,~+l) (26) 

except at the outflow boundary, where Ci,j is extrapolated 
linearly rather than interpolated. Here and below, all opera- 
tions with respect to j are understood to be modul n, where 
n = l/h is the height of the domain in mesh-intervals, 
thereby imposing periodicity. 

The first-order NUD scheme for the advection of u is 
similarly defined except near the inflow boundary where, 
due to the location of u at the boundary, it is modified to 

o~5h(uu~+uu~)~,j~(ii~,j~u~,j)(u~,j~U0,j) 

+"~,j(u~,j-u0,~-1/2)~ (27) 

with B given by 

iii,j=O.25(U,,j+Ui-I,j+Ui,j-l+Ui-l,j~,). (28) 

Here uo, j- 1,2 is the value of u at point (0, h(j- l/2)), which 
can be approximated by linear interpolation is it is not 
explicitly given. 

Second-order NUD for the advection of u under the 
conditions of our experiments is defined by 

h(uu.x + “y)t j 

=(ui,j-i?i,j)(l.5zl;,j-2ui~l,j+o.5u,~,~j) 

+~;,j(1.5Ui,j-2U;~1,,-* +0.5Ui-2,j-z), (29) 

with fii,j and px as in the first-order scheme. At i = 1 this 
scheme must be modified, since the variables are not defined 
at points with negative values of i. There are a number of 
ways by which second-order accuracy can be maintained at 
these points, and the choice is influenced mainly by the 
behavior of the DGS relaxation. Near the inflow boundary 
it is no longer true that DGS relaxation of the continuity 
equation leaves the residuals of the principal part of the 
momentum equations unaffected, and the choice of dis- 
cretization there should be such that this causes minimal 
damage. We have found the scheme described in 
Appendix B, which is compact in the x direction, to be good 
in this respect, and the numerical results presented were 
calculated using this scheme. However, other means, such as 
defect corrections at these points, can be employed instead. 

Second-order NUD is again similarly defined for advec- 
tion of u, but must now be modified at i = 1 and i = 2. At 
i = 2 the resulting scheme is 

3h(uu, + uu,,:, , = (il*,j-u*,j)(5u~,j-9u~,j+4u0,j) 

+"2,j(5u2,j-9ul,j-l +4u0,j-3iZ). t30) 

Here Uo,j- 312 is the value of u at point (0, h(j- i)), which 
must be interpolated by quadratic interpolation if it is not 
explicitly given. At i = 1 we again employ a scheme that is 
compact in the x direction which is also described in 
Appendix B. 

The narrow schemes have at least two advantages over 
the standard first-order and second-order upstream 
schemes (SUD), which are also defined in Appendix A. One 
advantage is a considerably smaller local truncation error. 
On the average, these schemes yield as good an approxima- 
tion as can be obtained on a twice finer grid by standard 
upstream differencing and are only marginally more expen- 
sive (see Appendix A). This holds both for the first-order 
and second-order schemes. The second advantage of the 
NUD schemes is in the treatment at the outflow boundary. 
When such a scheme is employed for the x momentum 
equation at a certain outflow boundary point, no u variable 
at any other boundary point is included in the discretiza- 
tion. As a result, the DGS relaxation can be modified near 
the outflow boundary so as to maintain the property that 
the residuals of the principal part of the momentum 
equations are not affected by relaxation of the continuity 
equation (see Fig. 3 in Appendix B). 

4.2. Relaxation and Inter-grid Operators 

The DGS relaxation is performed as follows: first the x 
and y momentum equations are scanned and the corre- 
sponding values of u and u are changed so as to satisfy these 
equations (it is sufficient to use old values for the coefftcient 
in the advection operators). This is done in downstream 
ordering and serves to nearly eliminate the momentum 
equation residuals. Then the continuity equations are 
scanned in same order and the equation at each point in 
turn is satisfied by introducing the changes described in 
Fig. 2, as implied by the distribution operator Mh in (8). 
Near the boundaries these changes must be altered, since 
the discretizations are slightly different. The rule we 
followed in our numerical experiments was to make the 
changes near the boundaries such that the principal part of 
the y momentum equations remain unchanged. Also, when 
the equation is relaxed at points near the outflow boundary, 
changes are introduced in the boundary values of u that 
keep the principal part of the x momentum equations there 
unchanged as well (see Fig. 3 in Appendix B). Hence, only 
near the inflow boundaries does the sweep of the continuity 
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DGS forsecond-order scheme 
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c--4---l 
DGS for first-order scheme 

FIG. 2. Distributive Gauss Seidel relaxation at interior points for the 
case that u, v, and u - v are nonnegative. Shown are the changes introduced 
in the variables at the corresponding locations. S = hR/4, where R is the 
residual of the continuity equation defined at the center of the lower left- 
hand cell. 

equation perturb the x momentum equations significantly. 
But if the sweep of the continuity equation is followed by 
another downstream sweep of the momentum equations, 
the feedback in terms of continuity-equation residuals is 
very slight. Indeed, this feedback can be shown to be zero in 
the aligned case v = 0 and also in the case where the pertur- 
bation in the momentum-equation residuals due to the 
DGS sweep near the boundaries is very smooth in the y 
direction. Accordingly, the numerical results are improved 
when the momentum equations are swept again before the 
residuals are transferred to the coarse grid, and there is no 
increase in the overall cost, since it is not necessary now to 
transfer residuals of the momentum equations to the coarse 
grid, because they are now negligibly small compared with 
those of the continuity equation. 

In the experiments residuals were transferred to the 
coarse grid by full weighting. Interpolation of the solution 
was bi-cubic. For the corrections, bi-linear interpolation 
yielded results that were as good as those with bi-cubic 
interpolation. 

4.3. Results 

Asymptotic convergence rates were tested on a linearized 
system, since the solution can then be chosen to be zero, 
avoiding the problem of round-off errors. Also, with the 
linearized system it was possible to test the performance 
with curved characteristics without introducing boundary 
layers. The behavior of the full equations, however, was very 
similar until (double-precision) round-off errors were 
encountered. The “effective smoothing rate,” defined as 
the convergence rate per line-grid relaxation sweep, was 
calculated for W( 1, 1 ), W(2, 1 ), and V( 1, 1) cycles with the 
first-order and second-order schemes. The corresponding 
values were found to be 0.53, 0.60, and 0.78 for the three 
cycle-types, respectively, and first-order NUD discretiza- 

tion, and 0.55, 0.61, and 0.80 with second-order NUD dis- 
cretization. These results were achieved with bi-linear inter- 
polation of the corrections and lexicographic ordering of 
relaxation of the continuity equation. The results with bi- 
cubic interpolation and also with red-black ordering of the 
continuity equation relaxation were very similar. The effect 
of the angle of non-alignment on these values was small. The 
finest mesh-size in these experiment was A, and six levels 
were employed. The experiments with the linear system 
were performed with a coeflicient of one for the x derivative 
in the advection terms and 0.5 cos2(Zrcx) for they derivative, 
with various values for I, in order to test the effect of curved 
characteristics. The asymptotic convergence rates quoted 
above hold for small and moderate values of 1. Only when 
1 approaches l/h (corresponding to a substantial difference 
in the velocity at adjacent grid-locations in the nonlinear 
case), does the performance begin to deteriorate. 

These results indicate that it is better to use a W cycle 
than a V cycle. Still larger values of the index y did not 
improve the performance, however. Even then, the results 
are not quite as good as the 0.50 factor that is predicted by 
smoothing rate analysis of the Poisson equation discretized 
by the usual live-point star, to which the DGS scheme with 
the staggering we have employed is equivalent. This seems 
to be due to the treatment near the inflow boundary. Extra 
relaxation near the boundary, however, yields very little 
improvement in the asymptotic convergence rates. It should 
be noted that the performance of the W( 1, I) cycles only 
dropped below that of the Poisson-equation solver after the 
error had been reduced by about 20 orders of magnitude, 
and so the reduced performance is of no practical impor- 
tance. 

We remark here that fairly similar performance has been 
reported for flow in a duct in [lo], albeit only with first- 
order accurate discretization (in three dimensions). The 
authors, however, had overlooked the main issue, which is 
the effect of non-alignment, and chose flow that was nearly 
aligned with the grid in their experiments. Also, the crucial 
question of the order in which the momentum equations are 
relaxed is not addressed. Finally, the grids on which the 
results were achieved were extremely coarse, and the multi- 
grid cycles employed only two or three levels. Thus, the 
actual viscosity in the scheme used is very much greater 
than that implied by the Reynolds numbers. 

The performance of a 1FMG algorithm for the full equa- 
tions was tested with the four different inflow-boundary 
conditions F,-F4 listed above, each with three values of 
~~4.1, 0.25, and 0.5. The results are listed in Tables I 
and II for the first-order and second-order approximations, 
respectively. The first column lists the mesh-size to which 
the results correspond, the second column shows the inflow 
condition, the third gives the degree of non-alignment (in 
effect, the tangent of the angle between the flow and the 
x-gridlines). In the fourth column is the L, norm of the dis- 
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TABLE I 

1FMG with First-Order Discretization 

TABLE II 

1FMG with Second-Order Discretization 

h F, 00 Iledl12 h F, 00 lIedlIz 

l/32 F, 0.10 
l/64 F, 0.10 
l/l28 F, 0.10 
l/32 F, 0.25 
l/64 F, 0.25 
l/128 F, 0.25 
l/32 F, 0.50 
l/64 F, 0.50 
l/l28 F, 0.50 

l/32 
l/64 
l/l28 
l/32 
1164 
l/l28 
l/32 
l/64 
l/128 

F2 0.10 
F2 0.10 
F2 0.10 
F2 0.25 
F2 0.25 
F2 0.25 
F2 0.50 
F2 0.50 
F2 0.50 

l/32 
l/64 
l/l28 
l/32 
l/64 
l/l28 
l/32 
l/64 
l/l28 

F’ 0.10 
F3 0.10 
F3 0.10 
F3 0.25 
F3 0.25 
F’ 0.25 
F3 0.50 
F3 0.50 
F’ 0.50 

l/32 
I/@ 
l/128 
l/32 
l/M 
l/l28 
l/32 
l/64 
l/l28 

F4 0.10 
F.l 0.10 
F4 0.10 
F4 0.25 
F4 0.25 
F4 0.25 
F4 0.50 
F4 0.50 
F4 0.50 

Type of cycle- W(2, 1) W(1, 1) w, 

8.49 x lO-3 0.113 0.131 0.536 
4.21 x lo-’ 0.032 0.042 0.839 
2.10 x 10-3 0.013 0.018 1.162 
1.77 x 10-Z 0.113 0.140 0.490 
8.85 x lO-3 0.037 0.05 1 0.743 
4.43 x 10-j 0.016 0.021 1.034 
2.46 x lo-* 0.104 0.160 0.375 
1.24 x lO-2 0.042 0.067 0.569 
6.20x lO-3 0.018 0.027 0.856 

6.59 x lo-* 
5.49 x lo-* 
4.61 x lo-* 
7.88 x lo-* 
6.58 x lO-2 
5.55 x lo-* 
8.55 x lo-* 
7.12 x lo-* 
6.01 x 1O-2 

1.22 x lo-2 
7.16 x lo-’ 
4.25 x lo-’ 
2.07 x 1O-2 
1.22 x lo-* 
7.24 x 1O-3 
2.62 x IO-* 
1.53 x lo-2 
9.06 x 10m3 

1.43 x 10m2 
7.43 x lo-’ 
3.81 x lo-’ 
2.59 x lo-’ 
1.43 x 1om2 
7.58 x lo-’ 
3.28 x lo-* 
1.85 x lO-2 
1.00x lo-* 

l/32 
l/64 
l/l28 
l/32 
l/64 
l/l28 
l/32 
l/64 
l/l28 

0.018 0.022 0.023 l/32 
0.021 0.024 0.035 l/64 
0.022 0.023 0.044 l/l28 
0.022 0.034 0.044 l/32 
0.023 0.030 0.051 l/64 
0.020 0.021 0.047 l/128 
0.023 0.052 0.036 l/32 
0.020 0.043 0.035 l/64 
0.018 0.027 0.031 l/l28 

0.026 0.026 0.073 l/32 
0.013 0.013 0.095 l/64 
0.007 0.007 0.108 l/l28 
0.031 0.032 0.074 l/32 
0.016 0.016 0.09 1 l/64 
0.008 0.008 0.100 l/l28 
0.031 0.037 0.062 l/32 
0.017 0.019 0.073 l/64 
0.009 0.010 0.088 l/l28 

0.036 0.038 0.086 l/32 
0.021 0.022 0.126 l/64 
0.011 0.012 0.164 l/128 
0.038 0.042 0.079 l/32 
0.022 0.021 0.106 l/64 
0.013 0.013 0.129 l/l28 
0.037 0.048 0.064 l/32 
0.024 0.023 0.08 1 l/64 
0.014 0.014 1.105 l/l28 

F, 0.10 
J-1 0.10 
F, 0.10 
F, 0.25 
F, 0.25 
F, 0.25 
F, 0.50 
F, 0.50 
F, 0.50 

F* 0.10 
F2 0.10 
F2 0.10 
F* 0.25 
F2 0.25 
F2 0.25 
F* 0.50 
F2 0.50 
F2 0.50 

F, 0.10 
F3 0.10 
F3 0.10 
F3 0.25 
F3 0.25 
F3 0.25 
F3 0.50 
F3 0.50 
F3 0.50 

F4 0.10 
F4 0.10 
F4 0.10 
F4 0.25 
F4 0.25 
F4 0.25 
F4 0.50 
F4 0.50 
F4 0.50 

Type of cycle- W(2, 1) 

9.52 x 10m4 0.056 0.151 0.223 
2.18 x 10m4 0.033 0.097 0.216 
4.77 x 1om5 0.024 0.111 0.339 
1.12 x 1om3 0.108 0.231 0.434 
2.61 x 10m4 0.063 0.172 0.569 
6.10 x lO-5 0.038 0.232 0.660 
9.85 x 10m4 0.353 0.430 0.526 
1.99x lo-4 0.147 0.293 2.095 
2.61 x 10m5 0.154 0.524 3.943 

5.52 x lo-* 0.022 0.036 0.022 
4.60 x lo-* 0.036 0.054 0.042 
3.77 x 1om2 0.067 0.087 0.088 
5.80 x lo-* 0.037 0.053 0.046 
4.77 x lo-2 0.086 0.103 0.110 
3.96 x 10m2 0.161 0.203 0.204 
6.19 x lo-* 0.109 0.121 0.140 
4.60 x 10m2 0.159 0.211 0.192 
3.55 x lo-2 0.571 0.916 0.698 

6.27 x 1O-3 0.013 0.020 0.022 
3.31 x 1o-3 0.012 0.019 0.019 
1.75 x lo-’ 0.013 0.018 0.018 
7.23 x lo-’ 0.022 0.032 0.049 
3.82 x lo-’ 0.030 0.040 0.050 
2.04 x lo-’ 0.033 0.040 0.049 
6.13 x lO-3 0.059 0.078 0.103 
2.66 x lo-’ 0.104 0.143 0.138 
1.17 x lo-’ 0.132 0.178 0.170 

4.45 x 1om3 0.026 0.027 0.049 
1.42 x 10m3 0.028 0.036 0.047 
4.64 x 10m4 0.028 0.044 0.058 
5.36 x lo-’ 0.067 0.082 0.124 
1.74 x lo-’ 0.054 0.048 0.076 
5.77 x 1om4 0.040 0.042 0.117 
3.24 x 10-j 0.269 0.343 0.411 
7.89 x lO-4 0.265 0.326 0.330 
1.68 x lo-4 0.288 0.391 0.701 

W(L 1) V(2, 1) 

cretization error of u, which is defined as the difference 
between the exact solution (24) to the inviscid differential 
problem and the algebraic solution on the corresponding 
grid, calculated by performing many cycles in order to 
reduce the residuals to round-off error level. Note that in the 
smooth problems the discretization error is indeed roughly 
proportional to h and h2 for first-order and second-order 
discretizations, respectively, except for the maximally non- 
aligned case and second-order discretization, where analysis 
shows that the first cross-stream truncation term of second- 
order NUD vanishes, yielding a higher-order scheme (see 
Appendix A). Columns five through seven show the ratio 
between the L, norm of the algebraic error yielded by a 

1FMG algorithm (that is, the difference between the solu- 
tion obtained with a 1FMG algorithm and the round-off 
error solution) and the L, norm of the discretization error 
of u that is listed in the fourth column. 

It is evident that for smooth and non-smooth solutions 
alike, a 1FMG algorithm suffices to reduce the algebraic 
error well below the level of the discretization error. Also, for 
first-order discretization, the prediction of the analysis that 
their ratio be proportional to the mesh-size is realized. For 
the contact-discontinuity condition F, this does not hold, 
but then it is not implied by the analysis either, since com- 
ponents with ,u,, = 0( 1) have a substantial amplitude. The 
predicted behavior is not obtained with the V(2, 1) cycle, 
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although the corresponding results are still mostly satisfac- 
tory as far as reduction of the algebraic errors is concerned. 

In the results with second-order discretization depicted in 
Table II, the 1 FMG cycle again performs very satisfactorily. 
The ratio between the algebraic and discretization errors 
does not now behave quite as predicted. This is due to the 
fact that the discretization error of the continuity equation 
is now significant, a factor which was neglected in the 
analysis of Section 3. When u0 = 0.5 the performance seems 
to weaken somewhat. The reason for this is that in this 
maximally non-aligned case, the second-order term in the 
truncation error of the NUD scheme vanishes, yielding 
a higher-order scheme as noted above and shown in 
Appendix A. Now the local truncation error is determined 
by the discretization of the continuity equation (note in 
column four that the discretization error with u0 = 0.5 is 
smaller than the nearly aligned case u0 = 0.1). The seemingly 
somewhat worse performance (in reducing algebraic error 
far below truncation errors) is of no importance, as it is due 
to an “accidental” drop in the truncation error. 

There is a slight weakening in performance of the 1FMG 
algorithm with second-order discretization in the case of 
contact discontinuity. The approximation is then far from 
second-order, as is well known and can also be gauged by 
examining the fourth column. This weakening in perfor- 
mance is typical in multigrid processes when bad discretiza- 
tion is used and should always serve as a warning sign. 
There are a number of methods that have been developed by 
researchers for dealing with the problem of poor discretiza- 
tion near discontinuities, many of which may be combined 
with the approach we have presented. Our present research 
in this direction is outlined below. 

5. CONCLUSIONS AND FUTURE RESEARCH 

The analysis and experiments have confirmed that it is 
indeed possible to separate between the elliptic and non- 
elliptic components of the flow equations in the solution 
process, enabling the use of downstream relaxation as a fast 
solver for a non-elliptic factor in the equations as part of an 
overall multigrid algorithm. 

A natural next step is to carry out the relaxation of 
the momentum equations along characteristics, thereby 
reducing the artificial viscosity drastically. The advected 
values are then interpolated to a fixed Cartesian grid which 
serves several functions: it is used for multigrid solution of 
the continuity equation; physical viscosity (which is treated 
as a right-hand side) can be calculated from the grid-values; 
it serves as a “backbone” from which calculation can be 
restarted, should the characteristics that are being followed 
by the relaxation become too tangled or dense. The overall 
artificial viscosity introduced by such a scheme is very small, 
even if one must make a few such restarts. This method 

seems to be very promising for time-dependent problems as 
well as steady-state entering flows, since the problem of 
recirculation does not then appear. 

Preliminary experiments performed with the advection- 
diffusion equation are mainly aimed at establishing proper 
interpolation techniques from the characteristics to the grid. 
This question is influenced by conservation laws that need 
to be satisfied and by the order of derivatives which need to 
be calculated on the grid. Later work will include develop- 
ment of the appropriate DGS scheme and determination of 
the best location of the pressure variables, which is well 
suited in the elliptic regime, but may be altered to yield sim- 
pler schemes. Such an alteration may benefit the schemes 
described in this article, too. 

Future extension to compressibleflows is envisioned. For 
the compressible Euler equations, for example, distribution 
operators (generalizing (8) above) have been constructed 
(see, e.g., [2, Section 20.3.21) which essentially decouple the 
relaxation process into four sweeps with the advection 
operator Q = u . d = ZK?, + ~8, (one sweep for each momen- 
tum equation, one for the continuity equation and one for 
the energy equation), and one sweep (a distributive sweep 
for the equation of state) with the potential-flow operator 
L, = Q2 - c2A, c being the speed of sound. For the sweeps of 
the advection operator the approaches outlined above can 
be applied, namely, using downstream relaxation ordering 
to obtain fast multigrid convergence, and possibly also 
advecting actually along streamlines, to drastically reduce 
artificial viscosities. The treatment of the full-potential 
operator can thus be considered separately. In the case of 
low Mach numbers M = lul/c, L, is uniformly elliptic and 
the process described in this article is fully applicable. For 
M approaching 1 and supersonic (M > 1) flows, relaxation 
compatible with the characteristic directions should also be 
used for L,. Since L, has two families of characteristic direc- 
tions, this would generally require line relaxation. Fast 
multigrid convergence with such line relaxation has been 
demonstrated long ago in [ 161. 

APPENDIX A 

The first-order and second-order NUD discretizations for 
the advection operator aa, + bd, are defined as follows: Let 

i, = i - sgn(a), i2 = i - 2 sgn( a), 

j, =j- en(b), j, =j- 2 sgn(b), 

where the sign function sgn is defined by 

x>o 
x<o 
otherwise. 
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Then the first-order approximation to the advection of u in 
multiplied form is given by 

h(au.x+bu~~)~j=(lal - lbl)~(ui,j-ui~,~) 

+ I4 . (q- %,,,,I (31) 

if Ial >, lbl, and by 

h(~~.~+b”~v)~j=(Ibl - Ial) ‘(“i,j-ui,~l) 

+ Ial ’ t”i, j- ui,,j,) (32) 

otherwise. The second-order approximation is given by 

h(U&+ bU,):j= (IUl - lbl)’ (1.5ULj-2Ui,,j+o.5Ui2,j) 

+ 161 . (1.5Uj, j- 2uij,jl + o.5ui2,j2) (33) 

if Ial z 161, and by 

h(Uu,+bu,):j=(lbl-lUl).(1.5ui,j-2u,,jl+0.5u;,j~) 

+ IUl ’ (1*5Uj,j- 2ujl,jl + o.5uj*,jl) (34) 

otherwise. 
The corresponding first-order standard upstream dif- 

ference scheme (SUD) is given by 

h(uux + “.v): j= Ial ’ (‘t,] - uil,,) 

+ lb1 .(“i,j-ui,jl), (35) 

and the second-order SUD is given by 

h(Uld, + bU,)jf, = lU[ ’ (1.5Ui, j - 2U,,, j + 0.5U,, j) 

+ lb1 . (1.5U;,j-2U,,jl+ 0.5Uj,j,). (36) 

The local truncation errors r of the four schemes can be 
compared by applying them to the solution component 
e i”(~v - bx) of the equation 

au, + bu, = 0, 

where a and b are constants. Without loss of generality 
choose a > b > 0. This yields for the first-order schemes 

Ir(SUD)J =F ub(u + b) + O(h2a3) 

Ir(NUD)I = !f$ ub(u - b) + O(h203), 

and for the second-order schemes 

h2c03 
Ir(SUD)l = - 3 ub(u - b)(u + 6) + O(h3c04) 

Ir(NUD)I = y ub(a - 6) I(u - 2b)l + O(h3c04). 

we 

The leading terms in the local truncation errors of the 
narrow schemes are seen to vanish at twice as many orienta- 
tions as those of the corresponding standard schemes. Note 
that the leading terms in the local truncation errors of the 
second-order schemes vanish when there is maximal non- 
alignment of the characteristics with the grid, as well as in 
the aligned case. In particular, the NUD scheme becomes 
third-order when a = 2b, as noted in Section 4. When a and 
b are not constant but vary smoothly, these expressions for 
r remain the dominant terms in the local truncation errors. 
This can be seen by transforming the expressions for the 
local truncation errors of the schemes, obtained from the 
Taylor series, to a characteristic coordinate system. 

The average over the interval 0 d b < a of the NUD error 
is smaller than that of the SUD error by a factor of 1: 5 in 
the first-order case, and by a factor of 1:4 in the second- 
order case. 

APPENDIX B 

The second-order NUD scheme needs to be modified at 
x = h for the u advection operator and at x = h/2 for the v 
advection operator, since variables are not defined at points 
that are at greater distance than h and h/2 upstream, respec- 
tively. For the advection of u we use 

u.x(h, v) = 2u.x 
h 

( 1 
y.v -db~)+O(h*) 

= 2u, 
h 

( ) 
2, Y + o,(O, Y) + W2), (37) 

and 

u,(k Y) = ~~(‘4 Y) + hu.v,(O, Y) + O(h*) 

= u,(O> Y) - hoJO, Y) + W*), (38) 

where in both equations we have substituted the continuity 
equation along x = 0, and in (38) we have also used the fact 
that u.PX = u,,. The terms at the right-hand sides of these 
equations are approximated by central differences, to yield 
a second-order upstream scheme. 

For the advection of v we use 

uu,(~,~)=2uv,(~,~)-uu,(O,y)fO(h’), (39) 

where, by the y momentum equation at point (0, y), 

uu,(O, Y) = -P,(O, Y) - ~U.“(O, Y). (40) 

Now 

P,(O, Y) = P.” - O.W,,(O, Y) + O(h2), (41) 
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FIG. 3. The changes introduced in the outflow u velocities during 
DGS relaxation near the outflow boundary are shown. The * marks the cell 
that is being relaxed. 6, & and 8 are given by 6 = hR/4, F= 3hR/( 11 +40/u), 
8= hR/(4 + v/u), where R is the residual of the continuity equation in the 
relaxed cell before it is relaxed, and u is extrapolated. Otherwise, the DGS 
relaxation remains as in Fig. 2, except that pressure variables are changed 
only in the interior of the domain, and, in the cell adjacent to the boundary, 
6 is replaced by d in the second-order scheme and by 8 in the first-order 
scheme. 

and p,..(O, y) = pJ0, y) can be obtained by differentiating 
the x momentum equation at point (0, y): 

PXJO? Y) = - (%)y (0, Y) - hJy (0, Y) 
= uu,(O, Y) - yy(O, Y), (42) 

where we have substituted -u,, for U, by the continuity 
equation at point (0, y). Combining Eq. (39)-(42) we 
obtain 

+p.Y (43) 

The right-hand side of Eq. (43) is discretized by central 
differences, and for the second advection term we used the 
standard upstream discretization 

+0.5u(;,y-2h)]+D(h’), (44) 

obtained once again a second-order upstream scheme. 
The modifications of the DGS relaxation near the OUZ$‘W 

boundaries are shown in Fig. 3. 
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