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ABSTRACT

This is a brief summary of the general scope of multiscale computations, and
of our recent and current research directions and results.

1. General

Multiscale (or “multilevel”, or “multigrid”) computation are fast methods
for solving huge problems defined in a low dimensional space (e.g., the physical
space or space-time), including many-variable (e.g., partial differential) equations,
optimization problems and statistical field calculations. The typical multiscale
algorithm uses local processing (relaxing an equation, or locally optimizing, or
locally simulating a statistical rule) on each scale of the space, with inter-scale
interactions: typically, the evolving solution on each scale recursively modifies the
equations (or the Hamiltonian) on coarser scales and the solution on finer ones.
As a result, fine scales can be employed very sparingly, and sometimes only at
special and/or representative small regions. Also, the inter-scale interactions can
eliminate many types of troubles, such as slow convergence (in PDE solvers), ill-
posedness (e.g., of inverse problems), critical slowing down (in statistical physics),
large-scale attraction basins (in global optimization), conflicts between small-scale
and large-scale representations (e.g., in wave problem), numerousity of interactions
(in many body problems), the need to produce many fine-level solutions (e.g.,
in optimal control) or very many fine-level independent samples (in statistical
measurements), etc.

the first multiscale algorithm was probably Southwell’s two-level relaxation
for solving elliptic partial differential equations®?, first extended to more levels by
Fedorenko?®. The first multigrid solvers exhibiting the typical modern efficiency
(e.g., four orders of magnitude faster than Fedorenko’s estimates) were developed
in the early 1970’s3?, leading to intensive international research on the theory
of such solvers and their extension to more general types of partial differential
problems, with numerous scientific and engineering applications. Much of this
development is reported in the books26:35,10,38,25,32,27,22,33,31,34,28,29 ' Recent, de-

velopments, including in particular the development of multiscale methods outside



the field of partial differential equations, are reviewed in® 711, See also the contri-
butions to the present conference by D. Chu, Z. Huang, J. Sun and B. Li, M. Wang,
J. Xu, and G. Zhou.

Highlights from our recent and current research activities are briefly described
below, summarizing mainly conceptual developments. Not included are details of
collaborations in developing multigrid solvers in various application areas, such as:
aerodynamics, atmospheric and oceanic research, structural mechanics, tribology,
robotics, quantum mechanics, astrophysics, condensed matter, VLSI design, and
tomography.

2. PDE multigrid solvers

Steady State PDEs. Traditional multigrid solves general (linear and non-
linear, scalar and non-scalar) elliptic systems in some dozens of operations per
discrete unknown (see the general guide'?), and the algorithm can naturally and
fully exploit a very large number of parallel processors (see, e.g. Sec. 11 in Ref.
7). A similar efficiency has recently been obtained for general non-elliptic sys-
tems with one family of characteristics, such as high-Reynolds incompressible flow
problems!?20:21 " Extensions are contemplated to systems with more characteris-
tic families, including compressible flows. (Most multigrid solvers in current use
for flow problems fall orders of magnitude behind the above mentioned efficiency.)

Ways have been developed to extend the multigrid solvers, in their full above-
stated efficiency, to many new situations, including: free boundaries3”; thin
domains3® (much thinner than the meshsize of some of the coarser grids); sin-
gularities and discontinuities of various types; local mesh refinements!; severe
nonlinearities?!; topological charges (e.g., in Dirac equations)2’11; problems with
essential but small-scale features (e.g., small holes in the problem domain) which
are “invisible” on coarser grids'®; disordered systems!!; highly oscillating bound-

aries and fast changes in boundary operators!’; etc.

Rigorous quantitative analysis of multigrid solvers for general elliptic
problems has been developed®. Unlike other rigorous theories, the quantitative
analysis provides tools, based on local Fourier expansions, for numerically predict-
ing the exact algorithm efficiency. This can therefore be, and indeed is, used for
algorithm design and program debugging. Extensions are being developed to the
non-elliptic, where so far the quantitative analysis*!%29 is not rigorous.

Inverse problems can become well-posed when formulated in a multi-scale
setting, and can be solved at a cost comparable to that of solving correspond-
ing direct problems*?43. A demonstration of this is being developed for system
identification and inverse gravimetric problems.

Classical multigrid, and all other solution techniques, have been extremely
ineffective for solving the highly indefinite system of stationary equations arising
in wave problems, e.g., in acoustics, seismology, electromagnetic propagation
and quantum mechanics. Efficient multilevel algorithms have now been developed
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for such equations in their integral representation®, and are being extended to the
differential case. On each of their levels, the algorithms represent the solution
as »_; Aj(z) exp(i{jz). On increasingly coarser spatial grids (discretizing ), in-
creasingly finer “momentum” resolutions (denser grids {;) are used. The coarser
the grid the more like ray formulation (geometrical optics) the equations become.
This yields not only a faster solver, but also the option to treat most of the prob-
lem domain on coarse “grids”, hence essentially by geometrical optics, with nested
local refinements (using eventually the underlying wave equations) confined to
small regions where the ray formulation breaks down. Also, the implementation
of radiation boundary conditions in this representation is straightforward.

Such representations can also form the basis for a very efficient multigrid
calculations of many eigenfunctions of a given elliptic operator; e.g., the Schrod-
inger operator in condensed matter applications.

For parabolic time-dependent problems it has been shown that multigrid
techniques are extremely efficient not just in that they solve fast the system of
implicit equations at each time stepl®. A large additional benefit is that only
rare activation of fine scales is needed wherever the solution changes smoothly
in time; e.g., wherever and whenever the forcing terms are stationary?4. Also,
multileveling allows parallel processing not only at each time step, but across the
entire space-time domain. Extensions of such ideas to other time dependent prob-
lems, including high-Reynolds flows, are planned; they depend on the development
described next.

Grid alignment with the characteristic lines of the problem yields much
superior discretizations, both for evolution and stationary non-elliptic problems.
Even when those lines are not known in advance, progressive grid alignment can
naturally be integrated into the full multigrid (FMG) algorithm, needing no iter-
ations.Moreover, in a multilevel algorithm the alignment is just a local operation,
since each level can be a union of independent, possibly overlapping patches (inter-
acting, as usual, with the coarser level, not with each other). This would provide
also a tool for locally aligning grids with boundaries, which is expected to be much
cheaper and more flexible than the global grid generation techniques, since the
much simpler uniform cartesian grid may be used throughout the domain interior.
The development of such systems is considered, but requires heavy investments in
writing new basic software.

A multigrid algorithm (Sec. 7.5 of Ref. 9) provides an effective vehicle for
domain decomposition, where many processors work in parallel to solve the
problem, each processor in a different subdomain. The total solution work is
only a fraction more than the work of solving just once in each subdomain. The
communications needed between the subdomains is very small, since it is required
only at coarse levels!2.



3. Other multiscale computations

Performing general integral transforms, or solving integral and integro-
differential equations, discretized on n grid points, have been shown to cost,
using a multigrid structure, only O(n) or O(nlogn) operations (even though they
involve full n x n matrices)15’8. In particular this is true for performing Fourier
transform on non-uniform grids. An extension has been devised to transforms
with oscillatory kernels8.

Calculation of the n(n — 1) interactions between n bodies, and even local
ground states of such interactions, have been performed in O(n) operations by
embedding in a multigrid structure®. In case there is no good initial approximation
to the ground state, however, the calculations do not converge. Methods are
therefore needed similar to those discussed next.

Multilevel annealing methods have been shown as very effective for global
optimization of systems with a multitude of local optima and with multi-scale
attraction basins, in which cases the usual simulated annealing method may be
extremely inefficient. This includes in particular discrete-state optimization, pro-
vided the problem is defined in a low dimensional (e.g., the physical) space (thereby
allowing multiscale interactions)!8:39,

Likewise, multilevel approaches are much more effective than usual (e.g., sim-
plex) algorithm for linear programming problems defined in the physical space.

This has been demonstrated for the transportation problem3V.

In QCD calculations with interacting fermions it is required to update the
value of the determinant of an n x n matrix (representing discretized Dirac
equations) each time one of its terms (the gauge field) changes. On a model
(discretized diffusion) problem, we have shown that each such update can be done
in O(1) to O(logn) operations, by updating a certain multigrid structure. The
structure requires O(nlogn) storage locations®:2.

Multilevel Monte Carlo methods for problems in statistical mechanics
and lattice field theory have been initiated!®, and are being further developed.
Usual Monte Carlo methods, which update one site at a time, require O(L%1%)
operations to produce each new (nearly independent) statistical sample, where d
is the problem dimension, L is the linear size of the lattice and typically z ~ 2.
For some model problems it has been shown that, due to multigrid acceleration
on one hand and sampling on coarse levels on the other hand, a new sample may
on the average be produced in only O(1) operations'3-1,

Multilevel Monte-Carlo (MC) methods are also being developed for many
particle (e.g. atom) simulations. Usual MC methods, moving one particle at a
time, are extremely slow, since one particle can move very little when all others are
fixed. Moreover, since its neighbors in their turn move very little too, the particle is
likely to reverse much of its movement in subsequent MC sweeps. Initial multilevel
experiments have shown to alleviate this slowness very much, since they perform
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collective displacements of the particles. Much further development is planned.

Multilevel techniques to accelerate protein folding and similar calculations
are expected to emerge from our multilevel Monte Carlo and global optimization
methods (see above). A preliminary exploration has started.

We have shown in several examples that the multilevel processing can yield
macroscopic equations for the computed system. These equations can be much
simpler than those derived by group renormalization methods, since they can
retain a certain (properly bounded) amount of iterative interaction with finer
levels!3. Much more can and will be done in this direction. The birth of macro-
scopic particles, or rays, from microscopic PDEs (like the above mentioned wave
equations), and the birth of macroscopic PDEs (e.g. continuum mechanics) from
atomic motions, are just examples.

Development of multilevel techniques in image processing has been started.
One of the first objectives, for example, is to demonstrate, for a noised picture with
N pixels, that all statistically significant smooth lines and edges can be discovered
in O(N log N) operations.
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