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ACCELERATED MULTIGRID CONVERGENCE AND
HIGH-REYNOLDS RECIRCULATING FLOWS*

A. BRANDTt AND I. YAVNEH$

Abstract. Techniques are developed for accelerating multigrid convergence in general, and for
advection-diffusion and incompressible flow problems with small viscosity in particular. It is shown
by analysis that the slowing down of convergence is due mainly to poor coarse-grid correction to
certain error components, and means for dealing with this problem are suggested, analyzed, and
tested by numerical experiments, showing very significant improvement in convergence rates at little
cost.
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1. Introduction. Classical multigrid methods were originally developed for el-
liptic partial differential equations and systems. For such problems these methods
have proved to be extremely efficient, enabling solution to the level of discretiza-
tion errors in just a few minimal work units, so that the total work invested in the
solution grows linearly with the number of variables, and usually at most several
dozen operations per variable are required. When applied to nonelliptic and singular
perturbation problems such as high-Reynolds flows, however, performance seems to
deteriorate significantly, due in part to the fact that the solutions become more com-
plex (e.g., boundary layers and characteristic directions along which high-frequency
data may propagate to large distances). But poor multigrid behavior is exhibited
even in simple problems with smooth solutions when the partial differential operator
is nonelliptic (or has a nonelliptic component).

To learn how to treat the various troubles that appear in flow problems, it is
necessary to distinguish them. One of the main distinctions that must be made is
between entering flows, in which the flow enters through some boundary and follows a
well-defined general orientation, and recirculating flows. In the former, relaxation can
be made to resolve smooth components, and thus act (in part) as a solver and not just
as a smoother in the multigrid solution process. Highly efficient multigrid solutions to
problems of this type are demonstrated in [7]. The purpose of the present study is to
show how to improve performance greatly in recirculating flows and other problems,
in which relaxation significantly resolves only nonsmooth error components.

The main tool used in analysis and prediction of the performance of multigrid
algorithms is local mode analysis (see, e.g., [2]). For elliptic partial differential systems
it was shown in [4] that, under reasonable assumptions, the predicted performance can
indeed be obtained for general domains by adding some processing, for negligible cost,
at and near the boundaries. Hence, boundary effects may be neglected in the basic
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analysis of multigrid solvers for elliptic problems. This is not the case in problems that
are nonelliptic or have nonelliptic components, such as incompressible flows at high-
Reynolds numbers. In such problems, high-frequency boundary data may propagate
far into the domain, and it may be necessary to include boundary effects in the
analysis (see [7]). However, when dealing with shear-driven recirculating flows we are
once again in a position that is similar to the elliptic case with respect to boundary
effects, since cross-stream behavior is determined by the (elliptic) viscosity terms no
matter how small they may be (see [6]). For such flows the infinite-space local mode
analysis is again useful.

Slow convergence of multigrid cycles can generally be traced to (at least) one
of two major causes: poor smoothing or poor coarse-grid approximation to the fine-
grid problem. Smoothing, which is reducing the amplitude of high-frequency errors
that cannot be treated on the next coarser grid, is dealt with extensively in most
publications on multigrid solvers for incompressible flows (see, e.g., [2] and [5]). Here
we address the’ problem of poor coarse-grid corrections, which may require specialized
methods that depend on the cause of the problem. When the poor approximation
is caused by a local factor, say, some singularity in the boundary, the proper course
is usually to employ local methods such as extra relaxation in the vicinity of the
singularity (see [1] and [4]). But sometimes, in particular in high-Reynolds flows,
the coarse grid fails to approximate the fine-grid problem well enough for certain
components throughout the domain. Frequently, the best course of action then is to
simply disregard this seemingly poor behavior, since those components, which are
poorly approximated by the coarse grid, do not in turn approximate the differential
solution well (see [2] and [3]). If, however, one is interested in obtaining good algebraic
convergence and not just rapid convergence to a good approximation of the differential
solution, special techniques must be employed, to accelerate convergence.

Consider as our model problem the constant-coefficient advection-diffusion equa-
tion:

(1) Ldu --e/u + au 0,

where / is the Laplacian operator and e is a positive constant. Suppose that this
equation is discretized by some finite difference scheme Lhad of order q on a uniform
grid of mesh-size h whose orientation is general (and therefore choosing x to be the
characteristic direction results in no loss of generality). The resulting discrete set of
equations is solved by starting with some initial approximation to the discrete solution
on the fine grid h (grid with mesh-size h) and iterating with the usual multigrid cycles.
Soon one finds that (for vanishing e) the residual norms are reduced at best by an
amplification factor of I 0.5q by each cycle, even. if the number of relaxation sweeps
per level and the cycle index (defined below) are chosen to be quite large. The reason
for this slow-down has been shown to be poor approximation of smooth characteristic
components by the coarse grids. This property has already been explained in [3]. We
return to it here, and in another context in [7], and present methods for treating the
problem.

As usual, when researching the advection-diffusion equation, our object is to learn
how to treat the Navier-Stokes equations. Since these exhibit similar behavior, we
conclude that the problem of poor coarse-grid correction studied here is the main cause
for the poor convergence rates of flow problems as well. Hence, although the analyses
below are all done for the advection-diffusion equation, numerical experiments also
include the incompressible flow equations, and indeed the behavior is seen to be
influenced similarly by the methods proposed.
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In 2 and 3 the two-level and multilevel cycles are analyzed, and it is shown why
the usual multigrid cycles exhibit poor convergence rates. In 4 it is shown by analysis
and numerical examples that significant acceleration of convergence can be obtained
at virtually no cost by overweighting some of the residuals that are transferred to
the next coarser grid. In 5 a method of employing defect corrections within the
multigrid cycle is introduced, and it is shown by analysis and numerical experiments
that this method can be combined in various ways with residual overweighting to
greatly improve the multigrid cycle’s performance. The ultimate modified W cycle
that is developed enables an asymptotic reduction of the error by a factor of nine
per cycle in its two-level version for the first-order discretized advection-diffusion and
incompressible Navier-Stokes equations, rather than the factor of two that is yielded
by the usual two-level cycle. This performance is almost matched in the multilevel
cycle as well, and here the improvement is still more dramatic, since the usual cycle’s
performance is shown to deteriorate rapidly as the number of levels grows. Conclusions
and remarks are given in 6.

The accelerated multigrid analyses and methods developed in-this article can be
straightforwardly generalized to other cases in which multigrid convergence deterio-
rates due to poor coarse-grid corrections for some smooth components.

2. Two-level infinite-space local mode analysis. In order to have a clear
and quantitative understanding of the slowing down of multigrid convergence due to
poor coarse-grid correction, we will analyze here a multigrid cycle leaving out some
irrelevant aspects: we will treat only smooth components, and hence neglect the effect
of intergrid transfers, and employ the first differential approximation (FDA; see [11],
[3], and [2, 7.5]) to the difference equations. We will also assume for simplicity
that the diffusion coefficient e tends to zero, which is indeed the case for which the
multigrid performance is usually the worst. The FDA approximation to a qth-order
discretization of Lad then has the form

(2) Lhad --ehaTq+- (Ox, Oy) + aOx

where the first term on the right-hand side represents the first truncated term in the
discretization of Lad. Tq/l is a polynomial of degree q / 1 of the form

(3)
q+l

Tq+l (Ox, Oy) aj O 0+l-j,
j=o

and h O(hq) h and the coefficients aj are determined by the particular discretiza-
tion and angle between the characteristic direction and the grid. For example, in the
case of the usual first-order upstream discretization, the FDA is

ha[ (cos3 -t- sin3 )0xx + sin 2(sin cosLhad - + 1/2 sin 2(sin + cos )0yy + aOx,

where is the angle that the characteristic direction x forms with the grid. (This is
obtained by writing the artificial viscosity of upstream discretization in the coordinates
of the grid, and transforming to the characteristic coordinates x and y.)

Consider an error component on the fine grid h given by

(4) vh ei(1+’)
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Generalization to higher dimensions is straightforward, and the following analyses
apply directly. The residual due to this error is

(5) rh _Lad h --,had(W, W2) e(x+)

^hwhere Ld is called the symbol of Lhd (see also [2]). The correction problem solved on
the coarse grid H is

(6) rLady

yielding

^h
(7) V

H Lad vh^HLad
Denoting

C(l d2)-- ahd(l’2)
^HLoe(Ol,O)

we obtain that the two-level amplification factor u of the fine-grid error, defined as
the ratio of the new fine-grid error (after the correction vH has been added) to the
original error vh, is given by

Vh -- VH(8) (wl,w2) vh
1 C(wl,w2).

From (2), (3), and (8), for a qth-order discretization of the advection-diffusion oper-
ator, we obtain

(9) Y(021, W2) 1 ehT+(iw, iw2) + iw
eHTq+ (iwl iw2) + iw

For most smooth components (and small mesh-sizes) this amplification factor
is close to zero, and multigrid convergence can hence be expected to be essentially
as good as allowed by the smoothing rate and the number of relaxation sweeps per
level. But consider smooth characteristic error components, which are smooth (and
therefore nearly unaffected by any local-type relaxation), but much smoother in the
characteristic direction x than in the cross-characteristic direction y. For such com-
ponents, wl/w2 << 1, and their amplification factor is therefore much larger. In the
limit of components which only vary in the cross-characteristic direction, we obtain
that the two-level convergence factor tL, which is defined as the maximal (in absolute
value) over all the frequencies defined on the grid, is given by

(10) tL (0,w2) 1- eh 1- 0.5
H

Asymptotically the poorly corrected characteristic components become dominant,
and the error norm is reduced at best by a factor of i 0.5q, even with two-level cycles.

3. Multilevel local mode analysis. The multigrid cycle index / is defined
as the number of times a correction from the next coarser grid is taken by each
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intermediate level in calculating its solution, before that solution is used to correct
the error on the next finer grid. Thus - 1 is the index of the so-called V cycle,
and /- 2 is the index of the W cycle. Actual multigrid cycles need to employ a
fairly small cycle index , if the total work is to grow only linearly with the number
of variables: in d dimensions, - must be smaller than 24. Let us therefore determine
by analysis the expected multilevel amplification factor of an error component whose
two-level amplification factor 1- C is assumed to be independent of the mesh-size.
This simplifying assumption is only valid for the extreme cases where, in (9), wl
vanishes, in which case C equals eh/e2h , 0.5q, or where Tq+ vanishes, in which
case C equals one. This is appropriate here since these extreme cases determine the
worst-case amplification factor. Moreover, this analysis of the multigrid cycle is not
restricted to the advection-diffusion equation.

Consider a multigrid cycle that is implemented on n/ 1 levels numbered 0, n,
with n denoting the finest grid. For each error component there corresponds a "solu-
tion level" i on which it is sufficiently nonsmooth so as to be eliminated efficiently by
relaxation (or perhaps direct solution in the case i 0). To simplify, we assume that
every error component is eliminated completely on its solution level, but that on all
finer grids it is unaffected by relaxation. Let us denote by u-i(C) the level-n am-
plification factor of an error component, whose two-level amplification factor is 1 C
and whose solution level is i, in a multigrid cycle with cycle index -/. Let k- n- i.
Under the assumptions above, we have for k 0

(11) u0 -0,
and for k 1

(1:) c,
regardless of /(the latter is simply the two-level cycle by definition). For 1 < k _< n
the residual problem is transferred to the next coarser grid (level k-1), and multigrid
cycles (in which the corresponding amplification factor for that component is uk-)
are performed. As a result, the error in the solution to the coarse-grid problem is
reduced by a factor of (k-1). This approximate correction is now transferred back
to the fine grid, but multiplied by C (since even the exact solution to the coarse-
grid problem only yields C times the required correction). This yields the following
recurrence equation:

(13) uk 1 C. [1 (uk-)] u + C(/]k-1)"1’ 1 <_ k <_ n.

3.1. Properties of the multilevel cycle. In the following discussion we con-
sider only real values of C, since C is real in both extreme cases of the advection-
diffusion equation: when the coarse-grid correction is worst, and when it is best. This
assumption will greatly simplify the discussion. Also, it is of course unnecessary to
consider nonpositive real values for C, since these would imply that the coarse grid
does not approximate the corresponding components at all, in which case special
measures need to be taken.

Remark 1. The fixed points of (13) are solutions of

(14) u 1 C(1 u).

u 1 is a fixed point for every 7. When C < 1 it is the only one in the case of a V
cycle (/= 1). W cycles (/= 2) have a second fixed point at u (1 C)/C.
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PROPOSITION 1. For every k >_ 1,

(15) uk 1 Ck

Proof. By induction: v 1- C, and by (13) and the induction hypothesis,

Ul
k i- C+ C(I- Ck-l) i- Ck

Conclusion. The convergence rate of the multigrid V cycle deteriorates rapidly as
the number of levels grows, unless C is close to 1. In particular, the V cycle is clearly
unsuitable for the advection-diffusion equation, even with first-order discretization.

PROPOSITION 2. For all 0 < C < 1 and all positive k and %

0 _< < < 1.

Proof.
hypothesis,

By induction: 0 < u 1-C < 1, and by (13) and the induction

,-c. [,- <,

and

(18) /]+1 /] C" [(b’$) ’7 --(1]$--1)"7] > O.

PROPOSITION 3. For all 0 < C < 1, vk2 tends to the smaller of the two fixed points
(1 and(1- C)/C) as k tends to infinity.

Proof. For k _> 0, by (16) we have

(19)

The proof follows from this and Proposition 2.
Conclusion. Proposition 3 implies that u2

k tends to one when 0 < C <_ 0.5. Thus,
the convergence factor of the W cycle for the advection-diffusion equation with first-
order discretization tends to one as the number of levels tends to infinity.

We reiterate that this analysis assumes that relaxation is of a local type, and
therefore has a negligible effect on all components that are smooth on the scale of
the grid on which they are relaxed. A different situation may arise in cases such as
entering flow problems, which are studied in [7]. When relaxation is performed in
downstream ordering in such problems, it no longer has a purely local effect. Indeed,
for the advection equation with upstream differencing, if relaxation is carried out in
downstream ordering, it performs as a solver and not just as a smoother. Convergence
of the advection-diffusion equation is discussed in [8], and much better rates than the
ones predicted by our analysis are obtained. But the model problems are precisely of
the entering flow type, and at least some of the relaxation sweeps are carried out in
downstream ordering. This point, however, which explains a number of phenomena
in the numerical results that are obtained there as well as in other publications, and
which is the key to further achievements with much more complicated schemes, seems
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to have been overlooked. Also, in some flow problems, the actual Reynolds number in
the regions of recirculation are very much smaller than the nominal values (because
the velocities in these regions are small), and somewhat better performance may then
be found (e.g., in [10]).

4. Method of overweighted residuals. A very simple and almost cost-free
approach to accelerating convergence is the method of overweighted residuals (OWR).
The idea, which is reminiscent of the method of successive overrelaxation (SOR), is
to improve the coarse-grid correction to the error in the fine-grid approximation by
multiplying the residuals that are transferred to the coarse grid by some constant /
between one and two. Clearly, y should not be too large, since those components that
usually receive the proper correction are now overcorrected. It is best to determine an
optimal overweighting factor , which will depend on the number of levels employed.

4.1. Two-level single-parameter optimization. Let denote the minimal
C over all the frequencies defined on the fine grid (for the advection-diffusion case,
-0.5q). Then the poorest (largest) corresponding error-amplification factor in the

usual two-level cycle (with - 1) is 1- , whereas the best amplification factor is
zero. When the residuals are multiplied by the factor /, however, the two extreme
error-amplification factors are now given by 1 -r/ and 1 -r/(by (6-8)). Due to the
monotonicity of these terms, the optimal two-level overweighting factor /t is obtained
when

(20)

and therefore

2
(21) h +"
The two-level convergence factor decreases accordingly from 1- to

(22) 1
1 .
1+

The two-level convergence factor of the advection-diffusion equation (with vanishing
diffusion coefficient) employing first-order discretization, for example, improves from
0.5 to 0.33 with -4/3.

4.2. Multilevel single-parameter optimization. Propositions 2 and 3 imply
that the components that converge most slowly, for a fixed C in (0,1), are those
whose solution level is the lowest (k- n). When the number of levels is large, the
amplification factor of such errors by a W cycle tends to (1 C)/C when C is between
one half and one. For the overcorrected components in a cycle with an even cycle index, however, we have the following.

PROPOSITION 4. For all 1 < C < 2, even % and k >_ 1,

_< c-

(24)

Proof. By induction: For k _> 1

C-l_[-k+
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but

(2) c + c + c() > 0,

and alternatively

() c 1 (1 c + c()) > (c 1) c(c 1) > 0,

where in (26) the first inequality is trivial for k 1 and is due to the induction
hypothesis for k > 1, and the second is due to the range of C.

Conclusion. The components that converge most slowly when 1 < C < 2 are
those that are corrected on the second-finest level (k 1), and the convergence factor
for such overcorrected components is at least as good as the two-level rate when - is
even. This is true in particular for the W cycle (- 2). Hence, the optimal multilevel
overweighting factor Y,z for the W cycle is obtained when

(27)
1

I
yielding

(28) .z -’/.
This value is valid only when Tim ( 2. For <_ 0.25 the multilevel convergence factor
must tend to one as the number of levels grows. The W-cycle multilevel convergence
factor u,t of the advection-diffusion equation with vanishing diffusion coefficient and
first-order discretization thus improves from 1 to /- 1 0.41, with the optimal
overweighting factor mZ

With a finite number of levels, the optimal overweighting factor is reduced some-
what, yielding slightly better convergence rates. It is thus possible to calculate the
optimal overweighting factors for each level. These start with 4/3 for the second-
coarsest grid and increase until they tend to V as the grid becomes finer. However,
there is not much practical gain in doing such careful optimization, since on very
coarse grids the assumptions made in the analysis are rather poor anyway, and also
the optimal quickly tends to x/. One can thus uniformly use the overweighting
parameter ] v/.

4.3. Two-level multiparameter optimi.ation. In the optimizations describ-
ed above we have considered only a single cycle, and therefore only a single over-
weighting parameter ]. But since we are dealing with asymptotic convergence rates,
it is implied that several cycles are performed. Also, since (at least) W cycles need
to be employed, more than one cycle per level is performed. This suggests using sev-
eral different overweighting factors in order to further reduce the error-amplification
factor. This is a special case of polynomial acceleration, and the optimal choice of over-
weighting factors, which is calculated with the aid of Chebyshev polynomials, yields
optimal Chebyshev acceleration (see, e.g., [9]).

Consider a smooth error component for which the ratio between the fine-grid and
coarse-grid symbols is C, _< C _< 1. Suppose that m two-level cycles are performed,
where the residuals in the jth cycle, j 1,..., m, are overweighted by a factor of
The factor by which the error is amplified in this process is given by

m

(29) [um(c)]m YI(1 ]jc),
j--1
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where ’(C) is the average amplification factor per cycle. Assuming, as above, that
the extreme eigenvalues of the two-level operator are 0 and 1 , the optimal poly-
nomial (C), i.e., the one for which the maximal absolute value over all C’s in the
interval is minimized, is given by

1- )

where Tm is the Chebyshev polynomial of degree m, given by

cos(m cos- x), 1 _< x 1,
(31) Tm(X)

cosh(mcosh_ x), 1 < x

(see [9] for the general development). By (29) the optimal j’s are the inverses of
the zeros of , which can eily be calculated from (31). For m 1 the optimal
overweighting factor is indeed in (21), and for m 2 the two optimal factors are
given by

2
(32) YJ= 1+’

j=l,2.

The average amplification factor per cycle of the error is given by

(11
For the advection-diffusion equation with first-order discretization ( 0.5), the

single-cycle optimization (m 1) thus yields a twlevel convergence factor of 0.33
per cycle shown above. Twcycle optimization (m 2) yields an average twlevel
convergence factor of 0.24 with the optimal overweighting factors of 1.079 and 1.745,
and the ymptotic (infinite number of cycles) average twlevel convergence factor
with optimal overweighting factors is 0.17. With second-order discretization (
0.25) the single-cycle optimization yields a twlevel convergence factor of 0.60 per
cycle with 1.60. Twcycle optimization yields an average twlevel convergence
factor of 0.47 with the optimal overweighting factors of 1.123 and 2.779, and the
ymptotic average twlevel convergence factor with optimal overweighting is 0.33.
However, large overweighting factors are unlikely to be useful in practice, if only
because the corresponding amplification of nonsmooth error components means that
much better smoothing is then required.

An automatic acceleration method, which would not require a priori analysis, is
conceivably useful. However, since the ultimate goal is to employ at most one or
two cycles per level in the solution process, methods whose usefulness relies on the
execution of many cycles are unlikely to be truly efficient.

4.4. -cycle optimization. In a multigrid cycle with cycle index there are
overweighting factors to be chosen for the visits to the next coarser grid at each
level. Consider again a smooth error component for which the ratio between the fine-
grid and coarse-grid symbols is C, C 1. Then, if the overweighting factors j
are chosen independently of the level, the error amplification factor of cycles on
level i + k is given by the recurrence equation
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(34) (Uk) H [1-C (1- (uk-))]
with

=0.

Again a recurrence equation is obtained, for which i is a fixed point. The optimization
of the y’s generally needs to be done numerically. The optimal overweighting factors
for the W cycle with 0.5 (e.g., for first-order approximations to the advection
equation) are 1.085 and 1.843, yielding a convergence factor per single W cycle of
0.27, whereas the single-parameter optimization yields 0.41.

4.5. Numerical experiments. Numerical experiments were carried out with
the advection-diffusion equation, discretized by second-order central differences with
an added first-order isotropic artificial viscosity term discretized by the five-point star
(the importance of the isotropy of the viscosity coefficients is elaborated upon in [6]).
The problem solved was

-eAu + sin(ry)cos(rx) ux cos(ry) sin(rx) uy O,

over the unit square. The results reported here were obtained with Dirichlet bound-
ary conditions and exact solution zero, in order to allow a very large number of
cycles without encountering roundoff errors. The algorithms were tested with smooth
nonzero solutions as well, and nearly identical performance was observed until (double-
precision) roundoff errors were encountered. Since the physical viscosity coefficient e

was taken to be zero, the coefficients of the equation are very small at and near the
stagnation point (1/2, 1/2). When residuals are transferred with some averaging, such as
the usual full-weighting that was used in these calculations, the right-hand side on
the coarse grid in these regions may be much larger than the coefficients, resulting in
reduced performance or even instability. This is best overcome by using averaged co-
efficients in the calculation of the artificial viscosity. Here we determined the artificial
viscosity by adding the absolute value of the coefficient at the point of discretization
with weight to those of the four nearest neighbors with weights , and multiplying
this weighted average by as usual. This averaging introduces only an O(h3) change
in the usual artificial viscosity.

The asymptotic convergence factors of the dynamic residuals with various over-
weighting factors are presented in Table 1 along with the predictions of the analyses
presented above. The fine mesh-size for the two-level results is 1/64. The multilevel
results were obtained with four levels, the finest mesh-size being 1/128, and the ana-
lytical prediction refers to a four-level (not infinite-level) cycle, and is calculated from
(13). The optimal is then 1.40--slightly smaller than the infinite-level optimum of

The multilevel results were calculated with a W(2,1) cycle (a W cycle with two
pre- and one postrelaxation per level), and it was verified that increasing the num-
ber of relaxation sweeps per level results in only a negligible improvement in the
performance, so that indeed three sweeps per level reduce the high-frequency error
components sufficiently, and the convergence rate is determined by the coarse-grid
correction.
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TABLE 1
Asymptotic residual convergence factors of numerical calculations for the advection-diffusion

(AD) equation and incompressible Navier-Stokes (INS) equations are compared with analytical pre-
dictions for various single overweighting ]actors 1. Two pre- and one postrelaxation sweeps were

employed.

Two-level Multilevel

Analytical Numerical Numerical Analytical Numerical Numerical
prediction AD INS prediction AD INS

1.00 0.50

1.10 0.45

1.20 0.40

1.30 0.35

1.33 0.33

1.40 0.40

1.50 0.50

0.50

0.45

0.39

0.34

0.33

0.38

0.45

0.49

0.45

0.40

0.33

0.69

0.62

0.55

0.47

0.68

0.6i
0.54

0.46

0.54

0.45

0.33 0.44 0.44 0.46

0.40 0.40 0.40 0.51

0.51 0.50 0.50 0.63

The experiments were repeated with the incompressible Navier-Stokes (INS)
equations in two dimensions, over the unit square with a square of side 0.25 re-
moved from its center. Both the inner and outer squares’ sides were aligned with the
grid. Dirichlet boundary conditions for the velocities were specified at the inner and
outer boundaries. The velocities normal to the boundaries were all made to vanish.
The tangential velocities at the inner boundaries were set to zero as well, but the
tangential velocities at the outer boundaries were prescribed to be

Vtan sin rs,

with s varying from 0 to 1 along each side of the outer square, and Utah driving the
flow in the clockwise direction. These conditions and this domain yield a smooth
flow with closed streamlines and almost no boundary layers. We chose such a flow
because boundary layers constitute a separate problem that needs to be treated by
its own specialized methods. Slow convergence due to poor resolution on coarse grids
is unrelated to the problem of poor convergence of certain smooth components, which
is examined here.

The cycle parameters chosen were the same as for the advection-diffusion (AD)
equation tests. The discretization used in [5] and [2] was employed with first-order
isotropic artificial viscosity, and the Reynolds number solved with was 10-6, so that
the physical viscosity was everywhere negligible relative to the artificial viscosity.
This is implied by the analysis (and verified by experiments) to be the most difficult
case with respect to rate of convergence. Adding physical viscosity, while fixing the
overweighting factors, always resulted in improved convergence rates.

Now the number of cycles performed was limited by the double-precision roundoff
errors. Distributive Gauss-Seidel relaxation with red-black ordering (see [2]) was used
throughout. These results are also listed in Table 1 and compared with the analytical
prediction for the AD equation.

The numerical results match the analytical prediction very closely. The only
exceptions are INS multilevel results with large y’s. These, and also the corresponding
results in Table 2, indicate greater sensitivity to large overweighting factors in the
solution of the system.
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Note that only the momentum equation residuals need to be overweighted. This
is due to the fact that the continuity equation contributes an elliptic component (the
Laplacian operator) to the system, for which overweighting is unnecessary. This point
has been verified by two-level analysis of the linearized incompressible flow equations.

Experiments were also carried out with the advection-diffusion problem using two
different y’s. The average two-level convergence factor was 0.34 with the theoretically
optimal two-level overweighting factors, and the average multilevel convergence factor
was 0.43 when two prerelaxation sweeps and one postrelaxation sweep were employed.
The large overweighting factors apparently cause problems. One of these is that over-
weighting undesirably amplifies high-frequency residuals as well as low-frequency ones,
so more smoothing is necessary. Also, since the coarse-grid correction is improved,
still more smoothing is required in order to reduce high-frequency errors sufficiently
for the smaller convergence factor. Indeed, better performance was obtained when
the number of relaxation sweeps per level was increased. With two prerelaxation and
two postrelaxation sweeps, the convergence factor attained with the two-level cycle
was 0.26 (rather than the theoretical 0.24), and the multilevel factor was 0.37 (rather
than the theoretical 0.27). It seems that the assumptions of the analysis are no longer
valid, since now intermediate eigenvalues also figure in the convergence rates, and
these are neither real nor grid independent.

It is possible to find somewhat smaller overweighting factors that may provide
improved results. This requires either a more sophisticated analysis that takes into
account high-frequency phenomena, or numerical experimentation in the form of an
automatic acceleration process. But in view of the results presented below, this does
not seem to be the most profitable course.

5. The defect-correction W (DCW) cycle. The method of defect-correction
iterations is a well-known tool for obtaining solutions with high-order accurate oper-
ators that are unstable, and that therefore cannot be used directly. This method can
be embedded into the multigrid cycle as a means of accelerating convergence.

The basic defect-correction method is as follows. Suppose we wish to obtain an
approximate solution to some equation

(36) Lu- f
with suitable boundary conditions. We would like to use some finite difference op-
erator L2h for approximating the differential operator L on a grid with mesh-size h,
but cannot use it directly, say, due to problems of instability. Instead, we use another
(usually lower-order) operator L1h, which is stable, and we hope to approach the L2h
approximation via the following iterative process:

(37) h h fh LhhuhLl ui + (Lhl 2 -1,

where i _> 1 is the iteration number and Uoh 0. Here again the h superscripts denote
functions and operators defined on grid h. If this process converges, it must clearly
converge to the solution with the operator L2h. In elliptic cases the convergence is
usually fast for smooth solution components, in terms of which Lh is indeed a good
approximation to L2h, while the slow convergence of nonsmooth components may
actually be an advantage, since for them Lh may be better than L2h.

A form of this defect-correction process can be used for accelerating the con-
vergence rate when it is slowed down by the poor coarse-grid correction to certain
components. We present this technique here as employed in a W cycle, but the gen-
eralization to greater cycle indices is straightforward.
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The two-level correction scheme DCW cycle for the solution of the discrete prob-
lem

(38) Lu f
is defined as follows:

1. Start with some initial approximation to Uh on the fine grid h. Smooth the error
corresponding to this approximation by some number of relaxation sweeps, obtaining
h.

2. Transfer residuals to the coarse grid H, and solve the first coarse-grid problem

(39)

where the H superscripts denote operators and functions defined on the coarse grid
and IhH is some transfer operator from grid h to grid H.

3. Calculate and add to the right-hand side a defect-correction term, and solve
the second coarse-grid problem:

(40)

where L/ is some approximation to Lh on grid H, which is significantly better than
LH, as explained below.

4. Interpolate and add the correction v2
H to fih, and smooth this new approxima-

tion with some number of relaxation sweeps.
The operator L/ used in (40) is some higher-order grid H approximation to the

fine-grid operator Lh, which is not used directly, e.g., because it cannot be smoothed
efficiently. For example, if Lh and LH are first-order upstream discretizations of
the advection operator on grid h and H, respectively, then they can be viewed as
second-order central difference approximations with added artificial viscosity that is
proportional to the mesh-size. LhH can then be chosen to be a central-difference
discretization plus artificial viscosity with coefficients that correspond to grid h, all
discretized on grid H. This is then a second-order approximation to Lh. More gener-
ally, if Lh is an approximation of order q on grid h to the differential operator L, and,
similarly, LH is a qth-order approximation to L (and Lh) on grid H, then LhH can be
any operator on grid H which is (at least) a q + lst-order approximation to Lh.

The step described in (40) is an attempt to improve the correction yielded by the
coarse-grid operator. An alternative view comes to light when LHvlH is subtracted
from both sides of (40), yielding

(41)

Viewed thus, the DCW acts as two cycles, except that the visit to the fine grid
between the cycles has been skipped, and the process of adding Vl

H to the initial fine-
grid approximation and recalculating the residuals is approximated on the coarse grid
instead. This viewpoint will later be useful in the analysis.

The multilevel DCW correction cycle is similarly defined, except that the coarse-
grid problems are not solved exactly, but rather by a similar DCW cycle (each) on the
coarser grid. This is done recursively, and only on the coarsest grid are the problems
solved exactly. Note that the cycle index is two (W cycle), which is the reason for the
name DCW.



620 A. BRANDT AND I. YAVNEH

5.1. DCW with FAS. The DCW cycle can of course be implemented with the
full approximation scheme (FAS), but it is important to note that the defect correction
process must be applied only to the correction given by the first "leg" of the W cycle,
and not to the full solution. As in the usual FAS algorithm, (39) is now replaced by

(42) LHuf LHh -rH

where / is some transfer operator from grid h to grid H, which need not be the
same as I/. Equation (40) is replaced by

(43) LHuH2 LHhHh -rH -[-(LH L)(uH1 hHh).
Finally, u2

H -/-/?h is interpolated and added to h as in the usual FAS multigrid
cycle. It is easy to verify that for a linear problem this process is equivalent to the
correction-scheme two-level DCW cycle.

5.2. Two-level local mode analysis. We analyze the DCW cycle by the same
infinite-space analysis employed in the previous sections, again assuming that the
factor that determines the rate of convergence is the coarse-grid correction of smooth
error components, whereas high-frequency error components are reduced sufficiently
by relaxation. Also, intergrid transfers are again neglected, and the FDA is employed.

Suppose the current error in our approximation to the solution of (38) is

(44) V
h ei(wlx+w2y)

The corresponding first coarse-grid problem for the correction is then

(45) LHvl
H --Lhvh

Let C- C(wl,w2) h(wl,w2)/,g(w,w2), as in the previous sections. Now

Vl
H _Cvh

and the second coarse-grid problem, following (41), is

(46) Lg(v2H vH) --nhvh(1 C),

where no distinction has been made between the actual fine-grid operator Lh and
its coarse-grid approximation LhH, since the two are equivalent under the FDA. The
solution to (46) is

-c(1 C)v

and the error-amplification factor u after the correction has been added to the fine-grid
solution is

h vhv,,o + vH (1 C)(47) u=
vh vh

This result is quite expected from the point of view of skipping the fine grid.
That is, under the present simplifying assumptions the error-amplification factor per
cycle is the same as that per two regular cycles as calculated in 2. In particular,
the predicted two-level convergence factor per cycle for the first-order discretized
advection-diffusion equation is 0.25.
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5.3. Multilevel local mode analysis. Following the notation of 3 and the
fine-grid skipping viewpoint, we find that, for the multilevel DCW cycle, the one-
dimensional map describing the error-amplification factor k (see derivation of (13)
with /- 2 for the regular W cycle) is given by

(48) uk [1 C(1 k-1)] 2

for k > 0, with u0 0. " is omitted in the notation, since we are only considering a
W cycle. Observe now that (48) could also have been obtained from (13) with 9’ 2
by squaring both sides and substituting uk and uk-1 for (u2k)2 and (u2-)2. So the
multilevel DCW cycle is seen to be equivalent to two regular W cycles under the
sumptions of this analysis.

Conclusion. The convergence factor of the multilevel DCW cycle for the advection-
diffusion equation with first-order discretization (( 0.5) tends to one the number
of levels tends to infinity.

5.4. Combining the DCW cycle with OWR. We have seen that the DCW
cycle itself does not solve the problem of poor convergence rates when the number
of levels is very large, although the rate is squared for a given number of levels. A
natural approach is to try to incorporate residual overweighting into the DCW cycle.

5.4.1. -optimization. The proper way of applying residual overweighting in
the DCW cycle is again best seen from the fine-grid skipping point of view. So
considered, it is clear that not only do the residuals need to be multiplied by the
overweighting factor y, but so does the term -Lv in (41), which approximates
the term that would have been added to the fine-grid residual had the fine grid
been visited. By (47), the resulting twlevel error-amplification factor with single-
parameter overweighting is given by

(49) v (1 )2,

where is again the minimal Lh/Lg.
The optimal y is of course the same that for the regular cycle given in (21)

and, by (22), v with the optimal twlevel overweighting factor is given by

0 ut 1 +
This yields a very satisfactory wlevel convergence factor per cycle of 0.11 for the
first-order discredited advecion-diffusion equation.

The optimal multilevel overweighting factor m is also the same for the regular
W cycle ((-1/), and the multilevel convergence factor, following (27)-(28), is

(1

For the first-order discretized advection-diffusion equation, 0.5 and Vm 0.17.
Multiparameter optimization is also performed in the ce of a regular cycle.

5.5. Defect-correcting for finer levels. In the DCW cycle presented above,
the defect corrections were all used to improve the approximation to the problem on
the next-finer grid. But since it is only the finesgrid problem whose solution is
sought, and not those of the intermediate grids, fter convergence may be obtained
by employing operators of a much finer grid in the defect-correction stage. Clearly
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this will not affect two-level performance, since then the finest grid is used in the
defect correction anyway, but multilevel performance may be improved.

Many schemes are possible, and we consider here the ultimate one of using the
operator of the finest grid in all the defect corrections. Under the assumptions of
the present analysis, in which the effect of relaxation is disregarded, this scheme is
equivalent to employing double discretization (see [2]) within a W cycle. (In the dou-
ble discretization method, all the residuals are calculated with the fine-grid operator,
but since the initial solution on intermediate levels is zero and the effect of relaxation
is disregarded, it does not matter which operator is used on the first leg of the W
cycle.) Since now the scheme used on each grid depends on the finest mesh-size, or
rather on the ratio of the current mesh-size to the finest one, the multilevel local
mode analysis produces a family of recurrence equations rather than just one. Let
k n i again denote the difference between the finest level n and the solution level
i, and let j,k denote the error-amplification factor at level i A-j when the finest
level is n- A-k. Suppose that the error in the approximation to the equation on
level i A-j is vj. Then the first leg of the DCW cycle produces a correction v of
-C(1 j-l,k)v, as in the .regular W cycle, but the second leg now produces an ad-
ditional correction v-1- v- of C(1- -’k)[--1 A-ck-j+l(1- tfi-’k)]v, rather
than C(1 J-’k)[--1 / C(1 J-’k)]vJ of the usual DCW cycle, since the ratio of
the symbol of the operator on level i -4-j- 1 to that of the finest-level operator is
Ck-j+1. Hence, J,k is given by

(52) y,k 1 2C(1 j-l,k) + Ck-j+2(1 j-l,k)2,

for j _> 1 with 0,k 0.
From (52) it is clear that for large values of k some of the J’k’s may be quite

large in absolute value. But these only express the error-amplification factors for
intermediate grids, which are unimportant, because the purpose of the algorithm is
to reduce the error on the finest grid as efficiently as possible. The only interesting
value is therefore 12k’k, which is given by

(53) uk’k (1 Ck)2

This result can be proved from (52) by fixing k and performing an induction on j to
show that the appropriate binomial expansion is obtained when j k. The proof is
omitted due to its length and its irrelevance to the main theme. However, the result
is again clear from the fine-grid skipping point of view, although now all the levels
that are finer than the solution level are skipped. The correction on the solution
level is only Ck times the required correction, but 2k visits are made to this level, in
agreement with (53).

PROPOSITION 5. The maximal 1]k’k over all N C N 1 and k > 1 tends to e-1

.for 0.5 and to 1 for 0 < < 0.5.
Proof. For a fixed k and 0 < C < 1, tk,k in (53) decreases monotonically as C

increases. Therefore, the maximum is obtained when C . Also, for all k _> 1 and
0<<0.5,
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(54)

k+l,k+l

2k (1 2). k / 2k+2)
2

1-_- > 1.

Hence, the maximal b’k’k is obtained when k -+ oo, and is given by

lim(1--k)2 lim e_(2)__ 1, 0<{<0.5,
() l]ml

k--oo k-+cxa ( e-l, 0.5.

Conclusion. The present DCW cycle yields an error-amplification factor of e-1

with a multilevel cycle for the first-order discretized advection-diffusion equation.

5.5.1. Combining defect corrections for the finest level with OWR.
From (53) it may seem that the method of overweighted residuals cannot be profitably
combined with defect corrections for the finest level since, if C > 1, 12k,k diverges as
k -+ oo. Suppose, however, that the residuals are all transferred with an overweighting
factor of , and the defect-correction term is also multiplied by this factor (rather than
by r/k-j+1, as is implied by the fine-grid skipping viewpoint). This yields the following
recurrence equation for the error-amplification factors j,k (compare with (52)):

(56)

PROPOSITION 6. For all 0.5 _< C _< 1 and all k >_ 1, (56) with the optimal
two-level overweighting factor r] 4/3 satisfies

(57) pk’k(C) < ’*(1)= .
Rather than attempting the difficult task of proving Proposition 6 directly, let us

note again that in the present algorithm the solution level can be viewed as solving
directly for the correction for the finest grid, rather than for its next-finer grid. But
it only yields Ck of the required correction per visit (multiplied by some coefficient
that depends on the overweighting factor ). Therefore, pk,k, which is a polynomial
in C with coefficients that depend on r/, can also be written as a polynomial in Ck.
Let us define accordingly

(5s) k,k(Cg) de___f .]k, (C)

#k, also describes the .amplification factor of the fine-grid error, but in units of the
solution-level correction, rather than the finest-level correction. Therefore, it satisfies
a recurrence relationship similar to (56), but with C replaced by 1. In particular,
#j,k #,j for all 1 _< j _< k, yielding the recurrence relationship

(59) #k’k(ck) [1 r(1 #k-l’k-l(ck))]2
for k > 1, with

(60) #l’l(ck) (1 riCk) 2
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From this relationship it is fairly straightforward to prove Proposition 6, since the
conditions that #k,k must satisfy can be traced back to sufficient conditions on #1,1,
which can be shown by induction to be satisfied. We omit the proof since it is irrelevant
to the main issues and somewhat lengthy.

Conclusion. Under the present assumptions the optimal two-level convergence
factor of 0.11 is attainable with a multilevel cycle.

5.6. Numerical experiments. Numerical experiments were carried out with
the same problems as for the method of OWR (4.5). The fine mesh-size in the
two-level experiments was again 1/64, and four levels were employed in the multi-
level cycles, the finest mesh-size again being 1/128. The same discretizations were
employed.

The operator L/ was chosen to be a central-difference approximation (to the
advection operator), plus artificial viscosity with coefficients that approximate (to
second order) the viscosity coefficients corresponding to grid h.

The results with the regular DCW cycle, as described in 5.4 with various over-
weighting factors r/, appear in Table 2. Two prerelaxation and two postrelaxation
sweeps were performed, and the experiments were repeated with three pre- and three
postrelaxations (results in parentheses).

TABLE 2
Asymptotic residual convergence factors of numerical calculations for the AD equation and

INS equations, solved with a DCW cycle, are compared with analytical predictions for various single
overweighting factors 7. Two (three) pre- and two (three) postrelaxation sweeps were employed.

Two-level Multilevel

Analytical Numerical Numerical Analytical Numerical Numerical
prediction AD INS prediction AD INS

1.00

1.10

1.20

1.30

1.33

1.40

1.50

0.25

0.20

0.25

0.20

0.24 (0.24) 0.48

0.38

0.16 0.16 0.21 (0.20) 0.30

0.12 0.11 0.21 (0.19) 0.22

0.11 0.11 0.21 (0.16) 0.20

0.16 0.12 0.24 (0.20) 0.16

o. o.o 0.28 (0.25) o.5

0.48

0.39

0.30

0.22

0.20

0.15

0.20

0.47 (0.46)

0.39 (0.39)
O.Ze (O.Z3)
0.29 (0.27)
0.30 (0.26)
0.33 (0.29)
0.0 (0.50)

The numerical performance of the advection-diffusion solver again matches the
prediction well. Performance obtained with large overweighting factors is somewhat
better than predicted, especially when more relaxation sweeps are carried out. The
reason for this is that, when is larger than 4/3, the slowest components to converge
have the second-finest level as their solution level. For these components, relaxation on
the finest grid still has a nonnegligible effect, since their frequencies are fairly high. On
the other hand, when is smaller than 4/3, the slowest-converging components have
solution levels that are very coarse, so that even if relaxation on their next-finer grid is
very effective, the overall improvement in the convergence rate is very small. Results
with the incompressible flow equations were not quite as good as predicted, although
a very significant improvement was observed. These results improve further if a small
amount of extra artificial viscosity is added, yielding a more effective smoother. When
the viscosity coefficients are increased by 40 percent, for example, the asymptotic
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residual convergence factors with y 4/3 and six relaxation sweeps per level improve
to 0.14 (two-level) and 0.24 (multilevel). Of course, there is then a corresponding loss
in accuracy, and the cost of performing more sweeps instead must be weighed against
the cost of using slightly greater viscosity with a correspondingly finer grid to regain
accuracy. Once again, as in the results listed in Table 1, greater overweighting factors
than 4/3 yielded poorer results.

The multilevel experiments were repeated with the improvement of correcting
the defect for the finest level, as introduced in 5.5. The results are compared with
those predicted by numerical analysis of (56) in Table 3. Again, two (three) pre- and
two (three) postrelaxations per level were performed. The numerical results match
the predictions well for the advection-diffusion equation, although a total of four re-
laxation sweeps per level (with the present smoother) did not suffice to reduce the
high-frequency errors enough. As more and more levels are used, the assumption of
the analysis, that the only significant difference between the coarse-grid operators and
the fine-grid ones is in the artificial viscosity, becomes poorer and poorer, since the
correction level may be much coarser than the finest level. Hence, somewhat better
results can be obtained by defect-correcting just a few levels up, and not all the way to
the fine-grid operator. An optimal strategy may be worked out experimentally. The
INS performance once again lags behind somewhat, but a highly significant improve-
ment is shown, which is again increased by adding some artificial viscosity. When this
viscosity is increased by 40 percent, the asymptotic residual convergence factor with

4/3 and six relaxation sweeps per level improves to 0.18. Once again, there is of
course a loss of accuracy, which would require a correspondingly finer grid to offset.
A slight further increase can be obtained by defect-correcting just a few levels up,
rather than for the finest level.

TABLE 3
Asymptotic residual convergence factors of numerical calculations for the AD equation and INS

equations, solved with a DCW cycle with defect corrections, calculated by the finest-grid operator, are
compared with analytical predictions for various single overweighting factors , which are calculated
numerically from (56). Two (three) pre- and two (three) postrelaxations were employed.

prediction
Numerical

AD
Numerical

INS

1.00

1.10

1.20

1’ .30
1.33

1.40

1.50

0.37 0.36 (0.36) 0.36 (0.36)
0.23 0.23 (0.23) 0.28 (0.28)
0.16 0.16 (0.14) 0.26 (0.23)
0.12 0.15 (0.i0) 0.29 (0.21)
0. 0. (0.0) 0.3 (0.2)
0. 0.0 (0.13) 0.3 (0.3)
0.25 0.31 (0.21) 0.80 (0.67)

6. Conclusions and remarks. Methods of acceleration of multigrid conver-
gence have been developed, analyzed, and tested, the numerical results mostly match-
ing the predictions of the analyses well. With the optimal method of combining resid-
ual overweighting and defect corrections within the W cycle, a multilevel convergence
factor of about 0.2 has been obtained for the incompressible flow equations, and 0.1 for
the advection-diffusion equations with first-order discretization. We note that large
overweighting factors may show poorer behavior than expected for the Navier-Stokes
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solver, unless supplemented by extra relaxation sweeps. Some work may be saved by
varying the number of sweeps per level.

Although the analyses and experiments were carried out for the case of vanishing
diffusion coefficients, the methods apply to finite-viscosity calculations equally well.
The optimal parameters are then reduced, and the results improve accordingly, but
using the optimal parameters calculated herein will still yield convergence factors
that are at least as good as in the vanishing-viscosity case. This has been verified
experimentally, the convergence factors actually improving, even with the present
optimal overweighting factors, apparently due to improved smoothing. Finally, these
methods can also be used with anisotropic viscosity as in upstream differencing.

The methods as presented here are of quite limited value when used directly with
second-order accurate discretization. Very large overweighting factors need then be
applied, which also amplify high-frequency error components. An approach that ap-
pears promising is to employ overweighting in conjunction with upstream discretiza-
tion and downstream ordering of relaxation. Early results with the advection-diffusion
equation (with closed streamlines) have been successful, but only very simple examples
have so far been attempted, and this approach requires extensive research.
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