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Abstract

Beyond eliminating the critical slowing down, multigrid algorithms
can also eliminate the need to produce many fine-grid configurations
in order to reduce statistical errors. Thermodynamic limits can be
calculated to accuracy ¢ in just O(e~2) computer operations. Ex-
amples described in details and with results of numerical tests are
the calculation of the susceptibility and the average energy in Gaus-
sian models, and also the determination of the critical temperature
in a two dimensional Ising spin model. Extension to more advanced
models are outlined.
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1. Introduction

The aim in statistical physics is to calculate various average properties of configu-
rations governed by the Boltzman distribution. This is usually done by measuring
these averages over a sequence of Monte Carlo iterations. Unfortunately, such
processes tend to suffer from several independent inefficiency factors that multiply
each other and thus produce very expensive computations.

The best known of these inefficiency factors is the critical slowing down (CSD).
This is the phenomenon, typical to simulations of critical systems, that with the
increase in lattice size there also comes an increase in the number of Monte Carlo
passes over the lattice needed to produce a new configuration which is statistically
“useful”, i.e., substantially independent of, or only weakly correlated to, a former
configuration. Considerable efforts have been devoted to overcome this difficulty.
For simple enough cases with real-state variables and at most mild nonlinearities,
a general method to eliminate CSD is by classical multigrid methods, properly
adapted (see §7.1 in ref. and ref. ). For models with severe nonlinearities or
discrete variables, such as the ¢? or Ising spin models, a number of publications
report on simulation techniques that partially () or completely () eliminate CSD.
This means that in a work just proportional to the number of gridpoints, a new,
substantially independent configuration can be generated.

Optimal as this result is, other, no less important factors of inefficiency still
remain intact. To calculate a thermodynamic quantity to a certain accuracy &,
one needs to produce 0(02&‘_2) essentially independent configurations to average
out the deviation exhibited by each of them, where o denotes the standard (i.e.,
the Lo average) deviation. Also, the size of the grid must increase as some positive
power of e~!. Multiscale calculations may overcome these additional inefficiency
factors as well by introducing more statistical measurements at coarse levels and
by other means (App-B) - More directly, what we intend to demonstrate below is
that the multigrid structure can be used for measuring meaningful thermodynamic
quantities in an optimal computational time.

Namely, we will show that thermodynamic limits (quantities obtained at the
limit of infinite grids) can be calculated to accuracy e using only 0(6_2) computer
operations. This is just the same order of complexity as needed to calculate, by
statistical trials, any simple “pointwise” average, such as the frequency of “heads”
in coin tossing.

Our prime examples here will be the calculation of the susceptibility and
the average energy in the Gaussian model, and of the critical temperature in
the two dimensional Ising model. These cases are ideal for developing, testing
and demonstrating the new multilevel techniques, because of their simplicity and
because analytical solutions are known and can be used for comparing the results
and understanding the behavior of the numerical processes.

For the Gaussian model it is shown in Sec. 2 that both the susceptibility (at
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the limit of vanishing meshsize or infinite grid) and the average energy per degree
of freedom (on arbitrarily large grids) can be calculated to a relative accuracy
¢ in about 10e~2 random number generations (independently of the size of the
grid). It is also shown that the multigrid algorithms for these two calculations
(susceptibility and energy) cannot be the same; their “cycle index” must differ.

The generalization from the Gaussian to other models, with continuous state
but not quadratic Hamiltonians, is not straightforward, but possible. The different
scales are no longer strictly independent of each other, but it is still usually true
that large-scale Hamiltonians can be constructed with significantly-computation-
consuming couplings only to neighboring scales, not to much finer ones. The
general approach is outlined in Sec. 4. An important feature is that it can be used
for a direct and simple computational derivation of macroscopic equations for the
model at hand.

For compact-state models this general approach turns out to lead quite nat-
urally to stochastic (approximate) blocking occuring on sufficiently coarser grids,
reminiscent of the Swendsen-Wang (SW) blocking in discrete-state models. The
explicit SW-type blocking is thus needed only for discontinuous models, i.e., few-
state models (Ising, Potts, etc.) or, more generally, models whose large-scale
probable fluctuations exhibit strong jumps already at the smallest scale (¢4 mod-
els, etc.; the two dimensional XY model at critical temperature may also belong
here).

It is not clear whether for such discontinuous models optimal computations of
thermodynamic limits (i.e., obtaining accuracy e in O(e~2) operations) is always
possible. As an example, we discuss in detail calculations with the two dimensional
Ising spin model. It is shown that, due indeed to the discontinuity of the model,
the sequence of configurations produced within one multigrid cycle so depend on
each other that not much can be gained by introducing statistical measurements
at coarse levels. Nevertheless, the results indicate that it may still be possible to
calculate thermodynamic quantities, such as the critical temperature, in optimal

(O(e72)) time.

2. One dimensional Gaussian model: fast calculations of thermody-
namic quantities

A multigrid algorithm for simple continuous-state models, such as the Gaus-
sian model, has been described by us in ref. , and independently, by Goodman
and Sokal (. The latter also tested it for the Gaussian model and reported that
it indeed eliminated CSD. In the present work we show that the multigrid Monte
Carlo can be used not only for eliminating the CSD, but also for accelerated cal-
culation of averages, especially those which depend on large-scale fluctuations.
Thermodynamic limits can be calculated to accuracy ¢ in just 0(8_2) computer
operations.
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The outline of this chapter is as follows. In Sec. 2.1 we have first considered
the one dimensional continuous case for which, by Fourier analysis, we could cal-
culate in closed form some thermodynamic quantities. Analogous quantities on
finite grids are introduced in Sec. 2.2. In Secs. 2.3 and 2.4 we describe an ex-
tremely efficient multigrid algorithm for evaluating the discrete susceptibility and
approaching its limit for zero meshsize. Some remarks on parallel processing are
briefly given in Sec. 2.5. Numerical experiments and results are finally summa-
rized in Sec. 2.6. The evaluation of the average energy per degree of freedom is
described in Sec. 2.7.

2.1 Continuous case

To facilitate theoretical analysis of the algorithms and results we treat the
constant coefficient case. But the same algorithms can be used for much more
general situations, with a similar efficiency.

The Hamiltonian associated with the continuous case is:

L
’H(u):/o ulde, (1)

where u = u(x) is a function (configuration) defined for 0 < x < L. Homogeneous
Dirichlet boundary conditions, u(0) = u(L) = 0, are used for definiteness, though
others could serve as well. Consequently, a general configuration u(z) can be
expanded by:

u(z) = Z cjsin(jrx/L), (2)
j=1

where the Fourier coefficient c; are real. By substituting (2) into (1) one gets:

72
_ 2 2
H(u) = 27 - J € (3)
J=1
The magnetization is given by:
1 [E 2 —
M) =7 [ ulede =23 il o

where Y ¥, here and below, stands for a summation over odd integers. As the
probability density of each configuration u is given by the density function of the
Boltzman distribution

P(u) = e /T /Z(T), (5)

,4,



straightforward calculations of the averaged magnetization ((M)), susceptibility
((M?) — (M)?) and energy ((#)) can easily be made using the above Fourier
expansion, leading to the following results:

(M) =0 (6a)

(M?) — (M)? = (1/5%) (60)

H

D) ; (6¢)

Although the Hamiltonian is not bounded, its differences associated with changing
any c; (or any discrete degree of freedom defined in Sec. 2.2 below) are well defined,
hence it yields these well defined statistics.

2.2 Discrete case

In order to measure such statistical averages numerically, it is necessary to dis-
cretize the system. On a grid with meshsize h = L/N, the discretized Hamiltonian
Hp, (u), approximating (1), can be written as:

1 N
= Z [u(x;) — u(mi_l)]2, (7)
i=1

where z; = ih (0 <i < N) are the gridpoints. For the simplicity of the multigrid
algorithm (see Sec. 2.3) we have assumed N = 2k the general case could, however,
be calculated as well by handling the boundaries differently. Assuming again
u(zg) = u(xpy) = 0, a general grid configuration can be represented by

N—-1
)= 3 ¢jsin(jrai/L), (8)
j=1
leading together with (7) to
o7 N-1
Ha(u) = 55 > cisin®(jmh/(2L)). (9)
j=1

The discrete magnetization is given by

h hN_l* cos(jmh/(2L))
)= 2 ule) =7 Zl “sin(jrh/(2L))" (10)

1=0 1=
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By using the probability distribution (5), where #p,(u) replaces H(u), one can
derive:

(Mp) =0 (11a)
2 « cos?(jmh/(2L))

Z sin®(jwh/(2L)) (116)

(Hp) =T(N —1)/2. (11c)

As N — oo (with fixed L, hence h — 0), which is called here the thermody-
namic limit, the results of the discrete case tend to those of the continuum. (M ,%}

exhibits a discretization error of O(h2). More precisely, Taylor expansion of each
term in (11b) and comparison to (6b) yields

(M?y = (M?) — +TLO(N™3), (11d)

where terms with j > N/2 are omitted from both (M,%) and (M?) since they
clearly have only TLO(N~3) total contribution. The relative discretization error,
e.g., \(Mg) — (M?)|/(M?), is clearly O(h?/L?). Clearly, by using a pt" order
discretization, this relative error can be further reduced to O(h?/LP). As will be
explained later, the algorithm will not necessarily actually provide this O(hP/LP)
accuracy for any given gridsize, as this may turn out to be wasteful when statistical
errors are taken into account as well. Instead, it will be constructed so as to keep
the number of operations optimal with respect to the overall produced accuracy.
The details of the algorithm are given next.

2.3 Description of the multigrid cycle

Consider the following generalized Hamiltonian, which includes an external
magnetic field of density ¢; at gridpoint z; (actually, on the finest grid ¢; = 0 for
0<i<N):

N N-1
M) = 2 S~ ) +h Y g (12)

where u; = u(z;).

The coarse grid with meshsize H = 2h is constructed by taking every other

fine-grid point: see Fig. 1. The coarse-grid function v = (uOH, cee u?, cee Ug/z)
is interpreted as a correction to the fine-grid function ul = (ugy ... Uiy ..., uN),
updating the latter through interpolation and addition:

uh<—&h+lﬁl u', (13)

- 6 —



where @ is the fine-grid configuration at the stage of switching to the coarse-

grid and I I’} denotes interpolation from grid H to grid h (we will use the linear
interpolation, which is optimal here, see conclusion C in Sec. 2.4).

The fine-grid Hamiltonian #,(u®) resulting from that interpolation can be
written as follows:

Hp (@ + 1R utt) = Hy (") + Hp (uf?), (14)

where M, (@) is given by (12) and Hp (uf) is:

| N2 N/2—-1
H H _H \2 H H
Hp(u') = Vi S (uf —uf )P+ H DY ¢fur, (15)
with
~h ~h _ ~h h h 4 4h
o = =2 171 iH2 Giy 200+ dip (I=i/2=1,...,N/2-1)

2h?2 4 ’

(16)
representing fine-to-coarse induced field-like terms. These coarse terms are cal-
culated from the details of the fine-grid configuration at coarsening and are fixed
throughout the processing on the coarser level. The variables of the coarse grid

u? are initially set to zero, corresponding to zero initial corrections.

The entire algorithm can be described by a sequence of multigrid cycles for
the finest level. A cycle for any given (“current”) level is recursively defined by
the following five steps.

1. v; Monte Carlo sweeps are first made on the current level. Then, if this level
is the coarsest, go to 5.

2.  The next coarser level is created from the current one by determining the
coarse field-like terms (16).

3. v multigrid cycles for the coarse level are performed. (y may change from
one cycle of the current level to another in some periodic manner. The cycle
index is the average value of v, and for convenience it will also be denoted by
. Thus v need not be an integer, and may be smaller than 1.)

4. Update the current level by performing the linear interpolation (13) from the
coarse level.

5. Additional 9 Monte Carlo sweeps are finally made on the current level.

The Monte Carlo sweeps are performed by changing each variable in its turn
randomly according to its associated distribution, regarding its neighbors as fixed.

The values of v1, v2 and v are discussed below.

The described cycle, even with v = 1 (which is called a V cycle), would
generate a new configuration substantially independent of the pre-cycle one in a
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work just proportional to the number of gridpoints; it would thus eliminate the
critical slowing down. By the term substantially independent configuration we
mean that the correlation between any quantity of interest in the initial arbitrary
configuration and in the one produced after £ cycles decays like e k/ T, where T,
the cycle auto-correlation time, is independent of the lattice size N. In fact 7 is
very small, so there is almost no correlation between any quantities before and
after even one cycle.

The crucial issue, however, turns out to be different; it is addressed next.

2.4 Fast sampling of susceptibility

Any observable which is bounded as h — 0 (e.g., magnetization and sus-
ceptibility, but not energy; see (6¢)), must be dominated by contributions from
large-scale fluctuations (low-frequency Fourier components; cf., e.g., (6b)). The
main issue of the Monte Carlo simulation is therefore to sample quickly as many
such fluctuations as possible. For this purpose a cycle index v substantially larger
than 1 may be used, and averages will be calculated over as many measurements
as one could make within each cycle, especially at its coarsest level stages.

Consider, for instance, the calculation of (Mz) Observe first that M} can

be evaluated on any level. Indeed, denoting by @ the fine-grid configuration at
coarsening, (10) and (13) imply that

N N N/2

My = 3 S+ = Yl 2 S (17)

i=0 1=0 I=0

Employing this recursively one gets that when working on level £, if its current
configuration is uP. then the (fine-grid) magnetization corresponding to it is

/-1
My =Y My, + My, (18)
j=0
. —9j _hy ~hj ~h; th
where generally hj = 27h, My = L 15 “I , M, 7 > ru;’, and u" is the j

level configuration at the stage of switching to the next coarser level. Thus, many
measurements of M ,% can be made within a cycle, and their average M. ,% can be
used as an estimate for the discrete susceptibility (M ,%) In practice, measurements
need be taken only on the coarsest level, and in fact after each relaxation sweep
there, because only that is when substantial changes in M}, are introduced.

Let us now estimate the number m; of relaxation sweeps the algorithm needs
to perform on level i, i.e. on the grid with meshsize h; = 2*h, (i=0,1,...,4=
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logy(N/2)), in order to achieve relative accuracy € in the estimation of the suscep-
tibility. The relaxation sweep on level ¢ strongly affects, hence effectively samples,
only those Fourier coefficients ¢; (cf. (2)) for which j = O(L/h;). Hence m;
depends on the contribution of these components to the deviations in measuring
(M?). By (4)

4 .
== Z*Cjck/(Jk)- (19)
Jik
Consider first a term (4, k) in (19) for which both j and k are O(L/h;), hence the

term is effectively sampled O(m;) times in a cycle. Since the standard deviation
of the term is

4 1/2 L ~
jhn? <<(Cj0k)2> - <Cj0k>2) = O(j*k~*LT) = O(h{L~°T),
the standard deviation of its average over the O(m;) samples is O(m; ~1/2 h4 L73T).

There are O(h; 2L2) such terms, and their deviations can be con51dered indepen-

dent of each other, hence their total contribution is O(m, -1/ 2h?’L_2T). In case

O(L/h;_y) and k = O(L/h;) where r > 1 (i.e., h; > hZ r ), the term (4, k) in
(19) is effectively sampled as follows: in an inner loop, for a (nearly) fixed value
of ¢j, the value of cj, is averaged O(m;/m;_,) times, yielding an average whose
deviation is of the order

. o\ —1/2 , . 1/2
o(Giz) ") -oGalin)”)

Then, in an outer loop, the c; in this average is averaged over O(m;_,) samples,
giving results with deviations of order

-1/2 1/2 —1/2
m. .
0| = (";;LT) (2)1/2 :0(’”2]€2 LT) O(m; /2 h2h2_ L3T).

There are O(h_lh_1 L2) such terms, effectively independent, hence their total

deviation is O(m 1/2h?/2h?/3L_2T

gives again O(m, /2h3L 2T) = (M?%)O(m;
expected error in measuring (M?) is

), which, when summed over integers r > 0

1/2h3L 3). Hence the total relative

l
e=0(> "m; PK3L73) + O(WPLP) (20)
1=0
where the last term added here is the discretization error (cf. Sec. 2.2). The total
work (operations) on all the levels is clearly

l
W =Y m;O(L/h;). (21)
=0
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The optimal choice for m; (yielding either minimal e for a given W or minimal
W for a given €) is obtained when 3% +A1 % = 0, which, by (20) and (21) yields

mi = Agh®/® = A328i/3, (22)

where A1, A2 and A3 are independent of i. Relation (22) is realized by the cycle
index yopt = 28/3 ~ 6.35.

For any fixed cycle index v we have m; = m~*t, where m is the total number
of cycles performed. Since h;L~! = 0(2’_1), we can perform the summations in
(20) and (21) and obtain

—1/2 _ 9—3l
_ -1/27 ' T4 —Ip
€ O(m - 2_371/2 > +0(27'P) (23)
and l l
_ -2
W—O<m1_27_1> (24)

for any 2 < v < 26. Actually, by choosing v and the approximation order p so
that + is significantly smaller than 227, the second term in (23) can be ignored,
yielding W = O(e™2) and m = O(e~2y~!). While v = ~y,p indeed minimizes
We2, the value of We? (when the second term in (23) is negligible) is only 15%
different from that minimum for any 4 < v < 11. The four main conclusions from
this analysis are therefore as follows.

A. Cycle index 7. Generally, any 2 < v < min(64,2%P) yields W =
O(e72). Asymptotically (for € — 0), the minimal value of We? is attained for
v = 28/3 ~ 6.35 and values very close to the minimum are obtained for 4 <y < 11.
In practice (for realistic values of €), the smaller values of v in this range are better,
since for them the influence of the second term in (23) is smaller.

B. Discretization order p. There is little advantage in raising the order
beyond p = 2. It would allow the use of cycles with larger v, but the dominating
coarsest-grid work will remain essentially the same. The only slight advantage
may be the smaller storage requirement, which is O(N) > O(e~/P) (cf. Sec. 2.5).

C. Interpolation order. Linear interpolation (second order interpo-

lation) Igh is good enough, as any smooth configuration u has an approximate

configuration 1. ghuzh, such that the two configurations has almost the same energy.

This means that the physical density function does not change much and thus the
efficiency of the algorithm is not reduced. Thus, not much could be gained by
using interpolation orders higher than 2 (meaning I’} higher than linear). Such
higher interpolation order would also make the coarse grid Hamiltonian substan-
tially more complicated. A relatively little complication, together with almost all
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the possible gain, can be obtained by using third order interpolation (based either
on the function z(L — z) or on sin(wz/L)) only at the transition to the coarsest
grid (which has only one degree of freedom).

On the other hand, the order of the interpolation operator Ié‘h should be at
least 2, i.e., linear interpolation. This is because the coarser levels should accu-
rately sample all the components slow to change under the current-level Monte
Carlo process. It means that every slowly changing configuration uP must have an
aproximate configuration of the form Ighuzh, and the two configurations should
have approximately the same energy. The linear interpolation satisfies this re-

quirement. A border case is the first order (constant) interpolation Igh' For any

2h

smooth configuration u approximated by a function u“" on a coarse grid with
h ,,2h

meshsize 2h, the energy of I, u“" is about twice that of ul. Hence, a very smooth
component on the finest grid, u”, that is effectively changed only on a coarse grid
with meshsize 29h, will be represented on that coarse grid by an approximation
which has an energy 29 times its own energy. Thus, the changes introduced to
the amplitude of such an approximation on that coarse grid will be only 0(2_‘1/ 2)
times the typical fluctuations of that amplitude. It follows that roughly 27 visits
to that coarse grid will be needed to accumulate a typical fluctuation. This means
that a cycle index v > 2 must be used to eliminate the CSD. Thus, for two rea-
sons constant interpolation is not used. Firstly, the work per W cycle (y = 2) is
O(NlogN), so one cannot eliminate the CSD. Secondly, and much more impor-
tantly, a whole W cycle is needed to produce a single useful measurement, whereas
in the algorithm above each additional movement on the coarsest grid generates
another useful measurement.

D. Number of cycles m. Asymptotically, to avoid an error € dominated
by the discretization error (the second term in (23)), one should choose m <
O((16/7)%). Any larger number of cycles would do useless work of reducing the
statistical error, because this error is already smaller than the discretization error.
In practice, for realistic €, the smallest m possible, i.e., m = 1, is preferable for
minimizing the influence of the discretization error. This means that whenever the
desired accuracy ¢ is reduced (or the available amount of processing W is increased)
the work is increased not by increasing m, but by raising [, i.e., introducing new
finer levels (processed very rarely, of course) only.

In summary, in computing susceptibility one can use second order discretiza-
tion and second order interpolation, any cycle index in the range 4 < v < 11
(with some preference for the lower values), and any number of cycles 1 < m <
O((16/7)%) (with some preference to m = 1): the overall computational work will
always be dominated by the m~y¢ = O(e¢~2) work on the coarsest grid, with ¢ being
the 2relative accuracy that will be obtained in calculating the thermodynamic limit
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2.5 Parallel processing

The algorithm described above can use very high degree of parallel processing.
On each grid, the Monte Carlo sweeps can proceed simultaneously at half the grid-
points: first the odd, then the even. The calculation of the coarse-grid functions
(16) can be done at all points in parallel. More important, the employment of the
« coarse grid cycles can all proceed in parallel to each other, and so can the 2 cy-
cles of the still coarser level, etc. So, if an unlimited number (or actually O(¢~2))
processors are available, the algorithm can in principle be performed in O(log %)
parallel steps. This of course ignores processor communication considerations.

For keeping the total communication, as well as the total storage, at minimum,
it may be desired to have as small N (number of points on the finest grid) as
possible. For this, a discretization order p = 4 may be preferred, since N =
O(e_l/ P). Still higher order discretization would not help, since components with
O(h) wavelength contribute O(h%) to (M?2), so for an O(e) accuracy a grid must

be used whose meshsize is no larger than 0(51/ 4.

2.6 Numerical results

We have tested the multigrid algorithm with v = 1,2,3,4,6,12 and 24 on
grid of sizes up to 128. Our main aim was to show that for appropriate values
of v optimal behavior is achieved; i.e., the average error in the approximation for
(M?) (6b) produced by a multigrid cycle is reduced by a factor /7 upon using a
(finest) grid twice finer (N twice larger), which increases the work by a factor 7.
The susceptibility has been measured over just one cycle (m = 1). In that cycle,
M }% has been measured, using (18), after each relaxation step on the coarsest level,

hence (v1 + 1/2)’74 times altogether. The average of these measurements, W, is
the approximation for (M,%) (11b), which in turn is also an approximation for
the desired thermodynamic limit (M?2). The measured relative error is defined as

€= |M}2L — (M?)|/(M?). We also define o to be the expected value of #RAN-2,
where #RAN is the amount of work spent per cycle, measured by the number of
times a random number is generated, which (for 4 > 2) is dominated by (v1+v2)~?,
the number of relaxation steps on the coarsest level. Thus, a should turn out
constant if indeed the algorithm solves to accuracy € in O(¢~2) operations. For
each value of N, o was estimated by averaging € over an ensemble of 2000 to 5000
runs.

In Fig. 2 we present « for v = 1,2,3,4,6,12 and 24 vs (log) system size N.
As expected, for 2 < v < 16 the value of o tends to a constant as N increases.
Also, the cycle with smaller values of 7 is slightly more efficient (has smaller «) as
expected (see conclusion A in Sec. 2.4). The graphs for v = 4,6 are indistinguish-
able.
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2.7 o-Susceptibility and its computation

We introduced a new type of observable, x,, defined in the continuum limit

b
y o = <%/0L(u(a:))2da: _ (% /OL u(ac)da:>2>,

and approximated in the discrete model by

1=0 =0
(3 §u2> (ar?)

The significance of this observable is that it corressponds to the susceptibility of
the Ising model (in the cases where (M) = 0 ), and to susceptibility of other sigma
models at the limit of small fluctuations. Indeed, assuming u; — u to be small,
where @ = (Zévzl uj)/N, it is easy to see that

1/ (& 2 N 2 1
N< (2:1 cosu,-) + (;sinu,) > ~ N ng,
1= 1=

the expression on the left-hand side being the susceptibility of the XY model with
u; as the angle parameters. We therefore call x, the o-susceptibility.

The observables x, and X(’; can be computed analytically as follows. By
Parseval Identity and by (4)

o= (3= (B ) )

Hence (using the density function of the Boltzman distribution (5)) the continuous
o-susceptibility is

Similar calculations in the discrete case lead to

N—1 N-1 - 2
h_ /L 2_(h *c.COS(J”h/(ﬂ'))
Xo = <2 Z J <L ; J sin(jﬂ'h/(2L))>

=1
_ Th? NZ_I 1 % Nzl* cos?(jmh/(2L))
8L o sin?(jwh/(2L)) 4L3 i sin(jwh/(2L))
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We claim that the same multigrid algorithm, which is described in Sec. 2.3,
can achieve optimal results, in measuring the o-susceptibility, using appropriate
cycle index ~. Fourier analysis shows that any 2 < v < 8 yields W = 0(6_2).
Numerical experiments for v = 3,5 demonstrates that the algorithm solves to
accuracy € in 0(5_2) operations, i.e. « tends to a constant as N increases. See
Fig. 2.a.

2.8 Computing average energy per degree of freedom

From (6¢) and (11c) it is evident that the average energy per degree of freedom
is exactly T'/2 both in the discretization, with any meshsize, and in the continuum
limit (where that is exactly the average energy of each Fourier component). We
study now the fast Monte Carlo calculation of this quantity.

Whereas the calculation of susceptibility has been shown to be heavily domi-
nated by the coarsest level, the sampling of H presents the other extreme. Since
most Fourier components are substantially affeceted by relaxation on the finest
level, a measurement of H should be done after each relaxation sweep on that
level, and the work should be dominated by the finest-grid sweeps.

Consider the calculation of the average energy on a given firzed finest grid,

with meshsize hg and N = L/hg intervals. Since, H(u) = %Z;’;l j2c? (see
(3)), in each measurement of H each Fourier component contributes the following

deviation:
1/2

(k- @)

which is of the order O(T). For any level with meshsize h;, the number of com-
ponents with wavelength O(h;) is O(hi_lL), and their total deviation in each

;1/2L1/2T). If grid h; is averaged m; > 1 times,
this deviation drops to O(mi_l/ 2hi_l/ 2pi2r ). To obtain relative accuracy ¢, this

deviation should be less than e(Hy) = O(ehy LLT), hence it is necessary that

m; > O(a_2h(2)hl-_1L_1). To guarantee that the deviations contributed from all
levels do not accumulate unboundedly, the slightly stronger condition

measurement is therefore O(h

m; > O(e2h270nd 1LY, (24)
where § is any (small) positive number, may be required.

In particular, mg > O(s_2N_1). On the other hand, for the total work to be
at most O(e72) it is necessary that Nmg < O(e~2), hence

mo = 0 2N~1). (25)

Both (24) and (25) can be satisfied by any multigrid cycle with index v > .5. The
total work will still be O(¢72) and independent of N iff v < 2.
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Thus, the energy can be calculated to O(e) relative accuracy in O(e~2) op-
erations by a multigrid cycle with index .5 < v < 2. Effectiveness diminishes as
~ approaches either endpoints (.5 or 2). The V cycle, i.e., v = 1, is of course the
most convenient.

Results are presented in Fig. 3. #; has been measured, using (14), after
each relaxation sweep on each level. The average of these measurements, H;,
is an approximation for (#). The measured relative error is defined as ¢ =

]\7,"_”1 - % |/% The values of «, defined as in Sec. 2.6, are shown for v = 0 (simple

Monte Carlo), 1, 2 and 3 (with v; = v = 1) as a function of the number mgy of
sweeps over a grid with N = 64 points. For clarity of results, the work in first
equilibrating the system by 10 V cycles (actually a much smaller number would
suffice) is not taken into account in calculating . Indeed, for small € this work
should be negligible.

The results show the expected slowing down for v = 0 and the optimality of
4 = 1. The work on grid h; = 2*hqg is Nmq(v/2)?, so the total work (or #RAN)
is 2Nmy for v = 1, Nmgloga N for v = 2 and Nmg((y/2)"92N —1)/(v/2 - 1) for
v > 2. Hence, for N = 64 the work is 2Nmg, 6 Nmg and 20.8 Nmg for v = 1,2 and
3 respectively. The relative values of o seen in Fig. 3 almost exactly correspond
to this increase of work with -, showing in comparison to it only a slight initial
decrease (with the initial increase of v for fixed mg). The slight decrease is due
to the increased accuracy of smoother components, which are the only ones to
benefit from higher v (initially; when «y increases further, the additional benefit is
negligible).

Generally, for any fixed N « is approximately a constant if v > .5, but for
v > 2 this constant increases with N, being O(N'97/1092=1) for ~ > 2 and
O(logN) for v = 2. Figures 4a and 4b demonstrate this.

3. Toward optimal algorithms for Ising models

3.1 The multigrid cycle

A multigrid Monte Carlo method, based on a stochastic coarsening procedure,
has been successfully applied to the two dimensional Ising model to inexpensively
produce a sequence of statistically independent configurations. See refs. , and
for details; the following is a brief description.

Consider the ferromagnetic Ising model Hamiltonian associated with a spin
configuration s:

H(s) = — Z Jij sisj (Jij > 0) (3.1)
(4,
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where s; is the (1 or —1) value of the spin at site 7 and where (i, j) runs over all pairs
of nearest neighbor sites on a square doubly periodic lattice. The basic strategy
of the algorithm is the stochastic generation of a new, coarser Hamiltonian:

H (==Y JThsisi , (J5>0) (3.2)

with a decreased number of degrees of freedom. Each new “spin” s} is actually a

block of one or more spins sy, so that a spin s, may belong to one and only one
particular block s%. The process of creating Hamiltonian #! from % is referred
to as going from fine to coarse level, or coarsening. Given H1, usual Monte Carlo
sweeps can be performed to generate transitions in the phase space of the new
level. The process of restoring finer scale degrees of freedom, i.e., interpreting
each flipped sll as a simultaneous flip of all the spins s, in that block, and then
returning to work with #, is called uncoarsening. The description of the coarsening
procedure and the organization of the coarsening/uncoarsening steps are given
next.

The stochastic blocking is performed by scanning the fine grid interactions
(Jijsisj) one by one, in any convenient order, each interaction in its turn being
either kept alive or terminated, according to a certain criterion (given below). If
it is “kept alive”, then it actually just stays unchanged. If it is “terminated” then
with a probability P;; = exp[—J;; (s;s; +1)/T] it is deleted, i.e., the interaction
between the spins is omitted from the coarse Hamiltonian; and with probability
1 — P;; it is frozen: its two interacting spins are blocked together so that both are
flipped simultaneously in all subsequent coarser level moves (including still-coarser
level moves subsequently made), until uncoarsening takes place. This particular
way of terminating bonds has been introduced by Swendsen and Wang [ |, and we
will denote it SW. Its particular prescription for P;; guarantees detailed balance
and is also such that a bond connecting anti-parallel spins (for which s;s; = —1)
is deleted with probability 1, and thus only parallel spins can be blocked together.

Consequently, by freezing more bonds, blocks of increased sizes are created.
The potential size of the produced block, i.e., the number of spins s, it would
include upon freezing a particular candidate bond, has been used as a criterion
for deciding whether to terminate that bond or keep it alive; e.g., by adopting the
rule of keeping the bond alive iff its freezing would produce a block of more than,
say, 4 spins.

When the process of stochastic coarsening is completed, all spins are grouped
into two different kinds of blocks: the disconnected blocks, each of which is sepa-
rated from all others by boundaries of deletions and thus have no remaining alive
interactions, and the interacting blocks, which still have alive bonds between them.
The coupling Jz-l- between two interacting blocks s} and s} is calculated by sum-
ming up all alive bonds connecting them. Starting with J;; =1 on the fine level,
stronger couplings (lej > 1) may appear between the interacting blocks. Thus, a

new Hamiltonian H! is constructed.
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The entire process can be repeated recursively: to be effective, the Monte-
Carlo simulation of H! itself includes both conventional Monte Carlo sweeps and
stochastic coarsening/uncoarsening steps. The next stochastic blocking is em-
ployed by regarding the blocks sz1 of the coarse level as now being the spins from
which the blocks of the next coarser level are constructed. Each new, coarser block
represents a block of blocks :szl and in turn can be referred to as a block of spins
sq of the finest level. Repeating this recursively, a sequence of increasingly coarser
levels is created. Each level k consists of a list of blocks, into which the original
set of spins s, (which in this notation are also s9,) is uniquely decomposed. This
list is actually a union of two sub-lists: the disconnected blocks created at all finer
levels up to and including the current one, and the interacting blocks, denoted 5?,
which are coupled by the k-level Hamiltonian

HE(sF) ==Y " Jksksh (k=0,1,2..)). (3.3)

Progressing to increasingly coarser levels, the number of alive bonds keeps
decreasing until at the coarsest level none exists. At that stage all bonds are
either frozen or deleted, so the original sets of spins s is completely decomposed
into disconnected blocks.

The entire algorithm can be described as a sequence of multigrid cycles for
the finest level, where a multigrid cycle for any given level k (the current “fine”
level, assumed not to be the coarsest level) is recursively defined as consisting of
the following five steps.

1. Nj Monte Carlo sweeps are first made on the fine level, using the Hamilto-
nian (3.3).

2. The next coarser level (sk+1,7{k+1) is created from the fine level by the
above stochastic coarsening process.

3. v multigrid cycles for the coarse level are performed. If, however this coarse
level is the coarsest, do nothing.

4. Each interacting block sfﬂ whose final value is different from its initial

value is translated into flipping all the fine-grid spins sg which belong to
it. The spins s’é in each disconnected block are flipped simultaneously with
probability 1/2.

5. N Monte Carlo sweeps are finally being made on the fine level.

We have used cycles with N = No =1 and v = 2. The parameter v is called
the cycle index, and cycles with v = 2 are called W-cycles.

The obtained results were in a certain respect very satisfactory: the CSD seem
to have been completely eliminated, meaning that in a work proportional to the
gridsize a new, substantially independent configuration was created. It was later
proved [ref to Li & Sokal] that some similar algorithms (in which, however, the
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ordering of bond termination is the same in all cycles) must suffer a (very slight)
slowing down. This raises the suspicion that the same may be true here, although
the proof does not strictly apply to our described algorithm (which generates
different bond termination ordering in each cycle: see the above rule for keeping
bonds alive). At any rate, the practical behavior exhibited no trace of slowness.

3.2 Dependency of configurations within a cycle

Using a straightforward calculation of measuring the desired averages (ob-
servables) on the sequence of configurations produced by multigrid cycles on the
finest level converges, to be sure, faster than measurements on the simple (only
single-spin) Monte Carlo simulations. But still, as expected, the obtained statistics
were slow in averaging out the deviation (from the observable average) exhibited
by each configuration. If a standard deviation o is contributed by the features
of some scale, these features have to completely change O((o/€)?) times in order
to obtain accuracy €. The trouble is presumably mostly related to large scale
deviations, because only few samples of them are contained in each produced con-
figuration, while small scale fluctuations, one could hope, are effectively averaged
out in each given configuration.

The main idea for overcoming this difficulty was to average as many config-
urations per cycle as possible. Take, for example, the calculation of the mean

2
of the squared magnetization per site (M?2), where M? = %( g\il si) and N

is the number of spins in the finest level. Instead of measuring M? once per
cycle, compute it each time the algorithm visits the coarsest level, that is, 2¢~!
times per W-cycle, where £ is the number of levels. Moreover, (as pointed out
in the Appendix of ref. 8), on each visit to the coarsest level it is possible to
immediately average over all the different spin configurations referring to their
decomposition into disconnected blocks. More precisely, it is easy to show that
if there are p disconnected blocks consisting of nq,ng,...n, spins, respectively,
(where 27:1 n; = N), then the average of M? taken over the 2# equally probable
different spin configurations allowed by these blocks is given by:

2 _ 1\, 2
(M) = =3 (3.4)

i=1

Experiments showed that, disappointingly, near the critical temperature the
convergence with such many-per-cycle measurements was not substantially faster
than with once-per-cycle measurements. We have compared the standard devia-
tion exhibited by the once-per-cycle measurements with that of the average of the
2¢=1 measurements (3.4) in one cycle, and found that on grids upto 128 x 128 the
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latter was not even twice as small as the former. Even though this may improve
on extremely large grids, not much can be gained in the practical range.

To understand this behavior one should first observe that the average (3.4) of
M? taken over the 2# equally probable configurations is heavily dominated by the
largest block, hence they are very strongly correlated. This is particularly true at
the critical (or lower) temperatures, where the size of the largest block far exceeds
all others.

Consider next the relations between the 2! coarsest configurations obtained

within a single cycle. What the experiments show is that they, too, are corre-
lated to each other. Each of them, in other words, strongly depends on both the
finest configuration at which the cycle begins and on the first level of stochas-
tic coarsening performed on it. A detailed study showed that the reason is that
the stochastic coarsening tends to produce many more deletions along boundaries
(between identical-sign regions of the current configuration) than elsewhere. As a
result, in all subsequent coarse-grid calculations, there appears a statistical bias
to retain many of these boundaries. In particular, the largest block is likely to
remain roughly the same.

Thus, in reducing the number of degrees of fredom one loses not just fine-scale
fluctuations, but large-scale ones as well.

3.3 Reducing the dependency

At first, this strong correlation between scales appears to be a necessary prop-
erty of discrete-state models. But then, a similar situation is encountered when
constant interpolation is used even for the Gaussian model (cf. Sec. 5.3 in [91]).
Since the SW termination resembles constant interpolation, the question now is
whether a better coarsening technique, capturing some features from linear inter-
polation, can be devised for Ising spins, so as to reduce the dependency between
the configurations produced within the same cycle, i.e., by the same coarsening.
Let us denote by xg = (M?) the true susceptibility, by oo = (M2 — X0)2>1/2 the
standard deviation from xg of M? at any single configuration, by 1 the average
of M? for the Hamiltonian %' and by o1 = {(x1 — x0)?)'/? the standard deviation
of x1 from xo. The above coarsening, based on the SW termination, produced
.bog < 01 < gg. The question then is whether a better coarsening technique can
produce o1 much smaller than og.

One obvious difference between constant and linear interpolation is that the
latter relates a given variable to two neighbors, not one. Thus, our first attempt
at a linear-like interpolation is to replace the two-spin SW coarsening with the
following three spin coarsening (3SC).

For simplicity we describe (and have developed and tested) only the case
of uniform bonds (constant J;,,); this is not essential, but introduces simplifying
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symmetries. Denote by 8 = J;; /T the uniform thermal binding between neighbors.
Consider a spin sg with two neighbors, s_ and sy say. The current Hamiltonian
has the form

1
T% = —Psp5— — Bsgs4+ — -+~

where the dots stand for any other terms. Three other Hamiltonians are offered
as alternatives:

%7—[1 = —00S0)S— — aSQS4 — -
l7-12 = —asgS— — 00SQS4 — -
T
1

TH?’ = —bs_sy —---

The oo value in Hy (H2) means that sg and s_ (s4) are blocked together. Note
that in Hg the two bonds between sy and its two neighbors are deleted, but a
new direct bond is introduced between the neighbors themselves. One selects H;
with probability P; (i = 1,2,3), where P; + P» + P3 = 1. To obtain detailed
balance, these probabilities are taken to depend on the current value of s_, sg
and s; according to Table 1 — plus the obvious rule that P;(—s_,sg, —s4+) =
P;(s_,s0,s+) — and the value of a and b are taken so that

e = (¥ — %) /(2 2p.)
e =% /p.,

p« being a small positive parameter. We chose px. = .15, but other values in the
range .05 < px < .2 are perhaps as good.

Table 1
S— 80 S+ P Py Py
+ o+ 4+ | Fa=e) | fa-eh) |
+ - + 0 0 1
+ + - 1 — ps 0 Dx
+ - - 0 L —px Px

The detailed balance of this, and also that of SW and other coarsening
schemes, is a special case of the following theorem, which generalizes the Kandel-
Domany [51] Theorem.

Detailed Balance Theorem. Let us denote a configuration of a model,
H(u) its Hamiltonian, and H1(u), Ha(u), . . . some alternative Hamiltonians, where
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the use of the Hamiltonian H;(u) also means restriction of the configurations u to
a subset where some functionals Fj; (u), Fia(u), etc. are frozen. Then, in a Monte
Carlo process with current configuration 4, replacing H(u) by H;(u) in probability
P;(@) > 0 maintains detailed balance provided

Py(i) = fi(Fu (1), Fia(a0), . ..)e W —Hi(w), (3.5)
where f; are arbitrary functions and where

ZP,('&) =1 for any 4. (3.6)

Note that if no real freezing is done with a certain H;, i.e., if the only frozen
functionals F;;(u) are constant (independent of u), then the coefficient f; can only
depend on i, and not in any way on @ (which is the special case proved in [51]).

Proof. Denote by P(u! — u?) the probability of obtaining the configuration u2

at any stage after starting with @ = u!. Then clearly

{1,2}
Pl »u?) = Y Py(@)ef )M/ (3.7)
k

where Z,{glﬂ} sums only over such k for which Fy; (ul) = F,; (w?), (j=1,2,...).
But for each such k, by (3.5),

Pe(ul) _ sty =i (u))—H(U?) 44 ()
Py (u?) ’

hence, by (3.7),
P(u1 — u2) = P(u2 — ul)eH(“l)_%(uz),

which is the desired detailed balance. |}

We have tested 3SC on an L x L periodic grid by applying the coarsening step
for all triplets s_, sop and s+ at grid positions (j, 2k — 1), (j,2k) and (j, 2k + 1)
respectively such that j7 + k£ is even. We compared it with an SW coarsening
that terminated all the corresponding (sg,s—) and (sg, s4+) bonds. Results at the
critical temperature are summarized in Table 2. They show that for 3SC, unlike
SW, the ration o1/xo decreases with L. This means that if the susceptibility is
measured on the first coarse grid, without ever returning to the fine, the average
error is small: it tends to 0 as L increases.
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Table 2

L X0 o0 o1 o1
SW 35C

4 12.2 1.8 7

8 41.4 7.2 1.5

16 139.5 56.8 25.6 4.0
32 470.2 192.5 81.6 10.6

The observation that has led to the construction of 3SC is that the basic
flaw in the SW coarsening is the introduction of many deletions, usually clustered
along well-defined lines: the lines of current boundaries of spin alignment. These
lines therefore exhibit in H! weakened couplings, and are thus likely to persist as
boundaries of spin alignment also on coarse grids. This means strong correlation
between different coarse grid configurations. In 3SC the introduction of such
weakened-coupline lines is minimized.

This is just a first attempt; it all may well be done better. Observe that the
blocks created by 3SC are not necessarily continguous: the Hamiltonian Fg create
a bond between s_ and s, so they later may be blocked together without having
the points in between, such as sg, included in the block. More general schemes
may create blocks that are not necessarily disjoint. And so forth: the possibilities
are many.

It is not clear at this point whether the ideal statistical efficiency is always
attainable. What has been established, we believe, is that it is possible to benefit
greatly from making many measurements at the coarse levels of a multilevel Monte-
Carlo algorithm, even in discrete-state models, if a suitable coarsening scheme is
used.

3.4 Optimal calculation of T,

Even though the SW coarsening is not optimal, as explained above, it can
still be used in an optimal calculation of certain thermodynamic quantities. As
the simplest example of such a quantity we chose the critical temperature T,
itself. The tests reported below indicate that the above multigrid cycle (Sec. 3.1)
can directly be used for a very inexpensive, in fact optimal determination of T.
More precisely, a sequence of increasingly better approximations to T, is obtained
on increasingly larger grids by performing only a few cycles on each. To achieve an
accuracy € in Ty, the amount of computational work turns out to be ae~2, where
the average value of « is about 100.
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The algorithm is based on the following measurements. In every W cycle,
performed with some temperature 7', the algorithm visits the coarsest level many
times. At each such visit the domain is completely decomposed into disconnected
blocks, and the ratio r between the number of spins in the largest of these blocks
and the total number N of spins in the lattice is measured. Denote by 7 the
average of these r’s within one W-cycle; clearly 0 < 7 < 1. Generally, if 7 < 7 (n
chosen as described below), then we say that the cycle “indicates” a supercritical
temperature: T > Tg, (or 8 = 1/T < ;). Similarly, if 7 > 7 then the cycle
indicates a subcritical temperature: T < T, (or 8 > S¢)-

This definition of T, is suitable for fairly large grids if n is chosen reasonably
small. In fact, in the range we have calculated (grids upto 128 x 128), n = .5
has already proved to be small enough. In principle, for much larger grids the
definition of T, should be modified to allow for the fact that 7 becomes small near
T., even in the subcritical range. One possible modification is to replace r by 7/,
defined as the ratio between the length of the largest block and the length L of
the domain. This quantity 7/, or its average within a cycle, does not become small
near T,.. (The length of a block B can for example be defined as 1+maxpg |i1 —j1/,
where the max is taken over all pairs of points ¢ = (41, 42) and j = (41, j2) such that
both ¢ and j are in B. For locating T, on very large grids it is enough to calculate
the approrimate length of the largest block. The coarsening process can very
inexpensively incorporate a procedure that supply each block B on some coarse
level with its approximate ming4; and maxpg i1, from which similar quantities
can be calculated for all blocks at all coarser levels.) In the practical range of our
calculations, however, this more elaborate quantity »’ proved unnecessary. What
our simpler procedure, based on r, calculates is in fact another thermodynamic
quantity, T'(n), which is the temperature for which the average magnetization
per site is 7, i.e., the temperature for which limpy o Zf\il si|/N) = n. But
the difference |T, — T'(.5)| is below the accuracy one can obtain with grids upto
128 x 128, so we had no motivation to run tests with r’ instead of r.

The experiments show that using an L x L lattice, an interval of roughly
1/L around f. is the best approximation one could get for the critical value; i.e.,
within that interval, the criterion does not correctly distinguish between sub and
super-critical temperatures. To get an approximation twice more accurate, it is
therefore necessary to switch to a 4 times larger grid: 2L x 2L. (This observation
is of course in agreement with the known critical exponent v = 1, i.e., with the
correlation length being proportional to (T — T.)~!.) In order to save work, the
algorithm is constructed so that much of the search for 7, on any given grid is
carried over from smaller grids. Since each interval is being further corrected by
a larger grid’s interval, it is not important to check the criterion precisely, and for
practical purposes it is sufficient to perform only one W-cycle at each temperature.
In this way, on each of the grids a computational work equivalent to just few Monte
Carlo passes is enough for determining 7T, to within an interval roughly as narrow
as can ever be obtained on that grid. The interval will get narrower and narrower
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as the grid becomes larger and larger, until a desired accuracy is obtained. The
details of the algorithm are as follows.

Initialization. Start from a very small random grid — level 0 (say 4 x 4).
Set an initial temperature Ty = Té) =1/ ﬂg (the subscript stands for the level,
the superscripts for the sequence of temperatures within each level). For instance
ﬂg = 0, which is an infinite temperature and hence, for sure, supercritical. Finally,
choose some Afy > 0, the step in which the temperature is lowered. (The values
used by us are shown in Fig. 5 below.)

For each level ¢ =0,1... do the following three steps.

1. Perform one W-cycle (with g = ,8?) to reach near equilibrium (erasing in
particular lower-level periodicity (see 3 below)).

2. Make one W-cycle for each ﬁzk = B? + kAB;, k= 0,1,... until either 7 > 7
for AB; > 0 or 7 < n for AB; < 0 is obtained for some k. If this condition is
already satisfied at the first step (W-cycle) then Ap; + —ApS;, i.e., switch
the direction of the search.

3. The ﬁzl“ for which 7 has first passed n will be denoted 3; and will serve as
our final approximation to . on level 7. Switch to level 4 1: its grid is four
times larger (factor two in each direction), and its initial configuration is
the current configuration on level ¢ extended periodically in each direction
(exploiting its doubly periodic boundary conditions). Set ﬂ?Jrl = (; and
ABi+1 = —APB;/2. Go to step 1 with 7 4 1 replacing i.

The step ratio Ap;,1/AB; = —1/2 is reasonable due to the known ratio,
mentioned above, between the accuracy obtainable on the corresponding grids. If
this ratio were not known (i.e., if we did not know that in this particular model
v = 1), the value of AB;;+1 would have to be determined in an adaptive way,
decreasing it faster whenever too many steps were required in the former lattice
size.

This algorithm produces an open ended sequence of increasingly better ap-
proximations to 8 : By, 51 --., as long as required or allowed by computing re-
sources.

It should be noticed that the algorithm saves a lot of work by not insisting on
exact measurements of (7), or even on exact equilibration, at each temperature. It
just senses the approximate point at which f., the critical temperature, is passed.
More accuracy will not help since on each grid that point is only fuzzily defined.

Numerical results. The accuracy ¢ of 3;, the it" approximation for 3, is
defined by the difference |3; — Bc|, where B, = .4406868 is the known thermody-
namic limit. The amount of work, denoted by #RAN, has been measured by us
by the number of times a random number is generated. This effectively counts
the work in the Monte Carlo sweeps and in the stochastic coarsenings, which are
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indeed the most time consuming processes. For an algorithm to be optimal, the
quantity o = €2 (#RAN) should be roughly constant, or at least bounded. In
Fig. 5 the values of o obtained in our experiments are shown for grid sizes up
to 128 x 128. Each shown value of « is averaged over an ensemble of about 100
systems.

The results show that the algorithm is not sensitive, within limits, to changes
in Afy: asymptotically, T' tends to the correct value of T, and at approximately
the same rate a. The behavior of o as a function of the system size can, however,
serve as a good indicator for fixing the stepsize Afy. Large values of AfSy yield
fast localization of the first 3;’s, hence small values of o for small L. But these
Bi’s are less accurate, hence more localization work is needed later, thus yielding
a typical rise in « for large L. Too small values of ABg, on the other hand, show
much increased values of « for small L. This is explained as follows. A small Ajy
necessarily implies many steps at each grid size. Not only the amount of work is
thus increased, but so does, on small enough grids, the probability of accidentally
crossing the threshold 7 too early, implying a bad approximation for 7, i.e., a
large . For larger grids the test becomes more reliable (accidental crossing is
much less likely), hence a smaller step provides a better approximation for T, and
in turn a smaller a.

4. Extensions

The multilevel computational methods for eliminating CSD and for fast cal-
culation of thermodynamic limits, described in the previous Sections, are being
extended to increasingly more complicated models. Some initial steps and results
are briefly described below. Fuller discussion will appear elsewhere.

4.1 Variable coefficient

4.2 Higher dimensional Gaussian models

The extension of the above algorithm for the Gaussian model from one to
higher dimensions is straightforward. Domains of arbitrary shapes and any type
of boundary conditions can be treated, with accuracy e still obtained in O(e~?)
operations.

Local mode analysis, quite similar to the Fourier analysis above, show that
in dimension d, for such optimal determination of susceptibility, the cycle index v
should be in the range 2% < v < min(2%P,63). This implies that for d > 4 second

— 925 —



order discretization (p = 2) is no longer enough.

Experiments were conducted on a rectangular two dimensional domain with
homogeneous Dirichlet boundary conditions, using second order discretization (p =
2) and cycle index v = 6. In this case Fourier analysis can again be used, yielding
closed-form expressions for (M?2) and (M }%), so the average relative error ¢ in our
statistical determination of these quantities could again be measured conveniently.
Denoting again o =#RAN-£2 (cf. Sec. 2.6), our experiments show, here too, that
« is very nearly a constant, independent of ¢.

4.3 Approximate coarsening

Whenever the discrete Hamiltonian #y, (1) depends polynomially on u” (e.g.,
quadratic dependence, as in (7)) the coarse grid Hamiltonian H g (uf) can exactly
be derived, yielding again a polynomial of the same order (e.g., cf. (15)). Simple
expressions for H gy, generally similar in form to Hj,, can also be derived in many
other cases by using a low order interpolation [ IEI (e.g., first order; i.e., blocking
several fine-grid variables so that their changes by the coarse grid, I I@I“H , are
identical). Such low orders are not always optimal, even when they yield substan-
tial multigrid acceleration. In the Gaussian case, for example, and in many other
cases as well, the interpolation order, like the discretization order p, should satisfy
p > d/2 for optimal results (cf. Sec. 4.1. In the border case p = d/2 the results are
nearly optimal, with accuracy ¢ obtained in O(e~2log(e¢™!)) operations). Even
for removing the critical slowing down, simple blocking is often not enough, and
should be replaced by stochastic blocking (e.g., cf. Sec. 3.1). Generally, approz-
imate coarsening should then be used. The main principles developed for doing
this, and the relation of this to stochastic blocking, are explained below.

For definiteness, the description will be in term of a Hamiltonian #;, which
promotes smoothness in the most usual sense. That is, in the absence of external
fields Hp,(u”) can be written in terms of local differences of u”, and it attains
its minimum when these differences vanish. As a result, the probable changes
in the configuration which the usual (local) Monte Carlo process fails to produce
efficiently are smooth ones. They can therefore be represented as interpolants
I I@I“H from a coarser grid function u. Many models, such as XY and other U (n)
or SU(n) models written in terms of phases, belong to this class. Generalization
to gauge fields and other cases are mentioned in Secs. 4.2.1 and 4.2.2 below.

The fine-grid function I Ih;[uH , describing the changes introduced to the current
fine-grid configuration %" by a coarse-grid configuration uf, will be called the dis-
placement function. Differences of neighboring displacements ((/ ZUH )i— (I ZuH )j
for neighboring sites ¢ and j) will be called strains. Since the interpolation operator
1 I}fll is linear, each strain will be a linear combination of coarse strains (differences

u? — ulf for neighboring coarse sites I and J).
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Since what we want from the coarse grid is to accelerate smooth components,
we can aim at a smooth displacement field, hence small strains. The Hamiltonian
increment Hp, (@ + I I’f[uH ) — Hp, (") can then be expanded in a Taylor series in
terms of the strains. Truncating this expansion (e.g., retaining only linear and
quadratic terms) will give us a functional depending polynomially (e.g., quadrat-
ically) on the strains, hence also polynomially (e.g., quadratically) on the coarse
strains. The coefficients of the polynomial depend of course on @, but this re-
mains unchanged throughout the coarse level processing. The Taylor expansion
will also give us strain limits, i.e., bounds on each strain—hence bounds on each
coarse strain—under which the truncation yields a certain accuracy e;.

The coarse-strain polynomial approximation to the fine-grid Hamiltonian in-
crement is what we actually define as the coarse-level Hamiltonian H g (uf). Since
it is polynomial, its own coarsening, to still coarser levels, is straightforward. In
many cases, however, one like the coarse-level Hamiltonian to preserve the form
and the topological properties of Hj. For example, in models where each u? is
a phase (or an angular variable) and the Hamiltonian Hj, is given in terms of
certain trigonometric functions periodic in these phases, this property does not
carry over to the polynomial-type Hamiltonian g (uf). To correct this, the
polynomial-type coarse Hamiltonian H g can itself be approximated back in terms
of functions (e.g., trigonometric functions) with the original topology. The strain
limits (or rather the coarse strain limits) derived above would guarantee that
this approximation, too, has O(e¢) accuracy. If, through this process, the coarse
Hamiltonian is not a polynomial, then its further coarsening should of course use
once again the approximation method described herein. Often, indeed, the coarse
Hamiltonian has the same form as the fine one, and the same programs can be
used at all levels, both for Monte Carlo passes and for coarsening. (This similarity
of the levels, and indeed further generality of the coarsening process, sometimes
requires an additional shift of the coarse-grid variables to a “Full Approximation
Scheme”; cf. Sec. 4.2.1).

Since Hp(uf) is only an approximation to Hy (a" + Ifufl) — H, (@), to
maintain detailed balance the correction I Q[uH should have been rejected by the
Metropolis-type probability

Preject = 1 — min]1, eHH(UH)—HH(O)—%h(ﬁh+IZUH)+%h(ﬂh)]
(see, e.g., ref. ). Instead of executing such rejections, the algorithm only measures
Preject and ensures its vanishing in the thermodynamic limit. This is done by
having ¢ (the above mentioned bound on the truncation error, which controls the
strain limits) suitably decreased together with ¢ (the measure of approaching the
thermodynamic limit, which controls, as in Sec. 2, the size of the finest (largest)
level and the amount of samplings performed on each level). The lowering of
et can be done without running into slowing down because a given move on a
fized level becomes smoother and smoother on the scale of the finest grid as the
latter becomes finer and finer, hence this move will be acceptable for smaller and
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smaller €; as € is reduced further and further. Other reasons for avoiding slowing
down are the updates, the Hamiltonian dependent interpolation and the stochastic
appearance of disconnections, discussed next.

The Monte Carlo (e.g., Metropolis) process on each level is constrained by the
strain limits, inherited from all the coarsening stages leading from the finest level
to the current one. Hence, if the strain limits are approached too closely at some
points of some intermediate levels, the process on coarser levels will be completely
paralyzed. To avoid this, the algorithm uses updates. An update is a return to the
next finer grid, introducing there the displacements implied by the current grid
solution, and then coarsening again (with displacements and strains being now
defined with respect to the updated fine grid solution). This updates the current
grid equations and “relieves” the solution from strains too close to their limits.
An update can be done locally, wherever strain limits are approached. Or, more
conveniently and sometimes more effectively, it can be done globally, e.g., after
each full Monte Carlo sweep. In principle, while introducing the displacements on
the finer grid during an update, some of the finer grid strains may approach their
limits, requiring an update at still finer level. This, however, seldom happens and
cannot cascade to ever finer levels, because moves on any level are very smooth
on the scale of much finer levels, and will therefore affect their strains very little.
In some models, once in a (long) while a coarse level may cause a “break”, a
discontinuous change that requires updating all the way to the finest scales, but
such updates are likely to be very local and sufficiently rare.

Due to such updates, large moves are permissible on coarser grids. To make
such moves also probable, the interpolation I Ih{ at each level should be so con-
structed that its potential displacements are as probable as possible. This implies,
for example, that if a certain variable uf’ is coupled by Hj more strongly to its
neighbors in one direction than in another, then the interpolation to site ¢z should
have a proportionately larger weight in that direction. (More generally, if #}, is
quadratic, 1 IEI should be constructed by principles similar to those in ref. . If
‘Hp, 1s not quadratic, the same principles should be applied to the quadratic part
of Hj,, which is well defined since the anisotropic Hj has been obtained from a
finer-level Taylor expansion.) It is true that on the finest level the Hamiltonian is
usually isotropic and hence I Ih{ can be isotropic too; but on coarser levels, due to

stochastic variations in @ at each coarsening stage, the produced Hamiltonians
are no longer isotropic, hence anisotropic interpolations should correspondingly be
introduced. This tends to create even stronger anisotropy at corresponding points
of still coarser levels.

Thus, stochastically, at points of sufficiently coarse grids, the interpolation
may become heavily one-sided, similar to the “blocking” familiar in discrete-state
systems (as described in Sec. 3.1 above). Any such (near) blocking to one side
comes together with (near) disconnection to other sides. The interpolation be-
comes (nearly) trivial and (nearly) entails no strain limits. This stochastically
frees sufficiently coarse levels to perform moves that yield changes in the topology
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of the configurations.

Note that [ J’ZI never depends on the current configuration @” of the current
level h. It only depends on the coefficients of Hj,. This is necessary for approaching
detailed balance (as ez — 0). On the other hand the coefficients of H; at any
intermediate level do depend on the current configuration @2 at the next finer
level (as well as on Hy/9). This enables the coefficients and 1 " to depend on
stochastic configuration development at all finer levels. In this sense the coarser
level forms of move, such as the (near) blocking, develop stochastically. This is

essential for making them associated with enough free energy, hence probable.

Similar to the Hamiltonian (or see Sec. 4.2.1 below), other functionals (e.g.,
the magnetization) can also be approximated on coarser levels, with this approxi-
mation, too, improving as ¢; is lowered. This permits averaging these functionals
over the many coarse-level samples produced within one cycle, thus greatly reduc-
ing statistical errors at little computational cost (cf. Sec. 2).

4.2.1 Functionals not expandable in terms of strains. Many func-
tionals one wants to approximate on coarser levels are not given directly in terms
of differences of neighboring variables, and their increment cannot be directly ex-
panded in terms of strains. Additional steps are then needed in the approximate
coarsening. The only basic property that should be preserved is that the approxi-
mation converges in the limit of “smooth” displacements, where “smoothness” can
be controlled explicitly, by generalized “strain limits”, and where the “smooth”
limit describes the class of probable large scale moves.

For example, the magnetization M"(u") in the XY model does not depend
on differences of neighboring variables. One can easily construct a similar coarse-

grid functional M such that MH (I f uP) approximates M"(u") for any smooth

ul, where T f denotes some fine-to-coarse transfer (e.g., injection, or some local

averaging). This functional cannot be used directly, because ul is not necessarily
smooth. However, the difference M"(uP) — MH (1 ,{I uP) is a functional which does
depend on local differences, and therefore its increment can be expanded in terms
of strains.

Note that in this case the coarse Hamiltonian, in addition to a polynomial in
the coarse strains, will include the non-polynomial functional M (I }Il{ ah + uf).
(It thus may be sometimes more convenient to work on the coarse grid in terms
of the full-approximation variable @ = I ,ff @" + uH than with the incremental
variable uf. This would be the “Full Approximation Scheme” (FAS); cf. Sec. 8
in ref. and Sec. 7.1 in ref. ). As a result, the transition to still coarser grid (2H)
will have to use once again the approximation method of Sec. 4.2, hence impose
its own additional strain limits. At sufficiently coarse levels, however, these limits
would stochastically open up at many points due to the (near) blocking described
above.
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4.2.2 Comments on gauge fields. The coarsening of Hamiltonians of
gauge fields can follow the principles described above, except that “strains” here
will mean phase changes of I J’L‘IuH around plaquettes, and “coarse strains” will

mean similar changes of uH around coarse plaquettes.

To be sure, using some choice of low order I h  strains may equal fixed multi-
ples of coarse strains, and an exact coarsening of the Hamiltonian may be possible.
Such a scheme can yield substantial Monte Carlo acceleration, but generally will
not be optimal. A pre-assigned, non-stochastic coarsening generally will not pro-
duce sufficiently probable coarse-grid movements to eliminate all slowing down.
Hence, on coarser levels, when the Hamiltonian is no longer uniform, even a low
order interpolation should be weighted by the field strength, to produce probable
moves. This will make it very costly to operate exact Hamiltonians on all coarser
levels. Thus, approximate coarsening, leading as explained above to stochastic
blocking, will generally be needed for obtaining accuracy ¢ in 0(5_2) operations.

4.4 One dimensional XY model tests

Preliminary tests of the above approximate coarsening principles have been
conducted on the one dimensional XY model, where it is easy to implement the
anisotropic interpolations and straightforward to view all the topological aspects.
Calculations of susceptibility were carried out with the periodic Hamiltonian

N
Hy = —N[Zcos(ui — ui—1) + cos(ur — up)],
1=2

for N = % =922 23 .. 213 and for various 8 in the range 277 < <272 The
tests clearly show that when e is lowered (i.e., as larger grids are employed) &¢
can be lowered so that detailed balance is approached (Preject decreases) without
running into critical slowing down. Also, topological changes (large-scale loops) are
performed by the coarse levels frequently, completely changing the susceptibility
values within each cycle. Detailed study of the results is planned.

4.5 Particle simulations and macroscopic equations

The multilevel algorithm with the approximate coarsening procedure described
above can be used equally well when the “finest” Hamiltonian 4, is defined in
terms of particles (i.e., uf’ is a vector describing the location of the i-th particle)
rather than grid functions. The next coarser level in that case, though, will still
be a grid function, describing a field of displacements u. This grid’s meshsize

H is chosen so that each of its cells typically contains a small number (possibly
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even less than one on the average) of particles. I Ily is now an interpolation from
the grid to the (old) particle locations, (I%uf); being the displacement (change
in location) of the i-th particle. In this way uH describes collective movements of

the particles.

Further coarsening, to still coarser levels (2H, then 4H, etc.) can be pro-
duced in the usual way. On sufficiently coarse levels the resulting Hamiltonians
will describe macroscopic equations of the system. For example, the (discretized)
equations of elasticity emerge in this way when the finest level H;, describes appro-
priate atomic interactions (,87.2) Generally, the macroscopic equations obtained
this way are expected to be much simpler than those derived by group renor-
malization methods. This is directly due to the slight “iterativeness” left in the
process by the updates described above (which however, as explained, only couple
neighboring levels). In many cases the need for such updates may tend to disap-
pear on sufficiently coarse levels. Even when this is not the case, an activation of
much finer levels during large-scale (coarse level) simulations will only rarely and
locally be needed.

The large-scale equations can extend to domains not covered by the finest
(grid or particles) level, as explained next.

4.6 Domain duplication

If the fine-grid Hamiltonian uses periodic boundary conditions, instead of
using cycle index v (cf. Sec. 2.3), the domain can be “duplicated” « times; i.e.,
the coarse Hamiltonian can be extended periodically to a domain « times larger.
(To extend equally in all d coordinates, v = 2% can be chosen. If such v is too
large (cf. Secs 2.4.A, 2.7 and 4.1), alternate coarsening levels can use alternate
coarsening directions.) No return to finer levels will ever be needed if they have
already provided enough statistics (i.e., if the required number of cycles is 1; cf.
Sec. 2.4.D). This is possible to do exactly when needed, i.e., when the size of
the domain required to yield accuracy € in some calculation is such that it would
contain more than O(¢~2) finest-grid sites. The computational cost can still be
only O(e~2), since the finest level is not employed over the entire domain.

5. Summary

The calculation of an average quantity @ for an infinite system (a “thermo-
dynamic limit” of finite systems) by a Monte Carlo process within an accuracy of
+e, usually requires the following three factors.

1. First, one should employ a large enough computational lattice N x N X
...= N% whose linear dimension N should ususally increase as ¢ decreases:
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N = N (g); presumably N grows like e, where p is positive.

2. On this lattice one carries out a Monte Carlo process which produces a
sequence of configurations, each configuration (from a certain point on)
appears in its physical probability. Many of these configurations add nothing
to the statistical measurement of () because they depend on each other.
The process requires O(N?) Monte Carlo sweeps, hence O(N d"'z) computer
operations, to create each new, statistically independent configuration. The
critical exponent z is of course non negative. The critical slowing down is
the case where z is positive.

3. It is not enough to create one independent configuration, because any such
configuration has a deviation from (). If the standard deviation is o, one
would need O(c2/e?) independent configurations in order to measure Q to
the desired accuracy e.

Taking these three factors together, one would overall need
O(Nd+Z0'2/€2) _ 0(0_2/62+p(d—|—z)) (29)

computer operations in order to obtain an error smaller than ¢ while measuring

The purpose of the cluster algorithms is to reduce z as much as possible.
The purpose of the multigrid techniques presented in this work is to eliminate the
entire exponent p(d + z) from (29), i.e., to obtain an error smaller than e in only
O(0%/€?) overall computer operations.

This is especially good news for higher (e.g., four) dimensional problems: the
work increase with accuracy is essentially independent of the dimension.

It is shown above in detail, especially in Sec. 2, how to achieve such optimal
results in some simple cases. The extension to more advanced asymptotically free
models is discussed in general terms in Sec. 4.2.

In the d-dimensional model the finest grid contains roughly N¢ sites. Thus,
the relative discretization error in the susceptiblity is O(N~P), where p is the
discretization order on the finest grid. In order to get relative accuracy e, in the
estimation of the susceptibility, it is necessary that O(N~P) < ¢ ji.e. O(NP) > 1/e.
When this finest grid is also the finest grid in the multigrid Monte Carlo simulation,
the work on the coarsest grid is O(7/°92N) or O(N'927). Hence, to get relative
accuracy ¢, it is necessary that N%927 < 0(1/e2) < O(N?) or 4 < 2?P. On the
other hand, in order to keep the work on the coarsest grid dominant, v should
satisfy 2¢ < ~. It follows that in the multigrid algorithm the discretization order p
should satisfy p > d/2. Thus, for optimal performance in a dimension higher than
three, one should use a discretization order higher than 2. In four dimensions, the
second order discretization is still nearly optimal (taking v = 2¢).

The parameters of the multigrid algorithm, such as the cycle index v and the
coarse-to-fine intepolation order, depend not only on the involved model and its
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discretization, but also on the measured quantity (). In d-dimensional models and
1:2 coarsening ratio, for calculating quantities dominated by large scale fluctua-
tions (e.g. susceptibility),
20 < v < 22P must be used, where p is the order of discretization. For quantities
dominated by small scale fluctuations (e.g., the energy per degree of freedom),
v < 24 is needed to obtain accuracy ¢ in O(e™2) computational work.

Second order (e.g., linear-polynomial) coarse-to-fine interpolation is optimal
in the Gaussian model, for measuring either susceptibility or energy. To obtain

the same accuracy ¢ by first order (e.g., constant) interpolation, the work is larger
than O(e2).

Acknowledgments

We are grateful to R. Benav for useful discussions, and to E. Domany and D. Kan-
del for a basic correction to our method in Sec. 3. Work supported in part by
the Air-Force Office of Scientific Research, United States Air Force under Grants
AFOSR-86-0126 and AFOSR-86-0127, by the National Science Foundation under
Grant NSF DMS-8704169 and by the Basic Research Foundation of the Israeli
Academy of Sciences and Humanities.

,33,



References

,34,



Figure 1:
Figure 2:

Figure 3:

Figure 4a:

Figure 4b:
Figure 5:

Figure legends

Fine grid points are denoted by e and coarse grid points by x .

Performance in measuring susceptibility. Each curve shows a (mea-
suring computational work times the square of the obtained accuracy)
as a function of the system size N for the indicated value of the cycle
index 7.

Performance in measuring average energy. Each curve shows a (mea-
suring computational work times the square of the obtained accuracy)
as a function of the number mq of sweeps over a system with N = 64
points for the indicated value of the cycle index .

Performance in measuring average energy. Each curve shows a (mea-
suring computational work times the square of the obtained accuracy)
as a function of 1/e, for the indicated values of the system size N and
the cycle index .

same as in Figure 4a with different cycle indexes.

Each curve shows « as a function of the system size L, for the indicated
value of Agy.
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