Multigrid Solvers on Decomposed Domains

ACHI BRANDT and BORIS DISKIN

ABSTRACT. For general nonlinear elliptic problems with many gridpoints per pro-
cessor, a domain-decomposed multigrid algorithm is described. It solves a problem
in essentially the same work as needed for solving just once, by the fastest solver, a
separate problem in each subdomain. During the entire solution process, only few
episodes of data transfer between processors are needed, and the total amount of
transferred data is small compared with the size of the decomposition interfaces. A
mode analysis and numerical tests are reported.

1. Introduction

The fastest solvers for discretized elliptic partial differential equations on
scalar computers are the full-multigrid (FMG) algorithms. Such an algorithm,
described below, can, for example, solve the 5-point Poisson equation in a general
domain to errors below the discretization errors in about 22 computer operations
per gridpoint; each additional multigrid cycle, costing about 15 operations per
gridpoint, reduces the errors by more than another order of magnitude. This
same efficiency, with the number of operations just growing proportionately to
the number of operations involved in describing the discretized system, has been
obtained for general nonlinear elliptic systems in general domains [4], including
elasticity and flow problems, and including systems with strongly discontinu-
ous coefficients [1], or with strongly twisted topologies (Dirac equations [7]).
Recently, similar efficiency has been obtained for non-elliptic problems, includ-
ing high-Reynolds flow problems [10], [11], and also for highly indefinite systems.

1991 Mathematics Subject Classification. Primary 65N55, 65N22.

Supported in parts by grants AFOSR-91-0156 from the United States Air Force, and NSF
DMS-9015259 from the American National Science Foundation.

The final version of this paper will be submitted for publication elsewhere.

2 BRANDT and DISKIN

Moreover, even for n x n dense-matrix problems arising in science and engi-
neering (from integral and integro-differential equations, or from many particle
interactions) multigrid solvers still typically require only O(n) or O(n(logn)?)
operations [6], [8].

The first purpose of the present study is to demonstrate that this same
efficiency — i.e., nearly the same total number of operations per gridpoints —
can be obtained when the problem is solved by any number, P, of processors
working in parallel, provided there are many gridpoints per processor (“coarse
granularity”). This means that the solution time is reduced by the factor 1/P.

Moreover, the purpose is also to address the situation where communication
between the processors cannot be too frequent and is relatively expensive. For
example, the set of parallel processors may in fact be a cluster of workstations
communicating via a local network. It will be demonstrated that the number of
inter-processor data-transfer episodes can be limited to only O(logn), where n
is the total number of grid points. Furthermore, for elliptic problems it will be
demonstrated that the amount of data transferred at each such episode can be
surprisingly small.

A common approach to the low-communication coarse-granularity situation
is to decompose the domain of the problem into P subdomains, and to assign one
processor to solve the equations inside each subdomain, leaving some equations
unsolved and some values unchanged on the inter-subdomain interfaces. An
adjustment is then made to the interfaces, and the equations at each subdomain
are resolved with the new interface values. This is repeated iteratively until
convergence is obtained. Each solution process within each subdomain can of
course employ a multigrid solver.

The approach here will be quite different. The multigrid algorithm will be
employed only once, to the entire system of equations on the whole domain.
Each step of the algorithm will be performed in parallel by the P processors,
each working in its own subdomain. By creating a small overlap between the
subdomains on each of the multigrid levels, it will be shown that inter-processor
data transfers can be made only once per multigrid cycle, each processor trans-
ferring data only to neighboring processors. Moreover, it will be shown that the
total number of values that need be transferred from each processor is much
smaller than the number of gridpoints on its interfaces.

The total arithmetic work of such algorithms is essentially equivalent to
solving just once, and by the fastest (the FMQG) solver, in each subdomain.
The algorithms themselves are simple modifications of the ordinary multigrid
algorithms. In their FAS version presented below, they are directly applicable
to nonlinear problems: no linearization is needed and the efficiency is the same
as for linear problems.

2. Differential and discretized problems

We will consider general nonlinear elliptic problems in an open domain (2
with boundary 0. The differential equation

(2.1) Lu(z) = f(z) (z€Q)
is given, where f is a known function, u is the unknown one and L is a uniformly
elliptic operator. The algorithm described below will be suitable for the general

MULTIGRID SOLVERS ON DECOMPOSED DOMAINS 3

case that (2.1) is a system of ¢ nonlinear differential equations in ¢ unknown

functions u(z) = (ul(x),...,uq(m))T (see details in [4]); but for convenience
the reader can refer to the scalar (¢ = 1) case, or, more specifically, to our
standard example, the two dimensional Poisson equation: z = (z1,z9), L =
0%/0x% + 6?/0x3. While the outline will be general, full specification of the
algorithm will be given in terms of this particular example. Only in Sec. 5.5 we
will mention another, in fact nonlinear, example.

In addition to the interior equation (2.1), suitable boundary conditions will
be assumed on 9f2. In our standard example this will be the Dirichlet boundary
condition

(2.2) u(z) = g(x) (z € 09).

The discretization for the algorithms considered here can be fairly general,
involving finite element or finite differences on non-uniform, possibly staggered
grids of various types. Again for simplicity, our examples will be in terms of
finite difference equations on uniform grids. For any grid Q with meshsize h
covering the domain (2, the discretization of (2.1) will be written

(2.3) M =gl (i€)

where i = z/h is an integer vector. In the standard example i = (i1,is) =
(z1/h,x2/h), where i; and iy are integers, and L” is the five-point Laplacian.
Also for simplicity, we treat here only problems where 92 coincides with the
gridlines of all our grids, in which case the implementation of the boundary
condition (2.2) is straightforward.

3. Regular FAS-FMG solver

For the fast solution of (2.3), a sequence of grids Q',Q%,..., QM is em-

ployed, where QF = Q> hiy = hg—1/2, hpyr = h, and where Q! contains only
few points. Note that gridpoint i in 2%~! has the same physical position z as
gridpoint 2 in QF. On each grid QF, a discretization analogous to (2.3) is given

(3.1) LFub = fF (i e Q)

where the notation is switched to L¥ = Ltk = ybr fk = fhe.

For k = 1 the system (3.1) is so small that a very fast solver for it is easy to
construct “directly” (meaning either a genuine direct solver or fast converging
iterations). For k > 1, multigrid solvers are described below. The approxi-
mate solution at any stage will be denoted @¥; the solution process will thus be
described as a sequence of improvements for u¥.

3.1. The FAS cycle FAS;(v1,v2;v). Given an equation on level k > 1
of the form (3.1), and an initial approximate solution #¥, the Full Approzima-
tion Scheme (FAS) cycle FASy(v1,vo;7) for improving this approzimation is
recursively defined as the following seven steps.

(i) Pre-relazation. Improve @ by vq relaxation sweeps. In our standard
example, we will employ Gauss-Seidel relaxation in red-black ordering: in the

4 BRANDT and DISKIN

first half of each sweep all the “red” equations (equations at points (i1,i2) where
i1+12 is even) are relaxed, and in the second half — the rest of them (the “black”
ones, with i1 + is odd).

(ii) Solution transfer. Form an approximation to the current solution u
on the next coarser grid Q1. We will denote this approximation f{:flﬂk. In

k

our standard example, fllg_l will be simple “injection”, i.e.,
Thk—1~k ~k
(32) (T U)iy iy = Uy 24,

(iii) Residual transfer. Also form on the next coarser grid an approximation
to the current residual function r¥ = f¥ — L5k This coarse grid approximation
will be denoted I} 'rk. In our standard example, I ! will be the usual “full
weighting” operator, i.e.,

k—1_k _ 1.k
(Ik)i s = 172i;,2iy
1.k k k k
(3-3) + 80136 41,260 T 7201 1,2i0 791 211 T T30y 20 1)
1 (.k k k k
+ 16 (P9, 41,2011 T 720y 41,2601 T 726 1,2i0+1 T 7231 1,265 1)

(iv) Coarse grid equation. Form the coarser grid equation
(3.4) LE—1,k-1 = fk—l
by calculating

(3.5) FEt = LhN @by 4 ik

(v) Recursion. If k—1 =1, solve (3.4) directly. Otherwise, starting from
uk as the first approximation, improve the solution to (3.4) by v cycles
FASy,_1(v1,v2;7). In either case, denote the final approximate solution to (3.4)
by ak~1.

(vi) Coarse grid correction. Correct the (fine) grid approximate solution by

fk—l

(3.6) Wk uk 4 IF @ - TRk,

where ,’gfl denotes an interpolation from QF~1 to QF which is called the correc-
tion interpolation. In our examples, [,’g_l is the bilinear interpolation. (General

rules governing both I ,’c“_l and T ,’g_l for general systems are given in [4, §4.3],
and in more detail in [5].)

(vii) Post-relazation. Finally, improve ak by v9 additional relaxation sweeps,
similar to those in Step (i).

This description of the multigrid FAS cycle neglects to mention the extra
processing needed at each step in and near the boundaries. Indeed, in the simple
example treated here, no such special processing is needed. For the multigrid
treatment of general boundaries and general boundary conditions, see [4], [5],
[9] and [12].

MULTIGRID SOLVERS ON DECOMPOSED DOMAINS 5

Observe that in the linear case the correction function v—1 = y*—1 —

j;];*lﬂh satisfies the equation LF—1pk—1 = fflrk, approximating the fine-grid
residual equation LF(uF — @*) = r*. Furthermore, even in the nonlinear case,
it is easy to see from (3.4)—(3.5) that I ,’:_lrk similarly drives u*~1 to differ
from I/]’j_lﬂk. Indeed, the FAS cycle has been shown to be as efficient for many
nonlinear problems as for linear ones. In linear cases, v*~! is independent of
j;]cc_lﬂk, so one could for example take f]{f—lﬂk = 0. This particular scheme is

k=1 coincides

called the Correction Scheme (CS), since its coarse-grid solution u
with the correction function v* 1.

The parameter + (the number of next-coarser-grid cycles per fine grid cycle)
is called the cycle index. Cycles with v = 1 are called V cycles and denoted
V(v1,v2); those with v = 2 are termed W cycles and denoted W (vy,v2). For
uniformly elliptic problems either of these is used, usually with v; +v9 =2 or 3.
Each such cycle typically reduces the error at least by an order of magnitude,
provided a proper treatment is employed at and near the boundaries (see [5],
[12]). In our standard example, each of the cycles V(0,2), V(1,1) and V(2,0)
with proper boundary treatment reduces the error (in some appropriate norm)
by a factor close to .063. With many levels and without boundary treatment,
experiments show that the factor rises to .12 for V'(1,1) and V(0, 3), and to .18
for V(0,2).

3.2. The full multigrid algorithm FMG(vg,v1,v9;7v;n). In the Full-
Multi-Grid (FMG) algorithm, an approximation to the solution of (3.1) is first
obtained from the next coarser grid, and then it is improved by relaxation sweeps
and multigrid cycles such as FAS(v1, v2;). Thus, the algorithm FMG(vy, v1,
vo;y;n) for solving (3.1) (with k > 2) is recursively defined as the following four
steps.

(I) Coarse grid equation. The equation

(3.7) T A (RN Vi
is formed by calculating
(3:8) =,

where I,I:_l is a suitable fine-to-coarse transfer; the full-weighting operator,
defined by (3.3), has been used by us for this step as well. Note that in
(2.3) and (3.1) we have not specified how f¥ is calculated at the various lev-
els (k =1,2,...,M). It could be obtained at each level directly from f, the
differential-equation right-hand side, but in the FMG algorithm each f*~1 is
obtained by properly averaging f*, (k = M,M —1,...,3,2); only f™, the
finest-grid right-hand side, is calculated from f. This guarantees the proper
performance of the algorithm for any (not just smooth) f. (See the discussion
at the end of Sec. 5.4.) The discretization of the boundary conditions could be
handled similarly: in case of (2.2), the values g¥ ! of the boundary conditions on
0% =1 could be obtained by fully averaging ¢g¥; This however is less important.

(II) Recursion. If k—1 =1, solve (3.7) directly. Otherwise, apply algorithm
FMGy_1(vo,v1,v9;v;n) for solving (3.7). Denote the obtained approximate
solution k=1,

6 BRANDT and DISKIN

(III) Solution interpolation. Interpolate W*~! to QF, denoting the result
H’,g_lﬁk_l. Generally this “solution interpolation” H£—1 (also called “the FMG

interpolation”) has higher order than the “correction interpolation” I ,’c“_l used

in (3.6) above; see general rules in [4, §7.1]. In our standard example, Hﬁ_l is
bicubic.

(IV) Improvement relazation and cycles. Starting with u% = H’,g_l as
the first approximation, improve the solution to (3.1) first by v initial relaxation
sweeps, and then by n cycles of the type FASy(v1,v0;7).

The grid QF (or the level k) in this description of the FMG algorithm is
called the currently finest grid (or level). By contrast, QM (or M), the finest
grid (level) for which the algorithm is to be applied, is called the target finest
grid (level).

For uniformly elliptic problems, a cheap algorithm such as FM G (0,1,1;1;1)
or FMG(0,2,1;1;1) is easily enough to obtain a solution error ||u* — u¥|| sub-
stantially smaller than the discretization error ||u¥ — I*u||, where I*u is a repre-
sentation of the solution of (3.1) on QF and || - || is a suitable norm; see examples
below.

~k—1

4. Trivial domain decomposition

The multigrid cycles and algorithms are directly amenable for massive par-
allel processing. Each step described above can be done in parallel at all grid-
points, or at least, as in the case of the red-black Gauss-Seidel relaxation, at all
gridpoints of the same “color” (see [3]). How to divide this processing between
actual parallel processors, how much and how often inter-processor information
should be transferred, etc., depend on the situation. In this article we discuss
the situation typical to domain decomposition algorithms. Namely, we assume
that the number of gridpoints in the target finest grid QM is much larger than
the number of processors P, so that each processor p can be assigned its own
subgrid of operation Q;,V[, where QM = U;Zlﬂgf . For convenience of descrip-
tion we will assume that Qﬁ" and Qg/[are disjoint for g # p, so each processor
would in principle need information from neighboring subgrids to perform its
operations.

The division of QM into subgrids naturally induces a similar division at all
coarser levels:

(4.1) oF =yl 0f (k=1,...,M)

e.g., in our standard example, i € Q’g_l iff 2 € Q’If. Note that, on some of the

coarsest levels k, some of the subgrids Q’; may well be empty.

A trivial conversion of the above FAS-FMG solver into an algorithm using
the P processors in parallel is simply to have each processor p execute all those
operations whose results change values at gridpoints belonging to Q’g. Two
general problems arise with this algorithm.

First, since some Q]’g are empty, some processors will remain idle part of

the time. In this paper we assume that there are many gridpoints in each QII,VI ,
so that most of the computing time is spent at the finest levels. Hence we will

MULTIGRID SOLVERS ON DECOMPOSED DOMAINS 7

ignore here any such very-coarse-level waste. This is especially justifiable since,
dealing here only with uniformly elliptic problems, we can confine ourselves to
V cycles.

The second problem, which we cannot ignore, is the problem of commu-
nication — data transfer and synchronization — between the processors. For
simplicity we will assume in the discussion below that each processor has its own
memory, not shared by others. Values in one subgrid needed for the processing
in another subgrid will be called interface values.

A trivial, but perhaps not always satisfactory, solution to the communica-
tion problem is to transfer information at particular “transfer stages”, with a
proper definition of such stages. Thus, in our standard example, the transfer
stages of the FAS cycle can be defined as follows: (1) before each half (red or
black) relaxation sweep, transferring interface values for the appropriate color;
(2) before residual transfer, transferring the information needed for calculating
both (3.3) and (3.5); (3) before the coarse grid correction (3.6). Similar transfer
stages are added before Step I and before Step II of the FMG algorithm.

This simple implementation of the FAS-FMG solver may already be very
efficient compared with domain decomposition algorithms. The total work is
equivalent to that of solving (by the fastest solver!) only once in each subdomain.
The amount of information transferred at each stage is at most proportional to
the size of the inter-subdomain interfaces; in fact, at most stages (the coarser
level stages) the amount is much less. And, by employing V cycles, the number
of transfer stages is only O((lognas)?), where nyy is the number of gridpoints
in the target finest level M.

Furthermore, it is immediately clear that both the amount of transferred
data and the number of transfer stages can be radically reduced by various
algorithmic modifications, such as the following three.

1. Transfers at coarse levels can be reduced by “unifying” subdomains, i.e.,
assigning one processor to several subgrids, transfering to it all the information
from all the processors previously assigned to those subgrids. This should be
done, e.g., so as to keep the algebraic work time of each processor comparable
to the time spent in the transfer stages. In line with our premise above, such
very-coarse-level savings are not studied in this article.

2. Instead of a transfer once per half relaxation sweep, one can transfer once
per full sweep, transferring all interface values at once (instead of one color at a
time). The result of this is that the relaxation will not be exactly Gauss-Seidel:
The relaxation at some particular points will not use the latest calculated values
at all their neighbors. This, however, will have only very slight effect, if at all,
on the performance of the algorithm.

3. By creating certain overlaps between the subgrids, information can be
transferred less often.

Instead of describing all possible alternatives, we will study in the next
sections some of the more extreme modifications, whereby transfers can be made
only once per cycle, and data corresponding to several of the finest grids need
not be transferred at all.

8 BRANDT and DISKIN

5. Once-per-cycle transfers

5.1. Overlapping subdomains. Similar to the above description, the
problem domain Q will be decomposed into subdomains 2 = [_JII)D:1 p, inducing

a decomposition at each level QF = U;,J:l Q’;, where Q’If C . Here, however,
the subdomains Q, will be closed, and the border lines between them will be
chosen on gridlines of some very coarse level (e.g., the level K discussed in Sec.
5.2, which is effectively the coarsest level of the current algorithm). Hence, the
subgrids Q’; will not be quite disjoint: at each level k, gridpoints on border lines
will belong to two subgrids, and gridpoints at interior corners will belong to four
subgrids.

To each subgrid Q’]g we will add a margin of neighboring gridpoints for which
solution “ghost values” will be calculated by, and stored at, the p-th processor,
although at the same time different values may be assigned to them by other
(neighboring) processors. Thus, we define eztended subgrids Q]]f’] as follows:
QI;Z’O = Q’g, and Q’;’] *1is the set of all gridpoints at distance hy (or less) from
the points of Q];’J . This implies that, for any fixed k£ and j, neighboring extended

subgrids Qﬁ’J will have an overlap of 25 + 1 gridlines: the borderline plus j lines
on each of its sides will have double values.

In each of the algorithms below, each processor p will have its own approxi-
mate-solution value @*” and its own right hand side value ff’p defined for each

I3
k,J(k
Q)

the algorithm. Each gridpoint i € Q¥ which is not on border line has a unique

processor p; such that i € Qg;o; we define ﬂf’p i to be the genuine value of T* at

i, and denote it ﬂf. For gridpoint ¢ belonging to a border line the genuine value

gridpoint 1 € ﬁ]lg = , where the J(k) are the “overlap parameters” of

ﬂf is defined to be the average of ﬂf’p over all p such that i € QI;;’O.

Genuine right-hand side values fz-k will be defined recursively. At the cur-
rently finest level fz-’c = fik, and on coarser levels fzc_l is defined by (3.5), where
rk = fk — Lk%F is based on the genuine values of f* and @*.

5.2. The coarsest level. In the algorithms below, data is transferred
between processors once per cycle. This is done when the cycle reaches a (very)
coarse level K. Typically K will be chosen so that the number of gridpoints at
level K is at most comparable to the number of points in the borderlines between

subdomains of the (target) finest grid Q™. This means that hy > O(hgg;l)/ d),
where d is the dimension of our problem.

The interprocessor transfers will be of two types: data exchange in the
overlap regions of all the levels K < k < M, and interactions with one common
coarse problem created on Q%. Taking the basic work attitude of the present
study (to ignore the work on grids much coarser than the finest), we do not in-
vestigate the question of how the QX problem is actually solved, whether by one
processor into which all information is transferred, or by further collaboration of
several processors. The fast solution of the Q% problem can again use a multi-
grid algorithm employing still coarser grids, but since we will not be interested
in how that is done, we can regard K as our coarsest level, renumbering the

MULTIGRID SOLVERS ON DECOMPOSED DOMAINS 9

levels so that K = 1.

5.3. The domain-decomposed cycle DDV (vo;J). To simplify the al-
gorithm, we base it on the V cycle without pre-relaxation, i.e., on the cycle
Vi (0,v9) = FASL(0,v9;1). The first “leg” of this cycle sends solution and av-
eraged residual values from the finest level k£ to the next coarser level k — 1,
then to level & — 2, and so on to the coarsest level 1, without any intermediate
relaxation sweeps, calculating on the way fk_l, fk_Q, ey fl.

The same can be done in parallel by the P processors, with processor p
sending the genuine values of uf’p ¢ from Q’; to Q’;_l, then to 05_2, and so on
to QII,, and also sending residuals and calculating from them genuine values of
ff at points ¢ in the interior of Qf; (¢ =k—1,k—2,...,1). Then, at this
stage, the inter-processor data transfer takes place, in which non-genuine values
are replaced by genuine values. That is, the genuine values ﬂf and borderline

P

solution values ﬂf are transferred to all points i in Q’; carrying non-genuine

values, and so are the genuine values of fi’C wherever available. The overlap
parameters J(k) used in this algorithm are independent of the level: J(2) =
J(3) = --- = J(k) = J. Note that before the transfer, for some gridpoints 4
on or near the interior boundaries genuine values of ﬂf and fi’c could not be
calculated by any of the processors; they are calculated after the transfer, using
the just-transferred solution values.

After solving the problem at the coarsest level 1, the second “leg” of the
Vi cycle normally proceeds to level 2, then to 3, and so on back to level k.
At each level, a coarse grid correction (like (3.6)) is first made, followed by vo
relaxation sweeps. If J > 4us, this process can precisely be implemented by the
P processors in parallel, with no further interprocessor transfer. Indeed, when
the processor p executes these steps in 912,, the values it calculates at distance

2voh9 or more from the interior boundaries of ﬁ% will be (in the case of red-black

Gauss-Seidel relaxation) genuine values, hence all the values interpolated to 2?2]?;
will be genuine; and so on to level k.

The same processing can also be done even if J < 4vy, except that non-
genuine values of ﬂf’p will propagate in ﬁf; — Qf; until they will affect values

at Qﬁ, if not immediately at level /£ = 2 then possibly at some finer level /.
Thus, in this case, the results of this parallel processing cycle, which will be
denoted DDV, (v9;J), will slightly differ from those of the single processing
cycle Vi (0,v2).

The differences will be slight, however, since for h-elliptic equations, the
distance to which significant effects are propagated by vo relaxation sweeps is
much shorter than 2v9 meshsizes.

Numerical experiments corroborated this. They were conducted with
the standard example described above, on an 8 x 8 square domain, with coarsest-
grid meshsize h; = 1, with k = 6 levels, and with P = 2 subdomains, 1 and
{12, each covering an 8 x 4 half of the domain. Thus, the finest grid 0% has
257 x 257 points (including boundary points), and each Qg has 257 x (129 + J)
points.

The asymptotic convergence factor of the ordinary V5(0,2) cycle is .165

10 BRANDT and DISKIN

per cycle; that of DDVg(2;2) was found to be roughly the same for a number
of cycles, but climbed to .222 after 10 cycles. The results of DDVg(2;4) were
indistinguishable, throughout 10 cycles, from those of V5(0,2).

These factors are good enough for producing top-efficiency FMG algorithms,
which are discussed next.

5.4. The domain-decomposed FMG algorithm DDFy;(vy,vs;J;n).
This is a parallel processing algorithm based on the single-processing one
FMGj(vg,0,v9;1;n) described above (Sec. 3.2). The main modification is the
use of cycle DDV}, (vo;J) instead of V(0,v9) = FASL(0,v9;1). Other rather
straightforward modifications can be introduced, when needed, to the calcula-
tion of the right-hand side (3.8) and to the solution interpolations H’,z_lz the
former can be done similarly to the residual weighting within the DDV, cycle,
including a single stage of inter-processor transfers at the coarsest level; and
the latter could use non-central interpolation whenever reliable (e.g., genuine)
values are not available on one side of the interpolation point. In practice, the
modification of H’,gfl did not seem to matter much.

Numerical experiments were conducted with our standard example, on
the 8 x 8 domain {|z1],|z2| < 4}, decomposed as above to two subdomains. The
border line between them is {z1 = 0}, and right-hand sides f and g were chosen
so that the solution to (2.1)~(2.2) is u(z) = cos(A(z1 —4) + B(z2 —4)). Various
values of A and B were tested, to cover any possible kind of components. The
algebraic error |[#™ —uM|| at various stages of the algorithm DD Fy; (vg; vo; J;n)
is compared in Table 1 to the discretization error [[u™ — I'Mu||, where the norm is
the discrete analog of the Ly norm. The algorithm stages at which the algebraic
error is shown are the following: (1) after the solution interpolation ™ =
H%_luM —1. (2) after the g initial relaxation sweeps; (3) after the coarse-grid
correction to level M in the first cycle (before relaxing on level M); (4) at the
end of the first cycle (after the vy post-relaxation sweeps on level M); (5) after
the coarse-grid correction to level M in the second cycle; (6) at the end of the
second cycle. (A second cycle on level M can be performed even in the case
n = 1: n shows the number of cycles that have been performed at each coarser
level of the FMG algorithm.)

The results show that, for any type of solution component, the algorithm
DDFy;(2,2;2;1) yields algebraic errors smaller than the discretization errors
already at stage (3), i.e., when on the finest level 2 sweeps have been made before
the cycle, but not after. This algorithm is extremely inexpensive: neglecting
interprocessor transfers and overlap repetitions (i.e., assuming sufficiently large
grids), the algorithm can be programmed to cost only 24 computer additions per
level-M gridpoint. (The only multiplications are by integral powers of 2, which
in floating-point binary arithmetic can be performed as additions.)

Furthermore, the results show that after an additional cycle (at stage (5) of
the table), the algebraic errors are already nearly an order of magnitude smaller
than the discretization error. This additional cycle can be programmed to cost
only 15 computer additions per level-M gridpoint.

Other features can be noticed in the table, such as: For sufficiently smooth
u no relaxation at the finest level is needed (see results at stage (3) for the
case A = B =1, yg = 0); but the initial relaxation sweeps on the finest level

MULTIGRID SOLVERS ON DECOMPOSED DOMAINS 11

are definitely important for high-frequency components: for them, if vy = 0,
results are bad, even at stage (4). Modestly smaller (about half as small) errors
are obtained by increasing vo from 2 to 3, or increasing n from 1 to 2. For
some high-frequency components there appears to be some sensitivity to the
exact location of the interface (compare J = 2, 4 and 6 in the case A = 1,
B = 25); still, in these as in all other high-frequency cases, the algebraic errors
of DDFy;(2,2;2;1) at stage (3) are already much smaller than the discretization
errors.

Notice also the huge discretization errors for the high-frequency cases (A, B)
= (25,1) or (1,25) when M = 3. This is due to the fact that the procedure for
calculating the discretization errors uses a right-hand side f™ which is injected
from the differential right-hand side f. In these particular cases the injection
happens to skip the oscillations in f, exhibiting very smooth f™ instead, thus
producing u™ very large compared with u. If one used that solution u3 as a
first approximation to u*, that initial error would be so large that more than
one cycle might be needed to reduce it to the size of |[u* — I*u||. This is the
reason for the weighting (3.8) used in the FMG algorithm.

5.5. Nonlinear example. We have also tried the same algorithm for the
nonlinear equation (1 + uz)uamc + uyy = f, which for the cases described above
(lu| < 1) can use the same relaxation scheme: the coefficient (1+u?) can simply
be frozen while relaxing the equation at gridpoint ¢. Results similar to the linear
case were obtained. More nonlinear results will be reported in the full version
of this paper.

5.6. Reducing the amount of transferred data. Preliminary tests
indicate that the above FMG algorithm retains most of its efficiency when much
less data is transferred at each level.

In particular, it appears enough to transfer only genuine solution values, and
only at the interior boundaries; i.e., in the tests described above, only to replace
all ﬂlj,’ilz by ﬁg:?z and all ﬂ]i’ih by ﬂli’}’iz. Within each processor, corrections
to other values can then be interpolated from these ones: e.g., for 0 < i1 < J
and for all i9, the correction (i1/J) (ﬂ?zi — 17’37’32) can be added to ﬂfl’?m Inter-
processor residual transfers can be avoided altogether, basing all residuals on
available solution values, even when they are not genuine.

A more radical approach, however, for reducing the amount of transferred
data is described next.

6. Avoiding Finest Level Data Transfers

6.1. The 7 correction and segmental refinements. We will now show
that in the above FMG algorithms the amount of data transferred at each stage
can drastically be reduced by omitting from the transfer any data related to the
finest levels. This is based on a different view of the fine grid role in the FAS
formulation.

Using (3.5), (3.8) and the definition of 7¥, Eq. (3.4) can be rewritten in the
form

(6.1) LrE-lyk-1 = gkl +TIJ:_17

12 BRANDT and DISKIN

where
(6.2) TRl = LRI Lgky — IRl LRk,

Without the T}:il term, Eq. (6.1) is the original coarse grid equation (3.7).

Thus, T,f_l expresses the correction introduced to the level-(k — 1) equation due
to the “visit” to the finer level k.

Indeed this is a typical defect correction (cf., e.g., [13]): 7'15;71 expresses
the “defect” in L*¥~1, i.e., the difference between it and the more accurate dis-
cretization L¥, that difference being measured on the current solution. Due to
the defect correction, the solution of the level-(k — 1) equation (6.1) will have
level-k accuracy. Indeed, at convergence uk—1 = /Z“_luk, since ¥ = 0.

Now observe that the “visit” to level k in the FFM G, algorithm includes only
inter-grid transfers and level-k relaxation, all of which are purely local processes:
they can be done on a piece of Q¥ at a time. Similarly, only a piece of QF 1 ig
needed at a time, since its role in correcting the level-(k — 2) equations is purely
local. And so on.

Such observation lead to “segmental refinement” algorithms, proposed al-
ready in [2, Sec. 7.5], which use overlapping subdomains without any data trans-
ferred at the finest levels. These are actually domain decomposition algorithms,
although their original motivation was to obtain a single-processing multigrid
solver which uses storage area much smaller than the size of the finest grid,
without using external storage.

Our general approach to multigrid domain decomposition will be to operate
segmental-refinement-type procedures at several of the finest levels, with the
procedures of Section 5 above operating at the coarser levels. For the purpose of
clarity, however, we investigate first simpler algorithms that operate segmental
refinement at all levels except for the coarsest level 1. On this coarsest level,
which for these investigation purposes may itself be rather fine (cf. Sec. 5.2
above), the equations are always assumed to be solved ezactly, by whatever
method and processors.

Thus, in the algorithms studied in this section, there will be no interpro-
cessor data transfer to and from levels 2,3,..., M. The only communication
between the P processors will be their interaction with a common coarsest level.
The subgrid of QF in which processor p operates is ﬁ’zﬁ = QI;’J(IC), defined as in
Sec. 5.1, and the value of the current approximate solution which the p processor
has at a gridpoint i € (AZ]’; is denoted ﬂf’p i

6.2. Two-level model case. To understand in detail the working of the
algorithm, consider first the simpler two-level two-processor case. Taking the
border line Q1 N Q9 to be the axis {z; = 0}, the gridlines of Q% and Q% will
be those with ¢; < 0 and 4; > 0, respectively. The gridlines of the extended
subgrids Q% and Q% will be those with i1 < J and i; > —/J, respectively. The
FMGq algorithm for solving

(6.3) L2? = f?

will consist in this case of the following 7 steps.

MULTIGRID SOLVERS ON DECOMPOSED DOMAINS 13

olve whatever method, the equation
(A) Solve, by wh hod, the eq
(6.4) Liwt = L =1 /2,

and set up the first approximation to the solution of (6.1) at a point ¢ € ﬁf‘, to be

ﬂ?’p = (Mul);. At this stage ﬂ?’l = ﬂ?’Q at all points ¢ = (i1,i3) of the overlap

{=J < i1 < J}. The solution interpolation I} is bicubic.

(B) Perform v relaxation sweeps, each processor p relaxing its own subgrid
@,2,. At this stage the values of #%! and %% in the overlap start to differ, because
the “interior boundary” values 173:}2 and ﬂ%gﬂé cannot be relaxed, for lack of
neighboring values within the same processor.

(C) Each processor p transfers to the coarse grid solution values and weighted-
residual values needed to form both the modified injection

% 11 <0
(6.5) (I3a?); = S us? i1 >0

1721 ~22 .

35Uy +uy”) i1 =0

and the modified residual weighting I372, defined by (3.3) with:

f? = Lou"! Li1 <0

=2 2,2 .
(6.6) 7y =< f2 - L%u) 2ip >0
f2 =3P + L)) i = 0.

(D) On the coarse grid, calculate f! by (3.5), then solve the equation L1%! =
f1 ezactly, by whatever method.
(E) Each processor p corrects its approximate solution 2P by

(6.7) WP WP 4 IRW - BuPP), (p=1,2).

Note that the injection gﬂZ’p used here and the modified injection f21172 defined
by (6.6) are different in the “margins”, where the marginal points for p = 1 are
the gridpoints ¢ = (i1,42) with 0 < 43 < J, and for p = 2 they are those with
—J <43 <0. Note further that after the correction (6.7), the solution values in

. . L~21 22
the two processors agree at points corresponding to the coarse grid: u23- = u23- ;

but at other points they may well differ: 17?’1 # ﬂ?’Q for i = (i1,42) with either
i1 or i2 or both being odd.

(F) Perform v/ additional relaxation sweeps.

(G) Repeat Steps (B) through (F) as many times as needed.

Usually, Step (G) could be omitted: just one cycle would be enough to make
the algebraic error ||#? — u2|| substantially smaller than the discretization error
||u? —I?ul|, where @2 are the genuine calculated values (see Sec. 5.1) and u? and u
are the exact solution of (2.1) and (6.3), respectively. Here, however, we intend to
investigate the questions: how small can |2 —u?|| be made by additional cycles,
and at what rate per cycle? How does this performance depend on the overlap

14 BRANDT and DISKIN

parameter J? Understanding these issues is important for the real multilevel
calculations, where much smaller discretization errors are to be reached.

6.3. Two-level mode analysis. For simplicity we assume J to be even.
Note that the cycles (Step (G)) are stationary (introduce no change to @'
and @%?) when the following two conditions are fulfilled: first, the difference
equations are satisfied throughout the interior of each subgrid:

~2, . .
(6.8a) L2ugt = f7 ((p=1, i1 < J)and (p=2, i1 > —J))
and secondly, j;luQ’l and f21u2’2 coincide at the internal boundaries, i.e.,
(6.8) a2l =422 . (iy = +J, ig is even)

21,12 21,22

These conditions leave unspecified the other values on the interior boundaries
(u%z1 and 42 3 i, for ig 0dd), so they can differ arbitrarily much from the corre-
spondmg genuine values. If these differences are large enough they can signifi-
cantly infect the solution everywhere. Thus, there are arbitrarily bad solutions
unaltered by the cycles.

Such bad solutions, however, will not be produced by the above FMGo

algorithm. The values on the internal boundaries (e.g., a Tis) differ from the

corresponding genuine values (uii) only because the latter are changed by
relaxation, while the former are not. Moreover, any change in the genuine values

(ﬂ%f) which is smooth (as a function of i2) will be transmitted to the interior

boundary (u s) by the correction (6.4). Hence, the error left on the interior
boundary will malnly be composed of high-frequency components of the form

21 ~2.2 4 ifi 71'
(6.9) Uy = Ufsy = Age®2, (5 <l9| < 7r>

(the first 7 in the exponent denoting /—1), and their amphtude Ag will be
comparable to the size of the high frequency components in u2 H . This size
itself is usually (with a proper choice of IT7) comparable to the discretization
error |lu! — I'u||, which roughly equals 2%||u? — I?u||, where s is either the
smoothness order of u or the discretization order, whichever is smaller.

The error (6.9) is not itself an error in genuine values of u>!. But it induces
an error e2! = 4! — 42 throughout Q1= which vanishes on the real boundaries

and satisfies

(6.10a) L2, =0, (i1<J)
and

2,1 107
(6.10b) ei, = Age®®™.

Since the effects of such high frequency boundary error is mainly local, we
can approximate them by assuming (6.10) to hold in the semi-infinite domain

MULTIGRID SOLVERS ON DECOMPOSED DOMAINS 15

{i:—00 < i1 < J, —00 < ig < oo}, from which it follows, in case L? is the
five-point Laplacian, that

(6.11) e, = MO)T 1 Age™®2,

where \(8) satisfies \(8) + A(8) ™! +2cosf —4 = 0 and |A\(d)| < 1. Hence, in the
range (6.9) of high-frequencies,

IA0)| < M(/2) = .268 ~ 272

The error for genuine values resulting from the decomposition are errors
e?l’li2 in the region i; < 0. By (6.11) and the above estimates for |Ag| and |A(6)|,
this decomposition error Egec, in any norm, is roughly bounded by

(6.12) Faec < 2°7%7 ||u? — Iu|.

It follows that, for Egec to be smaller than the discretized error |Ju? — I?ul|, it
is required that J > s/2. Thus, for a second order discretization, an overlap
parameter J = 2 should be more than adequate.

6.4. Two-level numerical experiments precisely support this analysis.
They were conducted with the above model problem in the 8 x 8 square, with
the exact solution u = cos(A(z1 —4) + B(za —4)). The results for various values
of A and B and various algorithm parameters (v,v’,J) are shown in Table 2.
The meshsize shown (hg) is that of the fine grid: thus, for example, for ho = .25
the fine grid has 32 x 32 intervals, and for ho = .0625 it is 128 x 128. Using
two different norms, the discrete Lo and the Lo (maximum) norms, the table
compares the algebraic error |2 — u2|| with the discretization error ||u? — I?ul|.
The algebraic errors were calculated at the end of cycles, i.e., following Step (F),
except for those shown in the first column (marked 0), which are the algebraic
errors after Step (A).

After enough cycles the algebraic errors tend to stationary values, shown
in the last column of Table 2 (marked oo). These errors are the decomposition
errors Eqec. The calculated values clearly satisfy (6.12) (for s = 2) in all inter-
esting cases. (A slight exception is seen for the highest frequency component
(A,B) = (1,12), but it would disappear if the right-hand side were properly
averaged: see the comment at the end of Sec. 5.4.)

Moreover, the table shows that in all cases the algebraic error after one cycle
is already much smaller than the discretization error, and it is nearly independent
of the overlap parameter J. In fact, for small J, the algebraic error after just
one cycle is sometimes even smaller than that obtained after additional cycles;
presumably it requires additional cycles for the interior-boundary error (6.9) to
fully affect the genuine values (e.g., the values of ﬂfl’,lh at i1 <0).

Notice that the relative decomposition error (relative to the discretization
error) is larger in the Lo, norm than in the Lo norm. This is because, as predicted
by (6.11), the error created by the decomposition is mostly concentrated at a
restricted region — near the borderline — while the discretization error is not.
Also conforming with (6.11) is the fact that the ratio between the Lo and the
L decomposition error norms is nearly independent of either ho or J.

16 BRANDT and DISKIN

6.5. Extension to more levels. There are a number of ways, currently
under investigation, in which the above two-level (M = 2) algorithm can be
extended to more levels (M > 2). The fundamental aspect in all of them is that
the overlap parameter at level k, J(k), should actually grow with M — k. Indeed,
the accuracy one wants to reach is O(||[u™ —I™ ||, while the error at the interior
boundary of 2 is O(|[uf~" — I¥=1u||) = 25(M=k+DO([luM — IMy]|), hence, by
the analysis of Sec. 6.3, it is necessary that

(6.13) 2J(k) > s(M — k +1).

Although the number of lines in the overlap implied by (6.13) increases
with M — k, the number of gridpoints actually decreases, nearly geometrically.
Hence, the total number of gridpoints required in the overlaps at all levels is still
proportional to the number of interface gridpoints (gridpoints on the borderlines
or border planes). Hence, the overlapping increases the amount of calculation
only by a small fraction. We emphasize that the overlaps do not imply inter-
processor data transfer: The algorithm avoids any such transfer at all levels
except for the coarsest.

Preliminary experiments with M < 4 show that, with overlaps some-
what larger than (6.13), the algebraic errors indeed remain smaller than the
discretization errors.

REFERENCES

[1] Alcouffe, R.E., A. Brandt, J.E. Dendy, Jr. and J.W. Painter, The multi-grid methods for
the diffusion equation with strongly discontinuous coefficients, SIAM J. Sci. Stat. Comp. 2
(1981) 430-454.

[2] Brandt, A., Multi-level adaptive solutions to boundary value problems, Math. Comp. 31
(1977) 333-390.

[3] Brandt, A., Multi-grid solvers on parallel computers, in Elliptic Problem Sovlers (M.
Schultz, ed.), Academic Press, New York, 1981, pp. 39-84.

[4] Brandt, A., Multigrid Techniques: 1984 Guide, with Applications to Fluid Dy-
namics, 191 pages, 1984, ISBN-3-88457-081-1. GMD Studien Nr. 85. Available from GMD-
AIW, Postfach 1240, D-5205, St. Augustin 1, W. Germany, 1984.

[5] Brandt, A., Rigorous local mode analysis of multigrid, in Preliminary Proc. 4th Copper
Mountain Conf. on Multigrid Methods, Copper Mountain, Colorado, April, 1989. An
updated version can be obtained from the author.

[6] Brandt, A., Multilevel computations of integral transforms and particle interactions with
oscillatory kernels, Comp. Phys. Comm. 65 (1991) 24-38.

[7] Brandt, A., Multigrid methods in lattice field computations, Nucl. Phys. B (Proc. Suppl.)
26 (1992) 137-180.

[8] Brandt, A. and A.A. Lubrecht, Multilevel matrix multiplication and fast solution of integral
equations, J. Comp. Phys. 90 (1990) 348-370.

[9] Brandt, A. and V. Mikulinsky, Multigrid treatment of problems with highly oscillating
boundary and boundary conditions, SIAM J. Sci. Stat. Comp., submitted.

[10] Brandt, A. and I. Yavneh, On multigrid solution of high-Reynolds incompressible entering
flows, J. Comp. Phys. 101 (1992) 151-164.

[11] Brandt, A. and I. Yavneh, Accelerated multigrid convergence for high-Reynolds recircu-
lating flows, J. Comp. Phys., in press.

MULTIGRID SOLVERS ON DECOMPOSED DOMAINS 17

[12] Mikulinsky, V., Multigrid treatment of boundary and free-boundary conditions, Ph.D.
Thesis, Weizmann Institute of Science, 1992.

[13] Stetter, H.J., The defect correction principle and discretization methods, Num Math. 29
(1978), 425-443.

DEPARTMENT OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, THE
WEIZMANN INSTITUTE OF SCIENCE, REHOVOT 76100, ISRAEL
FE-mail address: mabrandt@weizmann.weizmann.ac.il

