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Abstract. We propose a novel multiscale algorithm for the problem of model assimilation of
data. The algorithm allows one to efficiently perform optimal statistical interpolation of observed
data from a given forecast wf and vector of observations wo. The core of the new approach is
a combination of two multiscale tools: a multiresolution iterative process and a multigrid fast-
summation technique. Our approach allows efficient computations related to global filtering and
interpolation of the observations, particularly between data-rich and data-sparse areas.

In this paper, we describe an iterative process based on a multiresolution simultaneous displace-
ment technique and a localized variational calculation of iteration parameters. We explain how this
process can be efficiently combined with the multigrid fast-summation procedure.
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1. Introduction. Atmospheric data assimilation technologies provide estimates
of the state of the geophysical system using its dynamical model and observational
data measured in different places and at different times. Modern three- and four-
dimensional data assimilation technologies lead to more complete and more accurate
estimates than estimates achieved from separate analysis of sets of observations. They
provide mechanisms for filtering and interpolating the observations and for transport-
ing the information from data-rich to data-sparse areas [1], [2], [3], [4], [5]. The
necessity of processing a large amount of information in a complicated way makes
data assimilation computationally demanding. Novel computational techniques have
to be developed for this challenging area.
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In this paper, we propose a novel multiscale approach for the problem of optimal
statistical interpolation of observed data. At the initial stage, we consider the case
of univariate analysis of single-level radiosonde height data. The problem of optimal
statistical interpolation is related to calculating the best estimated state of the atmo-
sphere wa (“analyzed state”), from the forecast wf , and the set of observations wo.
Mathematically, the best estimated state is determined by the formula [4], [6], [7]

wa = wf + P fHT (HP fHT + R)−1(wo + Hwf ).(1)

Typically, the forecast field wf is defined on a regular spherical grid, while the set
of observations wo is defined on an irregular network of observation points. H is
an interpolation operator from the regular grid to the observation network, P f is the
forecast error covariance matrix, and R is the observation error covariance matrix. The
observation error covariance matrix R is assumed to be diagonal, with Rii = (σo

i )2.
The forecast error covariance function P f (x1, x2) is defined for any pair of points
x1 and x2 on the sphere by the formula P f (x1, x2) = σf (x1)µ(x1, x2)σf (x2), where
the forecast error correlation function µ(x1, x2) is described as a smooth decreasing
function of the distance between the points x1 and x2 [7]. The matrices P f and µ are
the restrictions of functions P f (x1, x2) and µ(x1, x2) on the regular latitude–longitude
grid.

In the data assimilation system GEOS-1/DAS currently used in the Data Assim-
ilation Office, NASA/Goddard Space Flight Center, the equivalent of the equation

(HP fHT + R)y = g

is solved with a conjugate gradient algorithm that is carefully preconditioned [7]. The
preconditioner is based on solving the localized system in subdomains. As long as the
number of measurements and the grid size of the forecast system are moderate, such
a technique gives an appropriate result. (Note that the algorithm based on the local
preconditioning is, in a wide sense, a two-scale algorithm.) However, for the much
larger sets of measurements and the much more detailed forecasts to be used in the
near future, more advanced computational techniques have to be developed. Indeed,
if the subdomains contain large amounts of observations, preconditioning becomes too
expensive. On the other hand, if the subdomains are too small, the preconditioner
is poor and the iterative process converges slowly. This effect can be overcome if a
sequence of spatial scales is used in the iterative process, instead of only local and global
scales as in the procedure used in the current GEOS-1/DAS algorithm [7]. Thus, it
is quite natural to develop a novel fast computational procedure for assimilation of
data using multiscale computational approaches.

The optimal statistical interpolation procedure (1) is multiscaled in two stages as
follows. A multiresolution approach allows us to construct an iterative process with
a high convergence rate for the equation

(HP fHT + R)y = g,(2)

where g = wo − Hwf . Multigrid fast-summation techniques [8], [9], [10] make it
possible to quickly evaluate the discrete integral transform

z = P fHT y.(3)

The combination of these two multiscale techniques is the basic idea behind the novel
multiscale approach for assimilation of data proposed here.
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We have to emphasize that standard multiscale techniques, such as the multigrid
methods [11], [12], [13], [14] and the wavelet methods [15], [16], cannot be applied
to the problem of data assimilation in a straightforward way. As we have already
mentioned, a global data assimilation system has to provide a reasonable mechanism
for information transport between data-rich and data-sparse areas. This strong in-
homogeneity in the observation network cannot be treated in a straightforward way
either by multigrid or by wavelet methods. However, the proposed technique, based
on combining a fast multiresolution iterative process with an efficient multigrid fast-
summation procedure, successfully treats this inhomogeneity.

This paper is mostly devoted to constructing a multiresolution iterative algo-
rithm for solving (2), which efficiently treats different scales. Accordingly, in the com-
puter experiments, all summations have been performed in a straightforward way.
An efficient multigrid fast-summation procedure has been developed by A. Brandt
and A. A. Lubrecht1 (see [8], [9] for more details). A comprehensive review of fast-
summation algorithms is given in the paper by L. Greengard [10].

Without loss of generality, equation (2) can be replaced by the system of equations∑
j

P̃ f
ijyj + Riiyi = gi,(4)

where P̃ f
ij is assumed to be of the form P̃ f

ij = σ̃f
i µij σ̃

f
j for the respective ith and jth

observation points xi and xj , µij = µ(xi, xj), and σ̃f
i = (Hσf )i. (While the matrix

P is defined for the points of the regular grid and interpolated to the observation
network using the operator H, the matrix P̃ is defined by the same formula directly
on the observation network.) Indeed, the term HPHT y − P̃ y may be treated as an
additional source in the right-hand side. This small term is nonprincipal at all scales
and can easily be taken into account in iterations.

Since we want to deal explicitly with the smoothness properties of the kernel µij ,
we write equation (4) in the form

∑
j

µijuj +

(
σo

i

σ̃f
i

)2

ui = fi,(5)

where ui = σ̃f
i yi, and fi = (σ̃f

i )−1gi, or in the matrix form

Au = f,(6)

where A is symmetric and is a presumably positive definite matrix with elements

Aij = µij +

(
σo

i

σ̃f
i

)2

δij ,

and δij is discrete Dirac delta function.

1The fast-summation algorithm developed by A. Brandt and A. A. Lubrecht is based on the
following idea. Summation w(xi) =

∑
j K(xi, xj)u(xj) with the kernel K(xi, xj), which is smooth

enough, can be performed on the coarse grid in the following way: the function u(xi) is averaged
from the fine to the coarse grid, summation is performed on the coarse grid using the coarse grid
approximation of the smooth kernel, and the result is interpolated from the coarse to the fine grid. In
a more general case, the kernel K(xi, xj) is decomposed in two parts: a local part that is efficiently
evaluated at the fine grid and a smooth part that is evaluated on the coarse grid. In practice, a
sequence of grids is used.
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2. General strategy. It is important to understand why many common itera-
tive processes, such as Jacobi, Gauss–Seidel, or conjugate gradients, converge slowly
when applied to equation (6). Consider, for example, the simplest iterative process

u(n+1) = u(n) + ωr(n),(7)

where the residual

r(n) = f − Au(n),

and the parameter ω ≈ (ρ(A))−1 with ρ(A) being the spectral radius of the operator A.
The process (7) effectively reduces the error components corresponding to the

large eigenvalues λl of the operator A such that

ωλl ∼ 1,

while the error components corresponding to the small eigenvalues λs, for which

ωλs � 1,

are reduced slowly [17]. Since the summation
∑

j µijuj in (5) is made with a smooth
kernel, eigenvectors of A corresponding to the large eigenvalues are (mostly) spatially
smooth, and eigenvectors of A corresponding to small eigenvalues are oscillatory in
space. Therefore, one cannot define one particular value of ω that would give an
essential reduction of all spectral error components.

The effect described above is well studied for the case when (6) is obtained as a
grid approximation of the continuous integral equation. A few multiscale techniques
based on multigrid [8], [9] and wavelet [16] approaches were developed in the 1990s and
successfully applied to a range of problems. Unfortunately, these techniques cannot be
applied to the considered problem in a straightforward way. As we mentioned above,
the global data assimilation system has to carefully transport information between
data-rich and data-sparse areas. Neither standard multigrid nor wavelet methods can
efficiently treat strong inhomogeneities of the observation network. However, a novel
multiscale technique that we have developed can overcome this difficulty.

The central idea of the multiresolution approach developed below is to filter se-
quentially spectral components of r(n) and to choose for each of them a value of
the iteration parameter that gives an essential reduction of the corresponding error
component.

The major particular difficulty that has been overcome successfully in this work
is how to define variable pass spatial filters Fh depending on the scale parameter h
for a field defined on a very inhomogeneous network. An appropriate filter will be
described in section 3.

When some component Fhr(n) of the residual r(n) has been filtered, one should
next calculate the correction vector. A simple way to do this is to use a scalar iter-
ation parameter ωh, i.e., to calculate the correction as ωhFhr(n). Then, the modified
iterative process (7) can be written as

u(n+1) = u(n) + ω
(n)
h Fhr(n),(8)

where the iteration parameter depends on the scale h in some way. An intrinsic disad-
vantage of schemes like (8) is that one global iteration parameter ω

(n)
h is determined

for the entire domain. The optimal correction at a spatial point xi should, however,
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depend only on the residual values at points located at most a few h from xi. There-
fore, in section 4, we construct a procedure for calculating an iteration parameter ω

(n)
h,i

for each point xi locally, using only the values of the residual components in some area
around it. This means that the iterative process that we construct can be written as

u(n+1) = u(n) + Ω(n)
h Fhr(n),(9)

where

Ωh = diag(ω(n)
h,i ).

We discuss the structure of the multiscale iterative cycle in section 5.

3. Spatial filter. In this section, we construct a filter applicable to functions
defined on a very irregular discrete network. Obviously, we want our filter to work like
a usual spectral high-pass filter in the data dense regions. What do we want to get
in regions of sparse data? Suppose we have an observation point s that is separated
from other points by distance

ds = min
p 6=s

dist(s, p),

where dist(s, p) is the three-dimensional distance between the points s and p. We
would like to take into account the residual component rs only on the scales h, which
are large enough (h ' ds and h > ds), and neglect it on the scales h, which are small
compared with ds.

We define the filter Fh that satisfies these requirements by the formula

(Fhr)i = ri − γi

∑
j

rj exp
(

−1
2

(dist(i, j))2

h2

)
,(10)

where h is the current scale, and the parameter γi is defined by the formula

γi =

∑
j

exp
(

−1
2

(dist(i, j))2

h2

)−1

.

This filter can be efficiently calculated using the fast-summation procedure [8], [9].

4. Calculation of Ωh . The scalar iteration parameter ω
(n)
h in (8) can be deter-

mined from the variational condition of minimizing the Euclidean norm of the scale-h
component of the new residual r

(n+1)
h :

min
ω

(n)
h

||Fh(r(n) − ω
(n)
h AFhr(n))||2.(11)

The Euclidean norm on the observation network and corresponding inner product are
defined by the respective formulas

||u||2 =
∑

i

|ui|2,

(u, v) =
∑

i

uivi,
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where the summation is made over the observation points. Condition (11) leads to
the formula

ω
(n)
h =

(p, q)
(q, q)

,(12)

where

p = Fhr(n),

q = FhAp.

An intrinsic disadvantage of formula (12) is that it is global. In order to localize
it, we use a family of weighted Euclidean norms. Let us introduce a family of weighted
inner products

(u, v)H,i =
∑

j

ujvj exp
(

−1
2

(dist(i, j))2

H2

)
,

where the summation is made over the observation points and H > 0 is the scale
parameter. An appropriate choice of the matrix Ω(n)

h in (9) is

Ω(n)
h = diag(ω(n)

h,i ),

where

ω
(n)
h,i =

(p(n), q(n))3h,i

(q(n), q(n))3h,i
,(13)

p(n) = Fhr(n),

q(n) = FhAp(n).

Note that both the numerator and the denominator of (13) can be efficiently
evaluated by the fast-summation procedure [8], [9].

5. Structure of the multiscale iterative cycle. In order to define the order
of the multiresolution iterations, some spatial scale h has to be prescribed for each
iteration. The current spatial scale is determined by the formula h = H · 21−ν(n),
where H is the largest scale and ν(n) is an integer parameter prescribed to the nth
iteration. The multiscale iterative algorithm can be written as follows:

DO n = 1, NITER
r(n) = f − Au(n) Residual calculation
IF ν(n) > 0 THEN

h = H · 21−ν(n) Definition of the current scale
p(n) = Fhr(n) Filtering

q(n) = FhAp(n)

ω
(n)
h,i = (p(n),q(n))3h,i

(q(n),q(n))3h,i
Calculation of the iteration parameters

Ω(n)
h = diag(ω(n)

h,i )

u(n+1) = u(n) + Ω(n)
h p(n) Calculation of the new approximation

to the solution
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ELSE
p(n) = r(n) Filtering is not used

q(n) = Ap(n)

ω
(n)
h = (p(n),q(n))

(q(n),q(n)) Calculation of the iteration parameter

u(n+1) = u(n) + ω
(n)
h p(n) Calculation of the new approximation

to the solution

ENDIF
ENDDO

For our initial tests we have used the standard V (2,2) cycle with three itera-
tions at the zeroth level [11], [12]. This means that the function ν(n) is periodic:
ν(LC + k) = ν(k) for any k > 0, and

ν(n) =


NLV L − k + 1 if n = 2 · k − 1 + l, k = 1, 2, . . . , NLV L, l = 0, 1;
0 if n = 2 · NLV L + l, l = 1, 2, 3;
k if n = 2 · NLV L + 2 + 2k + l, k = 1, 2, . . . , NLV L,

l = 0, 1,

where NLV L is the finest level number and LC = 4 · NLV L + 3.

6. Numerical results. At this initial stage of the work, we have performed all
of the numerical tests with unilevel (500 hPa) radiosonde height data. The locations
of 715 radiosonde stations, residuals wo−Hwf computed with a six-hour forecast from
GEOS-1/DAS and radiosonde observations at 500 hPa, and values of σo and σf , were
obtained from the Data Assimilation Office, NASA/Goddard Space Flight Center.
Observation error variances σo

i were taken to be equal to 14.6 m for all radiosonde
stations. Forecast error variances σf

i vary from point to point, ranging from 18 m to
35 m. The forecast correlation function is modeled by the formula

µ(x1, x2) =
(

1 +
(dist(x1, x2))2

L2

)−1.208

,

where dist(x1, x2) is the three-dimensional distance between points x1 and x2 and L
is the correlation distance L = 951 km.

We made our experiments with NLV L = 5. The scales that were used are shown
in Table 1. The results of our experiments are shown in Table 2.

7. Discussion. The computational approach described in this paper leads to-
ward a fast and efficient solver for the atmospheric data assimilation problem. It has
been shown that the multiresolution iterative algorithm can provide a fast convergent
solver. As long as the number of measurements is moderate (less than a few thousand,
say), this algorithm by itself is already effective enough and it does have significant
computational advantages in comparison with the current GEOS-1/DAS solver based
on the preconditioned conjugate gradient method. Moreover, the full potential of
the new approach can be used effectively for much larger sets of measurements. In
this case, the developed multiresolution iterative process has to be combined with the
multigrid fast-summation procedure.

Acknowledgments. This paper presents part of a joint work with S. Cohn,
G. Gaspari, and A. da Silva of the Data Assimilation Office, NASA/Goddard Space
Flight Center. The authors thank them for raising their interest in the problem
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TABLE 1
Scale structure.

Level number 1 2 3 4 5
Scale h, km 10 000 5 000 2 500 1 250 625

TABLE 2
Convergence of the iterative procedure.

Multiscale L2 norm of the Rate of decrease
cycle residual of the norm

Initial 2.5510+1

1 6.8610−1 0.027
2 3.7610−2 0.054
3 2.0510−3 0.054
4 8.8710−5 0.043

of atmospheric data assimilation and providing the observation data and model pa-
rameters. The authors are also indebted to A. Kheifets, I. Rivin, M. Shapiro, and
C. H. Venner for helpful discussions.
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