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Abstract

An approach for the construction of multigrid solvers for non-elliptic equations on a
rectangular grid is presented. The results of both the analysis and the numerical exper-
iments demonstrate that such an approach permits to achieve a full multigrid efficiency
even in the case that the equation characteristics do not align with the grid. To serve as
a model problem, the 2D and 3D linearized sonic-flow equations with a constant velocity
field have been chosen. Efficient FMG solvers for the problems are demonstrated.
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1 Introduction

The fastest solvers for discretized elliptic partial differential equations are the full-multigrid
algorithms. The solution of general nonlinear elliptic systems can be obtained in just a few
minimal work units, a minimal unit being defined as the number of operations required for
the simplest discretization of the system on the target grid. However, attempts to apply the
same techniques to non-elliptic equations, such as the supersonic (transonic) potential flow
equation or its degenerate case - the sonic flow equation, have met with more limited success.
Although such multigrid methods are usually much more efficient than comparable single-
grid methods, the goal of solution in just a few minimal work units has not been attained.
Indeed, many of the reported solvers require hundreds of minimal work units. Others, such
as solvers based on various modifications of the ILU decomposition, being efficient in 2D,
cannot be directly extended to 3D without losing most of their efficiency.

The increased amount of required work is usually contributed by a number of factors, and
the first important step therefore is to separate them out. The present research addresses
one basic difficulty in separation from others: the problem of non-alignment. The problem
arises wherever characteristics of a differential equation do not coincide with grid lines. We
study the non-alignment effect on the model tasks: the 2D and 3D sonic-flow equations
linearized over a constant velocity field. These problems are reduced to solving semi-elliptic
equations which are elliptic on low dimensional manifolds embedded in the original space.
The 2D problem itself can also be solved by other methods, but the development of an
efficient robust solver in 3D has remained an open problem up to now.

The solution approach suggested here is based on the Full Multigrid (FMG) algorithm
(see, e.g., Sec. 7 in [3] or [2]). The usual goal of an FMG solver is to reduce a norm
of the target-grid (grid h) algebraic error ‖uh − ũh‖ below the level of the discretization
error ‖uh − Uh‖ , where uh and ũh are the exact and computed solutions of the discretized
equation, respectively, Uh is some target-grid representation of the true solution to the
differential equation, and ‖ · ‖ is a given norm of interest. Sometimes it is useful to measure
also the total error ‖ũh − Uh‖.

In many cases regular FMG algorithms are sufficient to yield a final solution with an
algebraic error much smaller than the discretization error. In some problems, however,
the usual algorithm cannot efficiently treat certain smooth components of the target-grid
solution. The sonic flow problem, for example, in which the discretization scheme introduces
a numerical viscosity if the flow is not consistently aligned with the grid, falls into this
category. The same trouble has been observed and treated for convection-diffusion equations
(see [1]) and for high-Reynolds incompressible entering flows (see [5]). In such cases the usual
multigrid cycles lose their efficiency and so does the FMG algorithm employing the cycles.

A simple explanation of the problem can be given when the characteristics of the dif-
ferential equation emanate from the boundary, in which case the quality of the coarse-grid
correction is determined by how well certain cross-characteristic oscillations are advected
from the inflow boundary into the domain. The main trouble is the increased numerical
viscosity on coarse grids, which causes the decay and phase shift of these cross-stream oscil-
lations to differ much from their values on the fine grid.

The idea suggested in this paper to overcome the trouble is to use semi coarsening
together with the introduction of a well-balanced explicit numerical viscosity on coarse grids
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to control the penetration of the incoming cross-stream oscillations.
In Section 2 we give a general formulation of the problem and introduce the main ideas.

This is followed by detailed descriptions of the concrete problems and the solution algorithms
in 2D (Section 3) and 3D (Section 4). The half-space mode analysis given in Section 3.4
and the results of the numerical experiments (Appendix) show the high efficiency of the
suggested solvers.

2 General description

2.1 Differential problem

The full potential flow equation has the quasi-linear form

(ū · ∇)2 Φ − a2�Φ = f, (1)

where ū is the velocity vector, a is the speed of sound and the unknown scalar function Φ(x, y)
is the velocity potential of the irrotational flow. More important, the operator appearing in
Eq. 1 is one of the factors of the principal part determinant of the Euler system of equations
for compressible flows (see §21 in [3]). Hence, according to rules developed in [3] (see also
[2], [5] and [8]), the development of fully efficient multigrid solvers for the Euler system
depends on devising such solvers for the principal part of (1), in which ū and a are given
fields unrelated to Φ.

The type of this equation depends on the ratio M = (ū · ū)1/2/a, which is called the Mach
number. When M = 1, equation (1) degenerates to the sonic flow equation

�̃Φ = f, (2)

where �̃ is the Laplacian on a manifold orthogonal to the velocity field. We call each such
manifold a characteristic manifold.

We study the phenomena of non-alignment in the case of constant fields ū and a. In this
case the characteristic manifold is a straight line in 2D (characteristic line) and an oblique
plane in 3D (characteristic plane). Although relatively simple, the problem nevertheless
contains one of the main difficulties appearing in flows not consistently aligned with the
discretization grid. Moreover, the algorithms developed here for this simplified problem can
be applied with some extension to more complicated problems including variable velocity
fields.

2.2 Principles of discretization

The target grid on which we discretize our equation is a rectangular grid. Usually it is
a uniform grid, but grids with any other aspect ratios are also acceptable. In the present
research we use only grids with a fixed aspect ratio (the ratio of the meshsize in the reference
axis to the meshsize in the vertical axis). For 3D, grids in the reference plane are always
assumed to be uniform.

Let us consider a discretization of the differential operator (2) at a given grid point.
There exists one and only one characteristic plane going throughout the point. In the
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general position the characteristic plane does not contain any other grid point. In order
to discretize such an operator we introduce ghost points located at the intersections of the
characteristic plane with the adjacent vertical grid lines. The function value at a ghost point
is interpolated from its genuine neighbors placed on the same vertical grid line. For small
aspect ratios this interpolation degrades the discrete operator approximation order and to
compensate for the degradation we also add a few points to the discretization stencil. These
points are added on the vertical grid line crossing the central point at which the operator is
defined.

The general approach to the discretization of operators defined on a characteristic man-
ifold contains the following steps.

1) The target semi-elliptic operator is first discretized on the characteristic manifold,
using the ghost points, employing an h-elliptic discretization (see §2.1 in [3] or [2]). We call
this lower-dimensional discrete operator the low-dimensional prototype.

2) The real-dimension discretization is obtained from the low-dimensional prototype by
using vertical linear interpolation to the ghost points together with the addition of several
compensating points on the vertical grid line going through the point where the discrete
operator is being defined. This discretization is h-elliptic in the full dimension.

Such a discretization possesses numerical viscosity (because of the non-alignment and the
resulting interpolation) that appears to be relatively small, especially on grids with a high
aspect ratio. Nevertheless, this viscosity exists on each grid. We will call it the inherent nu-
merical viscosity, to distinguish it from the “explicit numerical viscosity” introduced below.
Quantitatively, the inherent numerical viscosity is defined as the coefficient of the lowest pure
cross-characteristic derivative arising in the first differential approximation (FDA) to the
discrete operator (see [7]), the cross-characteristic direction being defined as the direction
perpendicular to the characteristic manifold. In our model problems the cross-characteristic
direction coincides with the velocity direction.

Let us introduce now some useful terms. A function defined on the space under con-
sideration will be referred to as a characteristic component if it is a smooth function on
the characteristic manifold. The terms high-frequency characteristic component and smooth
characteristic component will refer to components that are very smooth on the character-
istic manifold and are respectively highly-oscillating and smooth in the cross-characteristic
direction (but not as smooth as in any of the characteristic directions).

Previous studies on several types of non-elliptic equations (see [5] and [1]) have shown
that the basic trouble in constructing an efficient multigrid solver is the poor approximation
of smooth characteristic components on coarse grids. The reason is the increased coarse-
grid inherent numerical viscosity appearing in cycles with full coarsening, i.e. when the
coarse grid has all the meshsizes twice as large as those of the fine grid. A general way to
overcome this trouble would be to use semi coarsening, with meshsizes being doubled only
in the reference plane. When applied in its pure form, semi coarsening also results in some
difficulties, since the inherent numerical viscosity of the semi-coarsened grid will be much
less than that of the fine grid. But we can supply the operator on the semi-coarsened grid
with an additional term (explicit numerical viscosity term) so that the total viscosity on the
semi-coarsened grid would be the same as on the fine grid.

The three- or even four-level version of such a cycle, with two pointwise relaxations on
each level and an appropriate inter-grid transfers, can already be used to solve efficiently
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the model problems discretized on a uniform target grid. However, the implementation of a
cycle with more levels raises the following new difficulty.

2.3 Strong cross-characteristic coupling

The inherent numerical viscosity in our algorithms arises from the vertical interpolation to
the ghost points. To obtain the same total viscosity, we introduce an explicit numerical
viscosity on the coarse grids by adding a term which is a discrete approximation to a vertical
derivative of a suitable order.

The multigrid theory of h-elliptic discrete operators (see [3], [1]) shows that a pointwise
relaxation can only reduce the error components that oscillate in the strong-coupling di-
rections. The coupling analysis of the discretization considered in Sec.3.2.2 and 4.4 below
shows that the target-grid discrete-operator directions of stronger coupling approximately co-
incide with the characteristic manifold. Thus a target-grid pointwise relaxation can reduce
efficiently the non-characteristic error components and also some of the high-frequency char-
acteristic components of the error. That is all we need from the relaxation since the smooth
characteristic components (and most of the high-frequency characteristic components) are
well reduced on the next semi-coarsened grids. However, successive semi coarsening implies a
fast decrease in the inherent numerical viscosity on the coarse grids and hence a fast increase
in the weight of the compensating explicit numerical viscosity in the coarse-grid discrete
operator. Thus the direction of the strongest coupling after several semi-coarsening steps
tends to be vertical, hence any pointwise relaxation on such coarse grids can not efficiently
reduce some non-characteristic components of the error. A way to eliminate this efficiency
degradation is to use a vertical zebra line relaxation, in which all the points located on the
same vertical grid line are relaxed simultaneously. Thus our general strategy is to use point-
wise relaxation on several of the finest levels and switch to zebra relaxation on all coarser
levels. Hence, although line relaxation is somewhat more expensive, the total amount of
work remains nearly the same as for a solver using only pointwise relaxation.

Instead of switching to zebra relaxation on some of the coarser grids, one can avoid cre-
ating strong cross-characteristic coupling altogether by replacing part of the semi coarsening
steps by full coarsening steps (see [6]). This conditional coarsening is slightly cheaper in
computing time but considerably more complicated to program, especially in extensions to
variable coefficients.

3 Two dimensional problem

3.1 Problem statement

In two dimensions Eq. (2) turns into the simple equation

∂2Φ

∂ξ2
= F, (3)

where the direction of differentiation ξ is perpendicular to the velocity direction.
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Figure 1: Anisotropic grid; nine point stencil.

In our model problem an unknown scalar function Φ(x, y) is defined on the square (x, y) ∈
[0, 1] × [0, 1], and the variable along the characteristic direction is ξ =

(
x+ ty

)(
1 + t2

)−1/2
,

where t = tanψ is the tangent of the angle of non-alignment, i.e., the angle between the
characteristic direction and the reference x−axis. Usually |t| ≤ 1, otherwise one can obtain
a better discretization than the one described below by switching the reference axis.

We supply Eq. (3) with Dirichlet boundary conditions in the x direction and periodic
conditions in the y direction:

Φ(0, y) = g0(y), Φ(1, y) = g1(y), Φ(x, y) = Φ(x, y + 1), (4)

where g0(y) and g1(y) are given functions. The choice of periodic boundary conditions is
quite important, as it precludes boundary layers, which could obscure the phenomena we
would like to examine. It also facilitates implementation of any angle of non-alignment.

Let us introduce an auxiliary Cartesian coordinate system (ξ, η), where ξ is the variable

along the characteristic direction defined above and η =
(
−tx+y

)(
1+ t2

)−1/2
is the variable

along the cross-characteristic direction.
Consider the nine-point discretization of (3) on a grid with aspect ratio m = hx/hy,

where hx and hy are the meshsizes in the x and y directions respectively. For integers (i1, i2)
the discrete approximation to Φ(i1hx, i2hy) is denoted φi1,i2, and the discrete analog of the
differential operator (3) is defined by

L(hx,hy)φi1,i2 ≡ 1
h2

x+(k+s)2h2
y

[
(1 − s) (φi1−1,i2−k + φi1+1,i2+k) + s

(
φi1−1,i2−(k+1) + φi1+1,i2+(k+1)

)
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−2φi1,i2 − s(1 − s) (φi1,i2−1 − 2φi1,i2 + φi1,i2+1)] (5)

−A 1
h2

y
[φi1,i2+2 − 4φi1,i2+1 + 6φi1,i2 − 4φi1,i2−1 + φi1,i2−2] ,

where k + s = mt, k is integer and 0 ≤ s < 1 (see Figure 1); A is the explicit numerical
viscosity coefficient.Thus the differential problem (3)–(4) is discretized on the grid as

L(hx,hy)φi1,i2 = fi1,i2 , i1 = 1, . . . , n1 − 1

φ0,i2 = g0(i2hy),

φn1,i2 = g1(i2hy), (6)

φi1,i2+n2 = φi1,i2 , i1 = 0, 1, . . . , n1

where n1 = 1/hx, i2 ∈ Z, n2 = 1/hy and fi1,i2 = F (i1hx, i2hy).
The one dimensional prototype for the 2D problem (3) is the simple one dimensional

Dirichlet problem for the second derivative operator. This operator is discretized on the grid
induced on the characteristic line, as follows

Φ ((i1 − 1)hx, (i2 − (k + s))hy) − 2Φ(i1hx, i2hy) + Φ((i1 + 1)hx, (i2 + (k + s))hy)

h2
x + (k + s)2h2

y

. (7)

It is well-known that one V-cycle with two red-black relaxations per level, full-weighting
residual transfer and linear interpolation of the coarse-grid correction exactly solves the
problem related to this one dimensional prototype. This cycle is chosen to be simulated in
2D.

The first differential approximation (cf. [7], [1]) to the operator (5) is

φh
ξξ − h2

y

⎡
⎣A+

(
(1 − s)s cos(ψ)

2m

)2
⎤
⎦φyyyy, (8)

where φh
ξξ is the first differential approximation to the one-dimensional prototype (7). For

characteristic components φh
ξξ ≈ φξξ. On the target grid A = 0. On coarser grids we choose

A so that the total cross-characteristic viscosity, i.e., the coefficient of φyyyy in (8), would
remain the same as on the target grid. (Note that upon each semi coarsening step the values
of hy and ψ remain unchanged while s(1 − s)/m decreases. Note also that the true cross-
characteristic viscosity could be define as the coefficient of the fourth derivative with respect
to η, but for characteristic components that is just proportional to the fourth derivative with
respect to y.)

3.2 Multigrid cycles

In this section the basic parts of the multigrid cycles, such as relaxation, residual transfer
and correction interpolation are described. Numerical two-level tests together with mode
analysis which are discussed here allow us to construct efficient multilevel cycles, which are
examined at the end of this section.
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3.2.1 Relaxation schemes

Two types of relaxation are considered here: pointwise and “zebra”.
The elementary step of the pointwise relaxation is to change the solution approximation

at the point (i1, i2) so as to satisfy Eq. (6). The order of performance of the elementary
steps obeys the following rules:

1) odd vertical lines (the vertical lines with odd i1 coordinate) are relaxed before even
ones.

2) the relaxation in each vertical line consists of four sweeps. Each sweep performs the
elementary step for every fourth point in the line. The first sweep starts from the point with
vertical coordinate i2 = 0, the second — from the point with i2 = 2, the third — from the
point with i2 = 1 and the last — from the point with i2 = 3.

This order of relaxation is not necessary for efficient smoothing. It is chosen to enable full
parallelization and precludes the appearance of relaxation “boundary layers”. To be sure,
the usual red-black relaxation order would be efficient as well, but then the results would
slightly depend on where the sweeps start and end, which we wanted to avoid.

The elementary step of the “zebra” line relaxation is to solve (or solve approximately) the
system of all the discrete equations centered at the same vertical grid line. The step results
in simultaneous replacement of the solution approximation at all the grid points belonging
to that line. All the residuals on this line are thereby reduced to zero (or near zero). The
order of line relaxation remains the same as above: all the odd lines are relaxed before all
the even ones (hence the name “zebra”).

Inter-grid transfers

In any cycle there are two types of inter-grid communication. The fine-to-coarse transfer
produces a coarse-grid approximation to the fine-grid residual function

ri1,i2 = fi1,i2 − L(hx,hy)φi1,i2 .

The coarse-to-fine transfer is the interpolation of the coarse-grid correction. In the present
algorithm both inter-grid transfers are anisotropic. They roughly simulate the corresponding
transfers of the one-dimensional prototype solver.

Residual transfer to the semi-coarsened grid is given by

Ri1,i2 =
(
IH
h r

)
i1,i2

= .5 r2i1,i2 + .25
[
(1 − s)

(
r2i1−1,i2−k + r2i1+1,i2+k

)

+s
(
r2i1−1,i2−k−1 + r2i1+1,i2+k+1

)]
, (9)

where R and r denote the coarse and fine grid residual functions respectively.
Notice that the weighted average (1 − s)r2i1−1,i2−k + sr2i1−1,i2−k−1 defines the residual

value at the ghost point r2i1−1,i2−k−s, hence (9) corresponds to the standard one-dimensional
full-weighting residual transfer.

The scheme is described in Fig. 2. The solid lines show where a fine-grid point residual is
sent to. The dashed arrows exhibit all the fine-grid points sending their residuals to a given
coarse-grid point.

9



- fine grid point, -  coarse grid point, - characteristic

Figure 2: Residual transfer to semi-coarsened grid.

Interpolation of the coarse-grid correction simulates the one-dimensional linear inter-
polation, giving the operation adjoint to (9).

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v2i1,i2 = Vi1,i2,

v2i1+1,i2 = .5
[(

1 − S1

)(
Vi1,i2−K1 + Vi1+1,i2+K1

)
+S1

(
Vi1,i2−K1−1 + Vi1+1,i2+K1+1

)]
,

(10)

where V denotes the solution of the coarse-grid problem, v denotes the correction to the
fine-grid solution approximation and K1 is an integer such that (K + S)/2 = K1 + S1,
0 ≤ S1 < 1, K and S being the parameters of the coarse-grid discretization (defined like k
and s in Fig. 1).

3.2.2 Switching criterion

The condition of switching from pointwise to zebra relaxation can be derived from the
coupling analysis of the FDA approximation (8). The term of the FDA responsible for the
”characteristic” coupling is φh

ξξ, and a quantitative measure of this coupling is

h−2
ξ =

((
m2 + (k + s)2

)
h2

y

)−1

.

The ”viscous” coupling is maintained by the second term in (8), in which φyyyy has the
coupling strength h−4

y . We switch to the zebra scheme when this “viscous” coupling becomes
larger than the “characteristic” one, i.e., when the ratio between them, which we call the
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Relative Coupling (RC), becomes larger than one. The derived criterion completely agrees
with the experimental one obtained from comparing the asymptotic convergence rates of
two-level cycles.

3.2.3 Two-level cycles

A two-level cycle V2(ν1, ν2) can be defined as the following six steps.
(i) Pre-relaxation sweeps. Improve the initial fine-grid approximation by ν1 relaxation

sweeps.
(ii) Residual transfer. Build the coarse-grid approximation R to the fine-grid residual

function ri1,i2 = fi1,i2−L(hx,hy)φi1,i2, namely, R = IH
h r, where IH

h is the fine-to-coarse residual
transfer defined by (9).

(iii) Coarse-grid equation. Form the coarse-grid equation

L(Hx,Hy)V = R.

At this stage we choose the precise dose of the coarse-grid explicit numerical viscosity A
and recalculate the new values of the discretization parameters S and K depending on the
coarse-grid aspect ratio.

(iv) Exact solution. Solve the coarse-grid equation by whatever method.
(v) Coarse-grid correction. Interpolate the obtained coarse-grid solution V to the fine

grid (using (10)); the result v is used to correct the current fine-grid approximation.
(vi) Post-relaxation sweeps. Improve the corrected fine-grid approximation by ν2 relax-

ation sweeps.
We have run two-level cycles with either pointwise or zebra relaxations on grids with

different aspect ratios and with either full or semi coarsening. Using zero right hand sides
and zero boundary conditions, the function U(x, y) ≡ 0 is the exact solution of the differential
problem (3-4). This choice of data together with a random choice of the initial approximation
facilitate the observation of the cycle asymptotic behavior.

V (1, 1) cycles have been performed on fine grids with aspect ratios m = 1, 2, 4, 8, 16.
In these experiments we have chosen the explicit numerical viscosity factor A on the fine
grid assuming that that grid itself has been obtained by (log2m steps of) semi coarsening,
starting with a uniform target grid. In other words, the total viscosity TV of the algorithm
is equal to the inherent numerical viscosity of a uniform grid with meshsize hy.

Each experiment has included three different runs, each starting from a random initial
error. Run I uses pointwise relaxation and semi coarsening; Run II — pointwise relaxation
and full coarsening; Run III employs zebra relaxation and semi-coarsened coarse grid. Each
run consists of at least 12 cycles, stopping further cycling when the convergence factor has
been stabilized, in the sense that the the largest difference between the convergence factors
of the last three cycles does not exceed 0.01.

The results of these experiments are collected in Table 1. The notation used in the table
is the following: m is the aspect ratio; hy is the vertical meshsize. The meshsize in the
reference axis always remains the same hx = .03125, except for the last group of experiments
for m = 16, where hx = .125; t = tanψ, where ψ is the slope, i.e., the angle between
the reference axis and the characteristic line; RC is the relative coupling (cf. Sec. 3.2.2).
The column “cycles” shows the number of cycles performed until the convergence factor has
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been stabilized. In the column “final” the convergence factor of this last cycle (the L2 error
norm before the cycle divided by that norm after the cycle) is printed. The column “aver.”
exhibits the convergence factor averaged over all the cycles performed in the experiment.

One can see some very large average convergence factors in Table 1. This is due to very
large factors (sometimes several thousands per cycle!) in the first few cycles. Our main
concern is the asymptotic (“final”) convergence, which always shows the worst-converging
components. Concerning these asymptotic factors the first obvious result is the superiority
of the present algorithm over the algorithm with full coarsening. The two semi-coarsening
algorithms show similar asymptotic convergence factors on grids with small RC (m = 1, 2, 4);
but when RC > 1, only the algorithm with zebra relaxation provides good asymptotic
convergence.

3.2.4 Multilevel cycle

We have also performed experiments with a multilevel V(1,1) cycle, using the switching
criterion introduced above. The multilevel cycle can be defined similarly to the two-level
cycle, but the step (iv) is replaced with the recursive call for the same cycle applied to the
coarse grid problem. The experiments showed a stable asymptotic convergence with nearly
the same rate as in the two-level experiments. The results are collected in Table 2. In
each experiment the cycle with conditional switching between the two types of relaxation
is compared with the cycle employing only zebra relaxation on all the levels. The main
conclusion is that the asymptotic convergence factors of these cycles are the same, while the
average factors of the cycle with zebra relaxation are substantially better.

3.3 FMG solver and numerical experiments

The FMG algorithm (see, e.g., [3]) based on the V (1, 1) cycle proves to be quite a powerful
solver for our model problem. Its setup work can be described by the following steps.

1. Target-grid problem. We formulate the discrete equation (5) on the chosen target
grid. The parameter A for this grid is set to zero. The total viscosity value for the entire
algorithm is defined as this target-grid inherent numerical viscosity. A proper discretization
of the right-hand side f and boundary condition functions g0 and g1 is also performed.
In our implementation these discrete functions are simply injected from the corresponding
continuous ones.

2. Next coarse-grid construction. The next coarse grid is constructed by semi coarsening,
as in the cycles described above.

3. Coarse-grid problem. The discretization parameters such as the aspect ratio, the new
K,S parameters and the artificial viscosity coefficient A are calculated for the new grid. The
general form of the coarse-grid operator remains the same. The coarse-grid right-hand side
function F is formed by the same averaging procedure that is used for the residual transfer
inside the cycles, i.e.,

Fi1,i2 = .5 f2i1,i2 + .25
[
(1 − s)

(
f2i1−1,i2−k + f2i1+1,i2+k

)
+ s

(
f2i1−1,i2−k−1 + f2i1+1,i2+k+1

)]
.

The coarse-grid boundary conditions are injected from the previous fine grid (averaging could
as well be used).
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Steps 2 and 3 are repeated until the coarsest possible grid is reached and its problem is
defined.

The execution of the FMG algorithm then involves the following steps.
a) The coarsest-grid problem is solved by whatever method.
b) The solution obtained on the current grid is interpolated to the next fine grid to serve

as an initial approximation to the fine-grid solution. The “FMG interpolation” used in this
step is fourth order in the characteristic direction and second order in the vertical direction.
(The experiments show that even with this lower order vertical interpolation the algorithm
successfully reduces all the algebraic errors well below the level of the discretization errors.
Nevertheless, in the 3D case below we do use the fourth order interpolation throughout).

c) The obtained initial approximation is improved by one V(1,1) cycle.
We repeat the steps b) and c) up to the target grid. There we perform one additional

improving cycle (mainly for checking purposes).
In our experiments, the right-hand side f and the boundary conditions g0 and g1 have

been chosen so that the pure component sin(θx+ωy) be the exact solution of the differential
problem (3)-(4). Six-level experiments have been performed for all kinds of such components.
The target finest grid throughout our experiments has been a uniform grid with meshsizes
hx = hy = 2−7. For each component we check five different characteristic inclinations
t = tanψ. The results are collected in Table 3, where the target-grid discretization error is
compared with the algebraic errors after the FMG interpolation of the coarse-grid solution
and at the end of the first and the second improving cycles. The results show that for nearly
all components the algebraic error after the first cycle is much less than the discretization
error (pathological exceptions are discussed below). In fact, in the case of characteristic
components the algebraic error is less than the discretization error already after the solution
interpolation from the coarse grid. This is due to the artificial viscosity introduced at the
coarse level, ensuring nearly the same characteristic-component discretization error on all the
grids (the differences are proportional to h4

y). The situation is different for non-characteristic
components since they cannot be well approximated on coarse grids. However, it is exactly
these components that are remarkably reduced in the target-grid cycle. Thus we can conclude
that the FMG algorithm requires only one V (1, 1) cycle per FMG level, or a total of about 13
“minimal work units” to reach the discretization accuracy for the target-grid approximation.
(The work-unit count is about twice larger than usual in uniformly elliptic problem, due to
the somewhat more expensive coarser levels, using semi coarsening instead of full coarsening.
This increased expense will disappear in 3D.)

Finally we discuss the phenomenon of “pathological” non-characteristic components which
exhibit unusually small discretization errors. Non-characteristic components usually possess
relatively large discretization errors (compared with characteristic components). But a very
special choice of parameters (solution component U and slope angle ψ) can result in vanish-
ing discretization errors, as the analysis in the next section will show. It is clear that in such
special situations we cannot expect the algebraic error to be smaller than or comparable to
the discretization error at any stage of the algorithm. In the numerical experiments this quite
delicate effect is visible only for precisely adjusted problem parameters, disappearing at small
perturbations. A few examples are shown in Table 4. In these experiments we investigate
six sets of cases. The first experiment in each set is performed for a special slope-component
pair having (nearly) zero discretization errors. The two following experiments are for the
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same component but with a rounded slope angle parameter. The last two experiments in
each set are with the original slope but the component frequency in the characteristic di-
rection (βξ) is slightly changed. It is evident from the table that in spite of the fact that
the algorithm for the special pairs fails to reach the discretization accuracy after the first
improving target-grid cycle, the total (algebraic plus discretization) error in these special
cases is much smaller than in neighboring regular cases. These experiments also show that
upon any reasonable perturbation the behavior becomes normal: the algebraic error after
the first improving cycle is already substantially below the level of the discretization error.
It is thus clear in any case that the statement that the algebraic error after one cycle is much
less than the discretization error will most likely hold in any real calculations (where many
non-pathological components and slope values are most likely present).

3.4 Two-level Half-space Mode Analysis

Since in non-elliptic problems high-frequency components far in the interior can still be
strongly affected by the boundary, it is quite important for such problems to use half-space
mode analysis instead of the traditional full-space analysis (see [1] and Sec. 7.5 in [3]). This
analysis considers a half-space problem for the same equation, with boundary conditions
being represented by one Fourier component at a time. To regularize the half-space problem
for the second order differential operators the solution is not allowed to grow faster than a
polynomial function. Then the problem is well-posed. In this way the original multidimen-
sional problem is translated into a one-dimensional problem, where the frequencies of the
boundary Fourier component are considered as parameters. The grid direction is perpendic-
ular to the boundary. The subject of the analysis is to compare the exact solutions of the
continuous and the discrete problems with the approximate solutions obtained at different
stages of the solver.

The half-space mode analysis has usually been used to estimate the quality of character-
istic component approximations in a two-level FMG algorithm (see [1], [5]). That analysis
usually consider homogeneous equations. In our case a good approximation of the charac-
teristic components is easily guaranteed by the choice of the coarse grid discretization: we
have built the coarse grid operator so that it approximates the characteristic components
with fourth order accuracy, whereas all other components are approximated only with sec-
ond order. But there still exists another interesting problem to be investigated: right-hand
side interaction with incoming frequencies. The right-hand side influence on a solution ap-
proximation can, usually, be described in the framework of full-space mode analysis. But
studying right-hand-side-boundary interactions must combine both kinds of analyses.

Choosing the domain to be {(x, y) : x ≥ 0}, for each Fourier frequency ω2, the differential
problem (3)-(4) can be reformulated in the following way: find a function Φ obeying the
restriction to polynomial growth, such that

∂2Φ

∂ξ2
= −

(
β2

ξ

)
ei(ω1x+ω2y), Φ(0, y) = eiω2y, (11)

where βξ =
(
ω1 + tω2

)(
1 + t2

)−1/2
is the characteristic frequency. The exact solution of this

problem is Φ(x, y) = ei(ω1x+ω2y).
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The discretization of (11) looks like

L(hx,hy)φi1,i2 = −
(
β2

ξ

)
ei(Ω1i1+Ω2i2), φ0,i2 = eiΩ2i2,

where L(hx,hy) is defined in (5), and Ω1 = ω1hx = ω1mhy and Ω2 = ω2hy are normalized
frequencies.

We seek a solution of the discrete problem in the form

φi1,i2 = φi1e
iΩ2i2. (12)

Then the problem reformulated for φi1 is

a0φi1−1 + a1φi1 + a2φi1+1(
m2 + (k + s)2

)
h2

y

= −
(
β2

ξ

)
eiΩ1i1 , φ0 = 1. (13)

a0 = e−ikΩ2

(
1 + se−iΩ2 − s

)
, (14)

a1 = −2
(
1 − s(1 − s)

(
1 − cos(Ω2)

)

+a
(
m2 + (k + s)2

)(
cos(2Ω2) − 4 cos(Ω2) + 3

))
, (15)

a2 = eikΩ2

(
1 + seiΩ2 − s

)
, (16)

where s, k and m are the discretization parameters and a is the fine-grid explicit numerical
viscosity coefficient (reserving the former notation A for the coarse-grid value).

The solution φ(i1) can be represented as

φi1 = dei(Ω1i1) + (1 − d)X i1,

where d = −
(
β2

ξ (m2 + (k + s)2) h2
y

)(
a0e

−iΩ1 + a1 + a2e
iΩ1

)−1

and X is the root of the

quadratic equation

a0 + a1x+ a2x
2 = 0

satisfying |x| ≤ 1 (so that φi1,i2 indeed obeys the regularization requirement). The discretiza-
tion error function is

Φ(i1hx, i2hy) − φi1,i2 =
[
ei(Ω1i1) − φ(i1)

]
eiΩ2i2 =

[
ei(Ω1i1) −X i1

]
(1 − d)eiΩ2i2 . (17)

The amplitude of this function depends on two factors. The first is the difference between
X i1 and eiΩ1i1 . The closeness of X and eiΩ1 means that the function Φ(i1hx, i2hy) is a
smooth characteristic function and, therefore, the small discretization error in this case is
quite natural. The second factor (1 − d) depends on several problem parameters (not only
on frequencies) and may become zero for non-characteristic frequencies as well. Generally
speaking, for any given component ei(ω1x+ω2y) we can find parameter values (k, s, a) for which
1 − d vanishes. This explains the aforementioned phenomenon of vanishing discretization
errors for some “pathological” non-characteristic components.
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3.4.1 Two-level FMG mode analysis

We will analyze the solution approximation obtained in various stages of the two-level FMG
algorithm described in the previous section. We assume that on the fine level the zebra line
relaxation is used. The analysis of pointwise relaxation and conditional coarsening can be
found in [6].

Let the problem (13) be stated on a fine grid.

Coarse-grid exact solution. The FMG coarse-grid problem derived from the fine-grid
formulation, is the following:

A0Φi1−1 + A1Φi1 + A2Φi1+1(
M2 + (K + S)2

)
h2

y

= −
(
β2

ξ

) 1 +W2

2
ei2Ω1i1 , (18)

Φ0 = 1,

(19)

where

W2 = (1 − s) cos
(
Ω1 + kΩ2

)
+ s cos

(
Ω1 + (k + 1)Ω2

)
,

A0 = e−iKΩ2

(
1 + Se−iΩ2 − S

)
, (20)

A1 = −2
[
1 − S(1 − S)

(
1 − cos(Ω2)

)

+A
(
M2 + (K + S)2

)(
cos(2Ω2) − 4 cos(Ω2) + 3

)]
, (21)

A2 = eiKΩ2

(
1 + SeiΩ2 − S

)
; (22)

M = 2m, K is an integer such that K+S = 2(k+s) and 0 ≤ S < 1. The factor (1 +W2) /2
arises due to the (second order) averaging of the right-hand side function in constructing the
coarse-grid equation.

The exact solution of the problem (18) in the regular case is

Φi1 = D0

(
w2

)i1
+ (1 −D0)Z

i1 ,

where

w = eiΩ1 , Z = −
A1 +

√
A2

1 − 4A0A2

2A2

,
(
|Z| ≤ 1

)
,

D0 = −β2
ξ

1 +W2

2

(
M2 + (K + S)2

)
h2

y

A0w−2 + A1 + A2w2
.

In non-degenerate cases A0w
−2 + A1 + A2w

2 	= 0. The first order degenerate case
(A0w

−2 + A1 + A2w
2 = 0, but −A0w

−2 + A2w
2 	= 0) implies that Z = w2 = ei2Ω1 and

Φi1 = (D1i1 + 1)Z i1,

D1 = −β2
ξ

1 +W2

2

(
M2 + (K + S)2

)
h2

y

−A0w−2 + A2w2
.
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The higher order degeneration (−A0w
−2 + A2w

2 = 0) can appear only in inviscid problems
(S = 0; A = 0). In this case the discrete operator is the central three-point second-derivative
discretization. Hence, ei2Ω1 = e−iKΩ2 ⇒ KΩ2 + 2Ω1 = 2πn, n = 0,±1,±2, . . . and the exact
solution of (18) is

Φi1 =
(
D2i

2
1 + 1

)
Z i1 ,

D2 = −1

2
β2

ξ

1 +W2

2

(
M2 + (K + S)2

)
h2

y.

Note that in both degenerate cases the obtained solution is unbounded. This is a resonance
type phenomenon where the characteristic direction plays the role of time.

The general form of the exact solution of Eq. (18) is

Φi1,i2 = Φi1e
iΩ2i2 , Φi1 = D

(
w2

)i1
+ P 1(i1)Z

i1 .

In the non-degenerate case D = D0 and P 1(i1) = 1 −D is a constant independent of i1. In
irregular cases P 1(i1) is a polynomial of either first or second order and D = 0.

FMG solution interpolation. The calculated coarse-grid solution is interpolated by
cubic interpolation to the fine grid. The obtained fine-grid initial approximation is

φ̃i1 = D

(
1 +W4(w)

2
wi1 +

1 −W4(w)

2
(−w)i1

)

+

(
P 1

(
i1
2

)
+W4(z, P

1)

2
zi1 +

P 1
(

i1
2

)
−W4(z, P

1)

2
(−z)i1

)
,

where

W4(w) = 1
16

(
− ŝe

−i(k̂+1)Ω2 + (1 − ŝ)e−ik̂Ω2

w3
+ 9

se−i(k+1)Ω2 + (1 − s)e−ikΩ2

w

+9
(
sei(k+1)Ω2 + (1 − s)eikΩ2

)
w −

(
ŝei(k̂+1)Ω2 + (1 − ŝ)eik̂Ω2

)
w3

)
,

W4(z, P
1) = 1

16

(
−P 1

(
i1 − 3

2

)
ŝe−i(k̂+1)Ω2 + (1 − ŝ)e−ik̂Ω2

z3

+9P 1
(
i1 − 1

2

)
se−i(k+1)Ω2 + (1 − s)e−ikΩ2

z

+9P 1
(
i1 + 1

2

) (
sei(k+1)Ω2 + (1 − s)eikΩ2

)
z

−P 1
(
i1 + 3

2

) (
ŝei(k̂+1)Ω2 + (1 − ŝ)eik̂Ω2

)
z3

)
,

z =
√
Z, k̂ is an integer, k̂ + ŝ = 3(k + s), 0 ≤ ŝ < 1. This representation is correct for all

points except i1 = 1. At that point

W4(w) = 1
16

(
5
se−i(k+1)Ω2 + (1 − s)e−ikΩ2

w
+ 15

(
sei(k+1)Ω2 + (1 − s)eikΩ2

)
w
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−5
(
ŝei(k̂+1)Ω2 + (1 − ŝ)eik̂Ω2

)
w3 +

(
ˆ̂sei(

ˆ̂
k+1)Ω2 + (1 − ˆ̂s)ei

ˆ̂
kΩ2

)
w5

)
,

W4(z, P
1) = 1

16

(
5P 1

(
i1 − 1

2

)
se−i(k+1)Ω2 + (1 − s)e−ikΩ2

z

+15P 1
(
i1 + 1

2

) (
sei(k+1)Ω2 + (1 − s)eikΩ2

)
z

−5P 1
(
i1 + 3

2

) (
ŝei(k̂+1)Ω2 + (1 − ŝ)eik̂Ω2

)
z3

+P 1
(
i1 + 5

2

) (
ˆ̂sei(

ˆ̂
k+1)Ω2 + (1 − ˆ̂s)ei

ˆ̂
kΩ2

)
z5

)
,

where
ˆ̂
k is an integer,

ˆ̂
k + ˆ̂s = 5(k + s), 0 ≤ ˆ̂s < 1.

The general form of components appearing at this stage of the algorithm is P (i1)v
i1,

where v is either ±w or ±z; P (i1) is a polynomial of i1 of the second order at most. We
will henceforth consider the function P (i1) as a polynomial of an arbitrary order. Such
a generalization of the FMG analysis makes it less dependent of the exact shape of the
analyzed components. Moreover this representation of components (P (i1)v

i1) is invariant
under all the transformations of the analysis and it allows us to analyze each building block
of the algorithm, such as relaxation or coarse-grid correction, in separation from others.
The underlying idea is to use computer capabilities already at the step of deriving analytic
representation for the current solution approximation. We will actually analyze the response
of each building block to an input component of the form

C(i1)v
i1, (23)

where

C(i1) =

{
P (i1) if i1 > N
B(i1) if i1 = 0, ..., N,

P (i1) being a given complex-coefficient polynomial and B(i1) being a complex number vector
of length N .The domain i1 > N will be referred to as the analytic representation region,
while the segment i1 = 0, ..., N is the pointwise representation region. In analyzing a two-
level FMG algorithm N is a small integer. As a matter of fact N = 4 at the final stage
of our algorithm. Thus the pointwise representation region plays an essential role only in
presenting fast decreasing functions (|v| < .9).

The output of any building block is formulated in the same form (23), except that each
block usually produces several output components, differing in their bases v. In our algorithm
these are the four interacting components with v = w,−w, z,−z.

Relaxation. Let Ui1 = C(i1)v
i1 be a particular component of the initial fine-grid solution

approximation. Each elementary step of line relaxation is replacing Ui1 by Ūi1 so as to satisfy
the following equation

a0Ui1−1 + a1Ūi1 + a2Ui1+1 = δ, (24)
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where a0, a1 and a2 are given in (14)-(16). If the initial component Ui1 is the one appearing

in the right-hand side, i.e., v = w, then δ = β2
ξ

(
m2 + (k+ s)2

)
h2, otherwise δ = 0. If the old

solution U is given by (23), then (24) is satisfied by

Ūi1 = RC(i1)v
i1,

where

RC(i1) =
δ + C(i1 − 1)e−ikΩ2v−1

(
se−iΩ2 + (1 − s)

)
+ C(i1 + 1)eikΩ2v

(
seiΩ2 + (1 − s)

)
a1

.

The order of performing the elementary steps defines the type and properties of the relaxation
scheme. The scheme we use in the analyzed algorithm is zebra relaxation (all the lines with
i1 odd are relaxed first; then all the even lines). A full such relaxation sweep produces an
approximation that is the following collection of components:

R : Ui1 →
{
b1(i1)v

i1 for i1 odd
b2(i1)v

i1 for i1 even

}
= C1(i1)v

i1 + C2(i1)(−v)i1 ;

where b1(i1) = RC(i1), b2(i1) = RRC
(i1) and C1(i1) =

(
b1(i1) + b2(i1)

)
/2, C2(i1) =

(
b1(i1) −

b2(i1)
)
/2. Note also that the new upper boundary Nnew of the region of pointwise represen-

tation is moved by the relaxation sweep to the smallest even number exceeding the maximal
Nold of the two interacting components (v and −v).

Coarse-grid correction. Let us consider the evolution of a pair of fine-grid components
aliasing on the coarse grid. These are

U1 = C1(i1)v
i1 and U2 = C2(i1)(−v)i1 .

Their residuals are calculated as

R1(i1)v
i1 =

[
Λ1 −

C1(i1 − 1)a0

v
+ C1(i1)a1 + C2(i1 + 1)a2v

(m2 + (k + s)2) h2

]
vi1,

R2(i1)(−v)i1 =

[
Λ2 −

C2(i1 − 1) a0

(−v)
+ C2(i1)a1 + C2(i1 + 1)a2(−v)

(m2 + (k + s)2)h2

]
(−v)i1 ,

where Λj = −β2
ξ if Uj is the right-hand side component, otherwise Λj = 0.

The fine-to-coarse residual transfer produces the coarse-grid right-hand side component
R(i1)V

i1, where V = v2 and

R(i1) =
1

4

[(
R1(2i1 − 1) −R2(2i1 − 1)

)
e−ikΩ2

(
se−iΩ2 + (1 − s)

)
v−1

+2
(
R1(2i1) + R2(2i1)

)
+

(
R1(2i1 + 1) −R2(2i1 + 1)

)
eikΩ2

(
seiΩ2 + (1 − s)

)
v
]
.

The upper bound of the region of pointwise representation for this coarse-grid residual func-
tion is Ncoarse = Nfine/2 + 1, where Nfine = max

(
N1, N2

)
and N1 and N2 are the fine-grid
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upper bounds of the input components. In fact, if the coarse-grid correction follows the
zebra relaxation then Nfine = N1 = N2.

The coarse-grid correction itself can again be represented as a function P(i1)V
i1 , it sat-

isfying

A0

V
P(i1 − 1) + A1P(i1) + A2V P(i1 + 1) = R(i1)

(
M2 + (K + S)2

)
H2, (25)

P(0) = 0,

where the coarse-grid coefficients A0, A1 and A2 are given by (20) - (22). The function P(i1)

is a polynomial for i1 ≥ Ncoarse. In the non-degenerate case
(
A0/V + A1 + A2V 	= 0

)
the

polynomial P(i1) has the same order as R(i1) (in most cases they are constants independent
of i1). For polynomials of an arbitrary order

if R(i1) = rni
n
1 + rn−1i

n−1
1 + ... + r1i1 + r0,

then P(i1) = pni
n
1 + pn−1i

n−1
1 + ...+ p1i1 + p0,

where (using superscript T to denote vector transposition)

(pn, pn−1, ..., p1, p0)
T =

(
M2 + (K + S)2

)
H2L−1

n (rn, rn−1, ..., r1, r0)
T , (26)

Ln ≡
[
A0

V
T−1

n + A1In + A2V Tn

]
,

where In is the unit n× n matrix and Tn is the matrix corresponding to the shift
(
P(i1) →

P(i1 + 1)
)
.

Tn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0(
n
1

)
1 0 0 · · · 0(

n
2

) (
n− 1

1

)
1 0 · · · 0(

n
3

) (
n− 1

2

) (
n− 2

1

)
1 · · · 0

...
...

...
...

...
...(

n
n− 1

) (
n− 1
n− 2

) (
n− 2
n− 3

) (
n− 3
n− 4

)
· · · 0

1 1 1 1 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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T−1
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0

−
(
n
1

)
1 0 0 · · · 0(

n
2

)
−

(
n− 1

1

)
1 0 · · · 0

−
(
n
3

) (
n− 1

2

)
−

(
n− 2

1

)
1 · · · 0

...
...

...
...

...
...

(−1)n−1

(
n

n− 1

)
(−1)n

(
n− 1
n− 2

)
(−1)n−1

(
n− 2
n− 3

)
(−1)n

(
n− 3
n− 4

)
· · · 0

(−1)n −(−1)n (−1)n −(−1)n · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Expression (26) gives us a solution of Eq. (25) in the analytic representation region. For
connecting this region with that of pointwise representation one must add to it a function
µZ i1 from the kernel of the operator Ln. As before, Z is the root of the equation A0 +
A1x + A2x

2 = 0. In order to define the values of µ and P(i1) in the region of pointwise
representation one has to solve the following system of linear equations.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1P(1)V + A2P(2)V 2 = R(1)V
(
M2 + (K + S)2

)
H2,

A0P(1)V + A1P(2)V 2 + A2P(3)V 3 = R(2)V 2
(
M2 + (K + S)2

)
H2,

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
A0P(Ncoarse − 2)V Ncoarse−2 + A1P(Ncoarse − 1)V Ncoarse−1 + A2

(
P(Ncoarse)V Ncoarse + µZNcoarse

)
= R(Ncoarse−1)V Ncoarse−1

(
M2 + (K + S)2

)
H2,

A0P(Ncoarse − 1)V Ncoarse−1 + A1

(
P(Ncoarse)V Ncoarse + µZNcoarse

)
+A2

(
P(Ncoarse + 1)V Ncoarse+1 + µZNcoarse+1

)
= R(Ncoarse)V Ncoarse

(
M2 + (K + S)2

)
H2,

(27)

where the values of P(Ncoarse) and P(Ncoarse + 1) are computed by means of the analytic
representation of P(i1) calculated above. Thus, the coarse-grid correction is P(i1)V

i1 +µZ i1.

In the first-order degenerate case
(
A0/V + A1 + A2V = 0; Z = V

)
the order of P(i1)

is greater than that of R(i1). If it is the first order degeneration then the polynomial order
increase by one and r̄ = (0, rn, rn−1, ..., r1, r0)

′, p̄ = (pn+1, pn, pn−1, ..., p1, p0)
′.

(pn+1, pn, pn−1, ..., p1, p0)
T =

(
M2 + (K + S)2

)
H2L−1

n+1(0, rn, rn−1, ..., r1, r0)
T ,

Ln+1 ≡
[
A0

V
T−1

n+1 + A1In+1 + A2V Tn+1

]

Generally speaking the operator Ln+1 is not invertible as operator in space Pn+1 of n+ 1

order polynomials
(
Detn+1(L) = 0

)
but it is invertible as L : Pn+1

∣∣∣
p0=0

→ Pn, where Pn+1

∣∣∣
p0=0

is the factor subspace of Pn+1 with respect to constants. In fact Ln+1 is no longer represented
as a square matrix and therefore the record L−1

n+1 makes a sense just as a symbol to denote
the inverse operator, but not an inverse matrix. Square matrix representation could be
suggested for the operator L restricted on the factor subspace. It is

Ln+1 ≡
[
A0

V
T −1

n+1 + A1In+1 + A2V Tn+1

]
,
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(pn+1, pn, ..., p2, p1)
T =

(
M2 + (K + S)2

)
H2L−1

n+1(rn, rn−1, ..., r1, r0)
T ,

where Tn+1 is the (n+ 1) × (n+ 1)
( like Tn) matrix

Tn+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
n+ 1

1

)
1 0 0 · · · 0 0(

n+ 1
2

) (
n
1

)
1 0 · · · 0 0(

n+ 1
3

) (
n
2

) (
n− 1

1

)
1 · · · 0 0

...
...

...
...

...
...

...(
n+ 1
n

) (
n

n− 1

) (
n− 1
n− 2

) (
n− 2
n− 3

)
· · ·

(
2
1

)
1

1 1 1 1 · · · 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 0 1
0 0 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

T −1
n+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
(
n+ 1

1

)
1 0 · · · 0 0(

n+ 1
2

)
−

(
n
1

)
1 · · · 0 0

−
(
n+ 1

3

) (
n
2

)
−

(
n− 1

1

)
· · · 0 0

...
...

...
...

...
...

(−1)n

(
n+ 1
n

)
−(−1)n

(
n

n− 1

)
(−1)n

(
n− 1
n− 2

)
· · · −

(
2
1

)
1

(−1)n+1 (−1)n (−1)n+1 · · · 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In fact all these matrices are simply restricted matrices Tn+1, In+1, and T−1
n+1 where the

first row and the last column are absent. Constant p0 remains free and for definiteness we
suppose p0 = 0. In case of the second order degradation the polynomial order of P(i1) is
n+ 2. We can repeat now the same calculations, but now two values p0 and p1 are left free.

Addition of some function from the kernel Ln is still necessary to connect the regions of
analytical and pointwise representations. Since Z = V this addition adjusts p0 and p1. The
system (28) must be solved to compute the precise values P(i1), i1 < Ncoarse.
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The corrected form of the fine-grid components U1 and U2 looks as

Ũ1(i1) =

[
C1(i1) +

1

2

(
P

(
i1
2

)
+

1

2

(
P

(
i1 − 1

2

) (
se−i(k+1)Ω2 + (1 − s)e−ikΩ2

)
v−1

+P
(
i1 + 1

2

) (
sei(k+1)Ω2 + (1 − s)eikΩ2

)
v

))]
vi1 ,

Ũ2(i1) =

[
C2(i1) +

1

2

(
P

(
i1
2

)
− 1

2

(
P

(
i1 − 1

2

) (
se−i(k+1)Ω2 + (1 − s)e−ikΩ2

)
v−1

+P
(
i1 + 1

2

) (
sei(k+1)Ω2 + (1 − s)eikΩ2

)
v

))]
(−v)i1 ,

Because of linearity the precise dose of correction distribution between the coupled fine-
grid components at the region of pointwise representation does not play any role. In the
formulas above we divide the correction in the equalled proportions. Note also that after
this coarse-grid correction Nnew

fine = Nold
fine + 1.

Besides correcting the components U1 and U2 the coarse-grid correction contributes also
into components with bases (±z)i1 .

At any stage of the analysis the current solution approximation can be explicitly written
out as a function (depending on a set of parameters) of the distance from the boundary. Thus
we can always compare this approximation with the known exact solution (12) to get the
algebraic error and then, in turn, compare the algebraic error with the discretization error
(17) to check the quality of the obtained approximation. Also we can compare these mode-
analysis calculations with actual two-level numerical experiments, thereby very precisely
debugging both the computer-aided analysis and the solver program.

3.4.2 Computed results

All the parts of the analysis discussed above have been programmed for quite general range
of problems. The main goal of the resulting analyzer is to detect and explain various features
arising in FMG algorithms. As an example of its use we show the analysis of the two-level
FMG solver for the problem (13), for different initial data and on different grids.

The results of the analysis are illustrated in Figs. 3 – 8: the graphs of the discretization
error and algebraic errors at different stages of the algorithm are presented. The horizontal
axis shows the distance (in meshsizes) from the boundary; the vertical axis depicts absolute

error values. Ω2 = ω2h is the normalized incoming frequency; ζξ = βξ

√
m2 + (k + s)2h is

the normalized characteristic frequency. In all the figures the same notation for error graphs
is used: the solid line denotes the discretization error; the dashed line is the algebraic error
after the FMG solution interpolation; the circles denote the algebraic error after the pre-
relaxation sweep; the dash-dotted line is the algebraic error after the coarse-grid correction;
the stars show the final algebraic error obtained after the post-relaxation sweep.

All the cases exhibited here, and all other multitude of cases we have run, confirm the
top efficiency of the analyzed algorithm: after the first correction cycle the algebraic errors
are far smaller than the discretization errors.

Applications of this analysis for obtaining precise rigorous estimates for different quanti-
tative aspects of an algorithm (analogous to the rigorous quantitative analysis in [4]) may be
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Figure 3: Ω2 = .5; ζξ = 0.1; m = 1, k = 0, s = .3; Smooth characteristic component.
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Figure 4: Ω2 = 2.5; ζξ = 0.1; m = 1, k = 0, s = .7; Non-smooth characteristic component.
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Figure 5: Ω2 = .2; ζξ = 2.2; m = 1, k = 0, s = .6; Smooth non-characteristic component.
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Figure 6: Ω2 = .2; ζξ = .9; m = 4, k = 3, s = .4; Coarse-grid smooth intermediate compo-
nent.
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Figure 7: Ω2 = 1.8; ζξ = .3; m = 4, k = 2, s = .4; Coarse-grid non-smooth characteristic
component.
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Figure 8: Ω2 = 1.8; ζξ = 2.3; m = 4, k = 3, s = .6; Coarse-grid non-smooth non-characteristic
component.
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possible, but would necessarily be very cumbersome. This analysis can however serve as an
excellent tool for explaining delicate features recognized in numerical experiments. In par-
ticular the pathological effect of discretization errors vanishing for certain non-characteristic
has been explained by means of such an analysis.

4 3D problem: discretization and solver

4.1 Problem statement

Let µ and β be arbitrary orthonormal coordinates in R
3 and the scalar function Φ(x, y, z) be

defined in the unit cube (x, y, z) ∈ [0, 1] × [0, 1] × [0, 1]. Then the 3D differential equation
we consider is equivalent to

LΦ ≡ ∂2Φ

∂µ2
+
∂2Φ

∂β2
= f. (28)

The “characteristic plane” defined by µ and β is assumed horizontally-inclined; i.e., its
normal is closer to the vertical than to any of the horizontal axes. For convenience we
assume vertical periodicity: Φ(x, y, z) = Φ(x, y, z + 1). On the vertical faces of the cube we
assume Dirichlet boundary condition: Φ(x, y, z) is prescribed for x = 0, 1 and y = 0, 1.

Natural (but non-orthogonal) coordinates in the characteristic plane are determined by
the intersections of this plane with the x-z and y-z planes; they are

ξ =
x+ txz√

1 + t2x
and η =

y + tyz√
1 + t2y

,

where tx = tan(ψx) is the tangent of the angle between the x axis and the intersection of
the characteristic plane with the x-z coordinate plane; ty = tan(ψy) is the same for the y-z
coordinate plane. The horizontal-inclination assumption means that 0 ≤ |tx|, |ty| ≤ 1. For
simplicity we can assume that 0 ≤ tx, ty ≤ 1. Let tα = tx − ty. We will use the auxiliary
characteristic variable

α =
x− y + tαz√

2 + t2α
=

(
1 + t2x
2 + t2α

) 1
2

ξ −
(1 + t2y

2 + t2α

) 1
2

η.

Eq. (28) can be written as

Cξ
∂2Φ

∂ξ2
+ Cη

∂2Φ

∂η2
+ Cα

∂2Φ

∂α2
= f, (29)

where

Cξ =
(1 + t2x)

[
(1 − tytα)2 + (1 − tytα) (1 + txtα)

]
2 + 2t2α + t2α

(
t2x + t2y

)
+ (tx + ty)

2
;

Cη =

(
1 + t2y

) [
(1 + txtα)2 + (1 − tytα) (1 + txtα)

]
2 + 2t2α + t2α

(
t2x + t2y

)
+ (tx + ty)

2
;

Cα = 1 − (1 − tytα) (1 + txtα) (2 + t2α)

2 + 2t2α + t2α
(
t2x + t2y

)
+ (tx + ty)

2
.
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Figure 9: Non-orthogonal grid; seven point stencil for Laplace equation.

Following the guiding principle formulated in Sec. 2.2, we first state a 2D discrete problem
on an auxiliary grid induced on a characteristic plane and study its multigrid solver.

4.2 2D-Prototype: Laplacian on non-orthogonal grid

Let the discrete function φi1,i2 defined at the nodes of the grid induced on a representative
characteristic plane be a discrete approximation to the function Φ(i1h, i2h, z̃), where h is
the meshsize in the reference x-y plane and the value of z̃ is uniquely calculated from the
condition that the point belongs to the characteristic plane. The seven points used for
discretizing Eq. (29) in this plane are shown in Fig. 9. The discrete approximation to Eq.
(29) on these points is

Lhφi1,i2 ≡ Cξ
φi1+1,i2

−2φi1,i2
+φi1−1,i2

h2
ξ

+ Cη
φi1,i2+1−2φi1,i2

+φi1,i2−1

h2
η

(30)

+Cα
φi1+1,i2−1−2φi1,i2

+φi1−1,i2+1

h2
α

= fi1,i2.

The characteristic-plane horizontal-inclination assumption implies that the angle between
the axes ξ and η ranges within the relatively narrow interval [π/3, π/2]. In particular, when
the angle is π/2 the grid becomes orthogonal and the variable α disappears (Cα = 0). The

meshsizes used in (30) are hξ =
√

1 + t2xh; hη =
√

1 + t2yh; hα =
√

2 + (tx − ty)2h. Thus, the

discretization (30) is h-elliptic and suffers no substantial anisotropy. The boundary condition
for the problem is straightforwardly discretized, since the boundary strictly aligns with the
grid.
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The multigrid cycle V (1, 1) which we have tested for the discrete prototype equation
consists of a pointwise 4-color Gauss-Seidel relaxation, full-weighting residual transfer and
linear correction interpolation. The position of a point is defined by its ξ and η coordinates:
ξ = i1hξ, η = i2hη. The relaxation steps take place in the following order: the points with
both i1 and i2 odd are relaxed first; then the points with both coordinates even; then those
with i1 odd and i2 even; and the remaining group of points is relaxed last.

Only points with both coordinates even are present on the coarse grid. The full-weighting
residual transfer and linear correction interpolation used in the cycle mimic those usually
used with the five-point Laplacian solver on an orthogonal uniform grid. For example, a
fine-grid point with coordinates

(
2i1 +1, 2i2 +1

)
sends its residual to (and gets its correction

from) the coarse-grid points
(
i1, i2

)
,
(
i1 + 1, i2

)
,
(
i1, i2 + 1

)
and

(
i1 + 1, i2 + 1

)
, in equal

proportions. Due to the near isotropy we need not use here line relaxation and/or semi
coarsening.

This cycle for the prototype equation, with pointwise relaxation and full-coarsening,
proved very efficient, always reducing the error more than an order of magnitude. Its various
parts will therefore be used in constructing our 3D solver.

4.3 Discretization

Let the 3D grid have meshsizes hx, hy and hz in the corresponding directions. Assuming hz to
be the smallest of those, we define the aspect ratios of the grid mx = hx/hz and my = hy/hz.
Using the fact that the multigrid solver for the 2D prototype admits a system of grids with
full coarsening and also assuming that the target grid is always uniform (mx = my = 1)
we can restrict our considerations to 3D grids with equal aspect ratios (hx = hy = h hence
mx = my = m). To define the discrete operator at a given grid node, we consider the ghost
points located at the intersections of the characteristic plane (going through the given node)
with the adjacent vertical grid lines. The function values at the ghost points are defined by
interpolation from the vertically-nearest genuine grid neighbors. This, and the addition of
the explicit viscosity term, turns (30) into the following discretization:

L(h,h,hz)φi1,i2,i3 ≡ Cξ
1

m2(1+t2x)h2
z

[
sx

(
φi1+1,i2,i3+(kx+1) + φi1−1,i2,i3−(kx+1)

)
− 2φi1,i2,i3

+(1 − sx)
(
φi1+1,i2,i3+kx + φi1−1,i2,i3−kx

)
− sx(1 − sx)

(
φi1,i2,i3+1 − 2φi1,i2,i3 + φi1,i2,i3−1

)]

+Cη
1

m2(1+t2y)h2
z

[
sy

(
φi1,i2+1,i3+(ky+1) + φi1,i2−1,i3−(ky+1)

)
− 2φi1,i2,i3

+(1 − sy)
(
φi1,i2+1,i3+ky + φi1,i2−1,i3−ky

)
− sy(1 − sy) (φi1,i2,i3+1 − 2φi1,i2,i3 + φi1,i2,i3−1)

]
(31)

+Cα
1

m2(2+t2α)h2
z

[
sα

(
φi1+1,i2−1,i3+(kα+1) + φi1−1,i2+1,i3−(kα+1)

)
− 2φi1,i2,i3

+(1 − sα)
(
φi1+1,i2−1,i3+kα + φi1−1,i2+1,i3−kα

)
− sα(1 − sα)

(
φi1,i2,i3+1 − 2φi1,i2,i3 + φi1,i2,i3−1

)]

−A 1
h2

z

[
φi1,i2,i3+2 − 4φi1,i2,i3+1 + 6φi1,i2,i3 − 4φi1,i2,i3−1 + φi1,i2,i3−2

]
= fi1,i2,i3,
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where the integers kx, ky, and kα and the real numbers 0 ≤ sx, sy, sα < 1 are defined by

mtx = kx + sx, mty = ky + sy and mtα = kα + sα,

and A is the “explicit numerical viscosity” coefficient.
This is a 17 point h−elliptic discretization, whose first differential approximation is

�̃hφ− h2
z

⎡
⎣A+ Cξ

(1 − sx)
2s2

x

4m2
(
1 + t2

x

) + Cη

(1 − sy)
2s2

y

4m2
(
1 + t2y

) + Cα
(1 − sα)2s2

α

4m2
(
1 + t2

α

)
⎤
⎦φzzzz, (32)

where �̃hφ is the first differential approximation to the 2D prototype discretization (30) and
φzzzz is the fourth derivative with respect to z. The explicit numerical viscosity parameter
A is chosen so as to ensure the same total numerical viscosity TV on all the grids, where
TV is defined to be the coefficient of φzzzz in (32). The value of TV is determined by its
value at the target grid, where we set A = 0.

4.4 Multigrid cycle

The cycle used here is again the V (1, 1) cycle defined in Secs. 3.2.3. (Details are omitted,
since they are similar to the 2D case, and more cumbersome; they can be found in [6].)

Coarse grids used in the cycle are always obtained by semi coarsening, i.e. the
meshsizes in the reference plane are doubled at each coarsening step, while the z−direction
meshsize remains the same throughout the cycle. (Another approach, involving conditional
coarsening, is discussed in [6].)

Relaxation. Similar to the 2D case discussed in Sec. 3.2.2 we can define “viscous”
and “characteristic” couplings; the relative coupling RC, defined as their ratio, turns out to
be

RC = −
(
m

hz

)2 TV
Cξ

1+t2
x

+ Cη

1+t2
y

+ Cα

1+t2
α

. (33)

A pure pointwise relaxation is unconditionally efficient only on grids where RC is not large.
Hence, the global relaxation policy remains the same as in the 2D case: as long as RC ≤ 1
we apply a point-by-point Gauss-Seidel relaxation; on grids with RC > 1 we use a relaxation
which simultaneously updates all the points placed on the same vertical grid line. In either
case the vertical lines are taken in the red-black ordering. In the pointwise relaxation each
such vertical line is relaxed by the four-color ordering described in Sec 3.2. One could of
course simplify the algorithm and use the vertical line relaxation throughout.

Fine-to-coarse residual transfer is of the “full weighting” type (see Sec. 4.4 in [1]
or [3]); i.e., each fine grid residual (divided by 4) is distributed to neighboring coarse grid
points. (The division by 4 expresses the coarse-grid-to-fine-grid mesh volume ratio.) This
distribution follows two rules:
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1. A fine-grid point which is geometrically present on the next coarse grid sends its whole
residual (/4) to its coarse-grid representative.

2. A fine-grid point located on a vertical grid line absent from the coarse grid sends
its residual (/4) to ghost points ( points on its characteristic planes) placed on neighboring
vertical gridlines which do belong to the coarse grid. The transfer is the same as in the
solver for the two-dimensional prototype. The values received at the ghost points are then
redistributed: each ghost point sends its value to the two vertically nearest coarse grid
neighbors. The ratio between the fractions received by each of the neighbors is inversely
proportional to the ratio of their distances from the ghost point.

As a result each coarse-grid point receives residual fractions from 17 fine-grid points.

The coarse-grid correction interpolation is a linear interpolation in directions as
close to characteristic as possible. The operator we actually used is exactly the adjoint of
the residual (/4) transfer just described: to each fine grid point interpolation is made from
those coarse grid points to which it distributed its residual (/4), using the same weights.

Numerical experiments with two- and five-level V (1, 1) cycles have shown that the
asymptotic convergence factor does not really depend on the cycle depth; it is better than
3 per cycle even in the worst cases. Since more important is the behavior of the FMG
algorithm, we do not present detailed tables of cycle convergence factors.

4.5 FMG solver: numerical results

The full algorithm for solving Eq. (31) with the boundary conditions mentioned above is
the FMG algorithm defined in Sec. 3.3. The total cost of the algorithm in 3D is about six
minimal work units.

We have performed the numerical experiments with a five-level FMG algorithm, having a
uniform target grid with meshsize h = .03125. The continuous problem’s right-hand side and
boundary conditions are chosen so that the solution is U(x, y, z) = sin(θxx+ θyy+ θzz). Let
ξ and η be the characteristic plane directions defined in Sec 4.1 and let ζ be the coordinate
perpendicular to the characteristic plane. Then the same function U can be expressed in
the new variables as U = sin(ωξξ + ωηη + ωζζ). Remember that the ξ and η axes can be
non-orthogonal. A component is considered as being “characteristic” if hξωξ and hηωη are
small. We performed our experiments for several representative components and various
characteristic-plane slopes. The numerical results are collected in Table 5.

The target-grid discretization error is compared in the table with the algebraic error
of the target-grid approximations obtained at different stages of the FMG algorithm. The
results confirm the top efficiency of the algorithm in the sense that after just one target
grid cycle the algebraic error is already much less than the discretization error (except for
possible pathological cases; see discussion at the end of Sec. 3.3).
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Table 1. Multigrid solver for the eqn. ∂2U
∂ξ2 = f in 2D.

2 level algorithm

asymptotic convergence factor
Run I Run II Run III

hy m t RC cycles final aver. cycles final aver. cycles final aver.

0.03125 1 0.100 0.002025 13 4.14 22.5 15 1.10 22.1 15 4.25 56.2
0.03125 1 0.200 0.00640 15 3.06 7.96 19 1.20 8.62 15 3.37 19.9
0.03125 1 0.300 0.011025 25 3.49 5.34 20 1.31 9.2 26 3.59 13.2
0.03125 1 0.400 0.0144 21 4.00 6.15 15 1.37 11.6 20 4.15 16.1
0.03125 1 0.500 0.015625 26 5.01 6.65 22 1.43 10.5 29 4.99 15.0
0.03125 1 0.600 0.0144 20 4.00 6.47 14 1.40 12.4 17 4.05 18.1
0.03125 1 0.700 0.011025 18 3.49 5.89 15 1.32 9.96 20 3.58 14.4
0.03125 1 0.800 0.0064 15 3.12 7.66 15 1.18 10.4 16 3.36 18.8
0.03125 1 0.900 0.002025 18 4.19 15.9 16 1.10 20.3 16 4.23 50.1

0.01562 2 0.100 0.0081 18 3.40 7.58 15 1.23 11.8 19 3.73 17.7
0.01562 2 0.200 0.0256 25 4.88 7.14 15 1.57 15.0 28 4.83 15.8
0.01562 2 0.300 0.0441 26 6.05 8.67 19 1.96 15.3 21 6.15 23.6
0.01562 2 0.400 0.0576 20 10.8 18.5 16 1.92 26.5 20 11.4 40.5
0.01562 2 0.500 0.0625 19 13.7 16.6 30 1.60 12.8 17 20.0 48.8
0.01562 2 0.600 0.0576 20 10.9 18.5 16 1.90 26.5 20 11.4 40.7
0.01562 2 0.700 0.0441 26 6.07 8.64 18 1.93 16.0 27 6.05 19.8
0.01562 2 0.800 0.0256 19 4.90 7.62 18 1.59 11.0 19 4.85 19.0
0.01562 2 0.900 0.0081 15 3.39 8.51 16 1.22 10.5 16 3.73 20.0

0.00781 4 0.100 0.0324 26 5.34 7.7 19 1.72 13.7 20 5.31 22.1
0.00781 4 0.200 0.1024 18 14.5 21.2 18 2.58 25.2 17 17.3 64.8
0.00781 4 0.300 0.1764 17 18.0 23.8 26 3.73 20.3 15 25.8 91.8
0.00781 4 0.400 0.2304 21 10.3 13.3 24 5.55 18.7 18 15.1 58.5
0.00781 4 0.500 0.2500 17 21.1 24.3 22 3.05 22.9 17 20.1 56.3
0.00781 4 0.600 0.2304 21 10.3 13.3 28 5.51 16.9 18 15.3 59.7
0.00781 4 0.700 0.1764 17 18.2 24.6 28 3.75 19.7 15 25.9 92.3
0.00781 4 0.800 0.1024 18 14.7 21.1 18 2.58 25.2 17 17.0 65.0
0.00781 4 0.900 0.0324 22 5.35 8.02 19 1.71 12.4 22 5.3 19.4
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Table 1. Multigrid solver for the eqn. ∂2U
∂ξ2 = f in 2D.

2 level algorithms (cont.)

asymptotic convergence factor
I exper. II exper. III exper.

hy m t RC cycles final aver. cycles final aver. cycles final aver.

0.00391 8 0.100 0.1296 18 16.1 22.2 22 3.00 22.4 16 20.4 80.0
0.00391 8 0.200 0.4096 22 9.92 11.9 25 7.70 19.5 16 21.6 89.5
0.00391 8 0.300 0.7056 28 6.18 6.89 27 6.26 14.1 14 31.2 113
0.00391 8 0.400 0.9216 24 4.06 4.62 37 3.11 7.45 14 36.6 89.6
0.00391 8 0.500 1.0000 14 3.69 4.60 18 3.7 7.95 17 20.0 44.3
0.00391 8 0.600 0.9216 25 4.07 4.61 37 3.75 7.54 14 36.7 89.4
0.00391 8 0.700 0.7056 28 6.19 6.91 26 6.32 14.5 14 31.3 112
0.00391 8 0.800 0.4096 22 9.92 12.0 24 7.66 20 16 21.7 88.3
0.00391 8 0.900 0.1296 17 16.2 22.8 16 2.98 28.7 16 20.4 78.9

0.00781 16 0.100 0.5184 22 9.56 10.6 22 9.57 20.8 14 31.8 113
0.00781 16 0.200 1.6384 14 2.27 3.04 13 2.26 6.4 13 48.6 109
0.00781 16 0.300 2.8224 15 1.63 2.43 15 1.64 4.95 13 42.6 135
0.00781 16 0.400 3.6864 14 1.48 2.47 14 1.48 4.99 12 48.5 208
0.00781 16 0.500 4.0000 13 1.42 2.58 14 1.42 4.86 14 31.3 113
0.00781 16 0.600 3.6864 14 1.48 2.41 13 1.48 5.15 13 46.7 195
0.00781 16 0.700 2.8224 14 1.63 2.63 13 1.64 5.46 13 41.2 136
0.00781 16 0.800 1.6384 19 2.27 2.87 17 2.26 6.1 12 49.3 121
0.00781 16 0.900 0.5184 21 9.41 10.7 22 9.69 20.5 13 32.4 119
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Table 2. Multigrid solver for the eqn. ∂2U
∂ξ2 = f in 2D.

Multi-level V(1,1) cycles

asymptotic convergence factor
conditional relax. zebra

hy m t RC cycles final aver. cycles final aver.

0.03125 1 0.100 0.00203 12 2.34 17.5 12 2.52 44.4
0.03125 1 0.200 0.00640 19 2.66 6.57 18 2.75 14.4
0.03125 1 0.300 0.01103 23 3.22 5.16 22 3.35 11.6
0.03125 1 0.400 0.01440 20 3.91 6.10 20 3.96 13.5
0.03125 1 0.500 0.01562 20 4.94 6.96 24 5.02 13.5
0.03125 1 0.600 0.01440 17 3.88 6.70 24 4.01 11.7
0.03125 1 0.700 0.01103 24 3.24 5.22 19 3.37 13.2
0.03125 1 0.800 0.00640 23 2.67 5.45 20 2.73 13.1
0.03125 1 0.900 0.00202 12 2.31 15.6 12 2.55 40.0

0.01562 2 0.100 0.00810 30 2.91 5.29 24 2.98 13.1
0.01562 2 0.200 0.02560 23 4.48 6.84 26 4.80 13.8
0.01562 2 0.300 0.04410 30 4.83 7.33 26 6.03 18.1
0.01562 2 0.400 0.05760 28 5.16 9.66 22 8.69 28.8
0.01562 2 0.500 0.06250 20 12.9 15.3 19 13.2 35.9
0.01562 2 0.600 0.05760 19 5.09 12.2 22 8.47 27.2
0.01562 2 0.700 0.04410 22 4.83 8.18 22 6.04 18.2
0.01562 2 0.800 0.02560 28 4.49 6.35 19 4.75 18.2
0.01562 2 0.900 0.00810 18 2.91 6.59 18 2.97 14.6

0.00781 4 0.100 0.03240 20 4.68 7.47 23 5.26 15.3
0.00781 4 0.200 0.10240 21 7.03 11.0 19 12.7 44.9
0.00781 4 0.300 0.17640 25 6.94 9.38 16 19.3 61.2
0.00781 4 0.400 0.23040 27 6.18 7.88 17 16.3 48.5
0.00781 4 0.500 0.25000 18 16.2 21.6 19 13.2 39.9
0.00781 4 0.600 0.23040 27 6.14 7.75 17 16.3 49.3
0.00781 4 0.700 0.17640 25 6.95 9.26 16 19.7 61.8
0.00781 4 0.800 0.10240 23 7.06 10.8 18 12.6 46.5
0.00781 4 0.900 0.03240 27 4.66 6.93 23 5.27 16.9
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Table 2. Multigrid solver for the eqn. ∂2U
∂ξ2 = f in 2D.

Multi-level V(1,1) cycles (cont.)

asymptotic convergence factor
conditional relax. zebra

hy m t RC cycles final aver. cycles final aver.

0.00391 8 0.100 0.12960 24 7.09 10.2 18 15.2 54.2
0.00391 8 0.200 0.40960 22 9.91 12.0 16 18.2 74.0
0.00391 8 0.300 0.70560 28 6.17 6.88 16 6.12 63.0
0.00391 8 0.400 0.92160 24 4.07 4.63 16 4.20 41.2
0.00391 8 0.500 1.00000 12 3.80 28.1 14 3.79 48.4
0.00391 8 0.600 0.92160 23 4.07 4.65 13 4.19 48.9
0.00391 8 0.700 0.70560 28 6.18 6.89 13 6.12 75.6
0.00391 8 0.800 0.40960 22 10.0 12.1 16 17.9 74.5
0.00391 8 0.900 0.12960 24 7.07 10.2 17 15.4 57.2

0.00391 16 0.100 0.51840 22 9.04 10.5 14 30.8 93.9
0.00391 16 0.200 1.63840 16 18.3 67.5 16 18.1 133
0.00391 16 0.300 2.82240 14 6.10 78.7 14 6.10 157
0.00391 16 0.400 3.68640 12 4.13 112 12 4.16 228
0.00391 16 0.500 4.00000 19 3.74 53.6 14 3.75 147
0.00391 16 0.600 3.68640 19 4.15 70.0 12 4.16 229
0.00391 16 0.700 2.82240 15 6.10 74.2 19 6.11 121
0.00391 16 0.800 1.63840 16 18.0 67.0 16 18.2 131
0.00391 16 0.900 0.51840 22 9.12 10.6 14 30.8 92.4
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Table 3 Multigrid FMG solver for the eqn. ∂2U
∂ξ2 = f in 2D.

ξ = x+ty√
1+t2

; η = −tx+y√
1+t2

Basic cycle: V(1,1).

Characteristic components.

Exact continuous solution: U = sin(βξξ + βηη) = sin(θx+ ωy)

Discretization Algebraic error

t βξ

√
1 + t2hy ωhy θhx error Before cycles After 1 cycle After 2 cycles

0.100 0.04711 0.09817 0.03706 0.00523 0.000191 1.89 · 10−05 8.97 · 10−06

0.300 0.04894 0.09817 0.01742 0.043 0.000987 4.84 · 10−05 1.22 · 10−05

0.500 0.05241 0.09817 −0.00221 0.118 0.00157 3.88 · 10−05 2.83 · 10−06

0.700 0.05722 0.09817 −0.02185 0.231 0.000628 5.94 · 10−05 1.29 · 10−05

0.900 0.06306 0.09817 −0.04148 0.383 0.000202 4.97 · 10−06 2.14 · 10−06

0.100 0.04711 0.39270 0.00761 0.0122 0.00619 0.000348 0.000148
0.300 0.04894 0.39270 −0.07093 0.0104 0.0280 0.00204 0.000327
0.500 0.05241 0.39270 −0.14947 0.0424 0.0198 0.00106 0.000127
0.700 0.05722 0.39270 −0.22801 0.151 0.0131 0.000882 0.000206
0.900 0.06306 0.39270 −0.30655 0.354 0.00554 0.000185 2.16 · 10−05

0.100 0.04711 0.88357 −0.04148 0.0549 0.0513 0.00899 0.00213
0.300 0.04894 0.88357 −0.21820 0.357 0.0555 0.00859 0.00195
0.500 0.05241 0.88357 −0.39491 0.424 0.0195 0.00169 0.000225
0.700 0.05722 0.88357 −0.57163 0.373 0.0430 0.00747 0.00143
0.900 0.06306 0.88357 −0.74834 0.0119 0.0366 0.00490 0.00103

0.100 0.04711 1.96350 −0.14947 0.523 0.0424 0.0104 0.00414
0.300 0.04894 1.96350 −0.54217 0.653 0.0487 0.00746 0.00174
0.500 0.05241 1.96350 −0.93487 0.664 0.0414 0.00630 0.000926
0.700 0.05722 1.96350 −1.32757 0.657 0.0492 0.00750 0.00173
0.900 0.06306 1.96350 −1.72027 0.581 0.0398 0.0116 0.00489

0.100 0.04711 3.53429 −0.30655 0.689 0.0441 0.0121 0.00476
0.300 0.04894 3.53429 −1.01341 0.698 0.0536 0.00667 0.00116
0.500 0.05241 3.53429 −1.72027 0.699 0.0500 0.00322 0.000149
0.700 0.05722 3.53429 −2.42713 0.699 0.0536 0.00609 0.000996
0.900 0.06306 3.53429 −3.13399 0.69 0.0442 0.0122 0.00478
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Table 3 Multigrid FMG solver for the eqn. ∂2U
∂ξ2 = f in 2D.

ξ = x+ty√
1+t2

; η = −tx+y√
1+t2

Basic cycle: V(1,1); (cont.)

Intermediate components.

Exact continuous solution: U = sin(βξξ + βηη) = sin(θx+ ωy)

Discretization Algebraic error

t βξ

√
1 + t2hy ωhy θhx error Before cycles After 1 cycle After 2 cycles

0.100 0.78515 0.09817 0.77143 0.0627 0.0631 0.00281 0.00135
0.300 0.81565 0.09817 0.75180 0.147 0.0688 0.00243 0.000224
0.500 0.87346 0.09817 0.73216 0.314 0.0793 0.00353 5.82 · 10−05

0.700 0.95364 0.09817 0.71253 0.564 0.0940 0.00342 0.000213
0.900 1.05106 0.09817 0.69289 0.896 0.113 0.00525 0.00251

0.100 0.78515 0.39270 0.74198 0.0708 0.0657 0.00259 0.0012
0.300 0.81565 0.39270 0.66344 0.159 0.0791 0.00331 0.000424
0.500 0.87346 0.39270 0.58490 0.319 0.107 0.00586 0.000241
0.700 0.95364 0.39270 0.50636 0.561 0.106 0.00295 0.000202

0.100 0.78515 0.88357 0.69289 0.103 0.0825 0.00724 0.00197
0.300 0.81565 0.88357 0.51618 0.201 0.137 0.00662 0.00141
0.500 0.87346 0.88357 0.33946 0.324 0.238 0.0130 0.00165
0.700 0.95364 0.88357 0.16275 0.492 0.151 0.00346 0.000774
0.900 1.05106 0.88357 −0.01397 0.806 0.147 0.0124 0.00356

0.100 0.78515 1.96350 0.58490 0.353 0.132 0.00509 0.00201
0.300 0.81565 1.96350 0.19220 0.537 0.540 0.0749 0.0131
0.500 0.87346 1.96350 −0.20050 0.326 0.592 0.0646 0.00749
0.700 0.95364 1.96350 −0.59320 0.292 0.308 0.00643 0.00113
0.900 1.05106 1.96350 −0.98590 0.545 0.229 0.0120 0.00486

0.100 0.78515 3.53429 0.42782 2.14 0.293 0.0225 0.00879
0.300 0.81565 3.53429 −0.27904 0.348 0.584 0.0981 0.0186
0.500 0.87346 3.53429 −0.98590 0.294 0.334 0.0113 0.000165
0.700 0.95364 3.53429 −1.69275 0.314 0.576 0.0204 0.00144
0.900 1.05106 3.53429 −2.39961 0.0445 0.316 0.0134 0.00465
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Table 3 Multigrid FMG solver for the eqn. ∂2U
∂ξ2 = f in 2D.

ξ = x+ty√
1+t2

; η = −tx+y√
1+t2

Basic cycle: V(1,1); (cont.)

Non-characteristic components.

Exact continuous solution: U = sin(βξξ + βηη) = sin(θx+ ωy)

Discretization Algebraic error

t βξ

√
1 + t2hy ωhy θhx error Before cycles After 1 cycle After 2 cycles

0.100 2.04138 0.09817 2.02143 0.386 1.18 0.00227 0.000682
0.300 2.12069 0.09817 2.00180 0.486 1.27 0.0232 0.000731
0.500 2.27101 0.09817 1.98216 0.687 1.46 0.0508 0.000346
0.700 2.47946 0.09817 1.96253 0.985 1.74 0.0405 0.00121
0.900 2.73277 0.09817 1.94289 1.38 2.12 0.00340 0.000523

0.100 2.04138 0.39270 1.99198 0.392 1.19 0.00233 0.000666
0.300 2.12069 0.39270 1.91344 0.497 1.30 0.0201 0.000582
0.500 2.27101 0.39270 1.83490 0.697 1.47 0.0555 0.00179
0.700 2.47946 0.39270 1.75636 0.998 1.77 0.0440 0.00169
0.900 2.73277 0.39270 1.67782 1.4 2.13 0.00293 0.000500

0.100 2.04138 0.88357 1.94289 0.402 1.23 0.00309 0.000733
0.300 2.12069 0.88357 1.76618 0.532 1.39 0.0151 0.00174
0.500 2.27101 0.88357 1.58946 0.729 1.53 0.0532 0.00653
0.700 2.47946 0.88357 1.41275 0.989 1.88 0.0400 0.00282
0.900 2.73277 0.88357 1.23603 1.40 2.20 0.0113 0.00255

0.100 2.04138 1.96350 1.83490 0.555 1.37 0.0284 0.00900
0.300 2.12069 1.96350 1.44220 1.05 1.85 0.0204 0.00343
0.500 2.27101 1.96350 1.04950 1.32 1.84 0.0259 0.0036
0.700 2.47946 1.96350 0.65680 1.32 2.31 0.0492 0.00579
0.900 2.73277 1.96350 0.26410 1.34 2.50 0.0334 0.00857

0.100 2.04138 3.53429 1.67782 1.00 1.58 0.420 0.186
0.300 2.12069 3.53429 0.97096 5.24 3.12 0.0727 0.00571
0.500 2.27101 3.53429 0.26410 3.45 3.21 0.274 0.0175
0.700 2.47946 3.53429 −0.44275 1.41 2.69 0.349 0.0832
0.900 2.73277 3.53429 −1.14961 1.16 3.23 0.0594 0.0163
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