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Abstract

Multigrid algorithms are presented which� in addition to eliminating
the critical slowing down� can also eliminate the �volume factor��
The elimination of the volume factor removes the need to produce
many independent �ne�grid con�gurations for averaging out their
statistical deviations� by averaging over the many samples produced
on coarse grids during the multigrid cycle� Thermodynamic limits of
observables can be calculated to relative accuracy �r in just O����r �
computer operations� where �r is the error relative to the standard
deviation of the observable� In this paper� we describe in details
the calculation of the susceptibility in the one dimensional massive
Gaussian model� which is also a simple example of path integral�
Numerical experiments show that the susceptibility can be calculated
to relative accuracy �r in about ����r random number generations�
independently of the mass size�
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� Introduction

One of the aims in statistical physics is to calculate various average properties
of con�gurations governed by the Boltzmann distribution� This is usually done
by measuring these averages over a sequence of Monte Carlo iterations� Unfortu�
nately� such processes tend to su
er from several independent ine�ciency factors
that multiply each other and thus produce very expensive computations�

The best known of these ine�ciency factors is the critical slowing down �CSD��
This is the phenomenon� typical to simulations of critical systems� that with the
increase in lattice size there also comes an increase in the number of full Monte
Carlo passes over the lattice needed to produce a new con�guration which is statis�
tically �useful�� i�e�� substantially independent of� or only weakly correlated to� a
former con�guration� Considerable e
orts have been devoted to reduce the critical
slowing down� For simple cases with real variables� classical multigrid methods

�����	� can eliminate the CSD� For more complicated models� �e�g� �� or discrete
models� more recent publications report on simulation techniques that partially

����� or completely 
��������� eliminate the CSD� This means that the time to
produce an independent con�guration is proportional to the number of gridpoints�

The elimination of the CSD is very important but there is another no less impor�
tant factor of slowness� this is the volume factor� To calculate a thermodynamic
quantity to a certain relative accuracy �r� one needs to produce O����r � essentially
independent con�gurations to average out the deviation exhibited by each of them�
where the relative accuracy �r is the error relative to the standard deviation of the
observable in question� Also� the size of the grid must increase as some positive
power of ���r � Thus� even if the CSD has been completely eliminated� the overall
work increases as O����r Nd�� where N is the linear lattice size and d is the dimen�
sion� An important advantage of the multigrid approach is that it can drastically
reduce the volume factor Nd as well� by averaging over many samples produced
in prolonged Monte Carlo passes on coarse grids� Indeed� we will exhibit cases in
which the volume factor is completely eliminated� together with the CSD�

The elimination of both the volume factor and the CSD means that a thermody�
namic limit can be calculated to an accuracy of �� in optimal time� i�e� in only
O����� computer operations� This is just the same order of complexity as needed
to calculate� by statistical trials� any simple �pointwise� average� such as the fre�
quency of �heads� in coin tossing� By contrast� both the volume and the CSD
factors multiply the statistical factor ����� in the operation count of conventional
algorithms�

The elimination of the volume factor has �rst been demonstrated 
������ for the
Gaussian model with constant coe�cients� It has been shown there� for the one�
dimensional Gaussian model� that the susceptibility can be calculated to accuracy
�r in about ���r random number generations� while the average energy per degree
of freedom requires ����r such generations for a similar accuracy� In the two�
dimensional Gaussian model� the susceptibility can be measured to accuracy �r in
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about �����r random number generations�

In this paper we treat the one dimensional massive Gaussian model and we show
that using an appropriate multigrid algorithm the susceptibility can be calculated
in an optimal time� Stated di
erently� we show that the multigrid algorithm
e
ectively produce an independent sample in just O��� computer operations� More
precisely� the result is that the susceptibility is calculated to relative accuracy
�r in less than ����r random generations� essentially independently of the mass
size� although the algorithm �ow does change with that size �see Sec ���� The
computational time of this �optimal multigrid� algorithm is thus smaller by a
factor Nd compared to that of a conventional multigrid algorithm� e�g� such as
that of Refs �� � and ��� which measure the observable only once per multigrid
cycle �cf� Table III��

From quantum mechanics point of view� the one dimensional massive Gaussian
model describes an action of a discretized path integral with quadratic potential
�see Sec� ����� Therefore� the elimination of the volume factor is important also
for path integral calculations�

� One dimensional massive Gaussian model� fast claculation of the
susceptibility

A multigrid algorithm for simple continuous�state models has been described by
Brandt� Ron and Amit 
��� and independently� by Goodman and Sokal 
��� The
later also tested it for the Gaussian model and reported that it indeed eliminates
the CSD� for dimension d � �� The two approaches are not the same� while Brandt
et al� use linear interpolation� Goodman and Sokal employ constant interpolation�
We have recently shown 
������ that our multigrid Monte Carlo approach �unlike
Goodman and Sokal� can be used not only for eliminating the CSD� but also for
eliminating the volume factor� Here we extend this work to the one dimensional
massive Gaussian model�

��� Continuous case

The Hamiltonian associated with the continuous case is�

H�u� �
Z L

	
u�xdx�m�

Z L

	
u�dx� ���

where u � u�x� is a real continuous function �con�guration� de�ned for � � x � L
and m is a real number denoting the mass size� Homogeneous Dirichlet boundary
conditions� u��� � u�L� � �� are used� Consequently� a general con�guration u�x�
can be expanded by�

u�x� �
�X
j��

cj sin�j�x�L�� ���
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where the Fourier coe�cient cj are real� The magnetization is given by�

M�u� �
�

L

Z L

	
u�x�dx �

�

�

�X
j��

� cj
j
� ���

where
P�

� here and below� stands for a summation over odd integers� The prob�
ability density of each con�guration u is given by the density function of the
Boltzmann distribution

P �u� �
e�H
u��T

Z�T �
� ��

where T is the temperature and Z�T � is a normalization factor� It can be shown
�see App� A� that the average magnetization �hMi� and the susceptibility �hM�i�
hMi�� are�

hMi � � ��a�

hM�i � hMi� � hM�i � LT

��

�X
j��

� �

��j� �m�L�j�
� ��b�

We de�ne any statistics for the continuum as the limit of the statistics for systems
truncated to a �nite number of Fourier components�

��� Discrete case

In order to measure such statistical averages numerically� it is necessary to dis�
cretize the system� On a grid with meshsize h � L�N � the discretized Hamiltonian
Hh�u�� approximating ���� can be written as�

Hh�u� �
�

h

NX
i��

�ui � ui���
� �m�h

N��X
i��

u�i � ���

where ui � u�xi� are the variables at gridpoints xi � ih� � � i � N � respectively�
For the simplicity of the multigrid algorithm we assume N � �k� Assuming again
zero boundary conditions� u	 � uN � �� a general grid con�guration can be
represented by

ui �
N��X
j��

cj sin�j�xi�L�� ���

The discrete magnetization is given by

Mh�u� �
h

L

NX
i�	

u�xi� �
h

L

N��X
j��

�

cj
cos�j�h���L��

sin�j�h���L��
� ���
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Similarly to the continuous case� the probability distribution is given by �� where
Hh�u� replaces H�u�� Therefore� one can derive �see App� A��

hMhi � � ��a�

hM�
h i �

Th�

L�

N��X
j��

� cos��j�h���L��

 sin��j�h���L�� �m�h� sin��j�h���L��
� ��b�

From quantum mechanics viewpoint � the discretized Hamiltonian ��� can be the
action of a discretized path integral u� where ui � i � �� � � � �N are the positions
of a single particle� which travels from ui to ui� in timestep h� The left part of
the Hamiltonian stands for the kinetic energy of the particle and the right part
stands for the quadratic potential energy of the particle� The density function for
the path u is just as the Boltzmann distribution we have described above�

��� Description of the multigrid cycle

Consider the following generalized Hamiltonian�

Hh�u� �
�

h

NX
i��

�ui � ui���
� � h

N��X
i��

�iui

�m�h bh

N��X
i��

u�i �m�hah

N��X
i��

uiui��� ����

On the �nest grid� �i � � �i � �� � � � �N � ��� ah � � and bh � � are taken� The
more general form of the Hamiltonian is needed for the algorithm recursion�

The coarse grid with meshsize H � �h is constructed by taking every other grid�
point� The coarse�grid function uH � �uH	 � � � � � u

H
I � � � � � u

H
N��� describes a displace�

ment of the �ne�grid function uh � �u	� � � � � ui� � � � � uN �	 i�e�� it modi�es the latter
through interpolation and addition�

uh � �uh � IhHu
H � ����

where �uh is the �ne�grid con�guration at the stage of switching to the coarse�grid
and IhH denotes the linear interpolation from grid H to grid h�

The �ne�grid HamiltonianHh�u
h� resulting from that interpolation can be written

as follows�

Hh��u
h � IhHu

H� � Hh��u
h� �HH�u

H�� ����
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where Hh��u
h� is given by ���� and HH �uH� is�

HH �uH� �
�

H

N��X
I��

�uHI � uHI���
� �H

N����X
I��

�HI u
H
I

�m�HbH

N��X
I��

�uHI �
� �m�HaH

N��X
I��

uHI u
H
I��� ����

with

aH �
ah
�

�
bh

� bH �

ah
�

�
�bh


��a�

and

�HI �
��uhi�� � ��uhi � �uhi�

�h�

�
�hi�� � ��hi � �hi�



�
m�bh
�

��uhi�� � ��uhi � �uhi��

�
m�ah


��uhi�� � ��uhi�� � ��uhi � ��uhi� � �uhi��

�I � i�� � �� � � � �N�� � ��� ��b�

representing �ne�to�coarse induced �eld�like terms� The coe�cients aH and bH

depends only on ah and bh� The coarse �eld terms �HI are calculated from the
details of the �ne�grid con�guration at coarsening and are �xed throughout the
processing on the coarser level� The variables of the coarse grid uHI are initially
set to zero� corresponding to zero initial displacements�

Having calculated the �eld �H once for all� HH is directly calculated in terms of
the coarse grid con�guration uH	 there is no need to explicitly perform ���� in
order to relax the coarser level� One can therefore run a long Monte Carlo process
with HH ���� before explicitly updating uh by �����

The entire algorithm can be described by a sequence of multigrid cycles for the
�nest level� A cycle for any given ��current�� level is recursively de�ned by the
following �ve steps�

�� �� Monte Carlo sweeps are �rst made on the current level� Then� if this level
is the coarsest� go to ��

�� The next coarser level is created from the current one by determining the
coe�cients ��a� and the coarse �eld�like terms ��b��

�� � multigrid cycles for the coarse level are performed� �� may change from the
current level to another��
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� Update the current level by performing �����

�� Additional �� Monte Carlo sweeps are �nally made on the current level�

The Monte Carlo sweeps are performed by changing each variable in its turn
randomly according to its associated distribution� regarding its neighbors as �xed�

The values of ��� �� and � are discussed below�

The massive Gaussian model displays criticality as m � �� The described cycle�
even with � � � �a V �cycle�� would eliminate the critical slowing down� but the
volume factor still remains intact� However� the main issue here is to eliminate
the volume factor as well� for any mass size m	 the way to do so is described next�

��� Fast sampling of susceptibilty

As in the simple Gaussian model the susceptibility ��b� is dominated by contribu�
tions from large�scale �uctuations �low�frequency Fourier components�� regardless
of the size m�� Therefore� the purpose of the simulation is to sample quickly as
many such �uctuations as possible� The way to do so is to use a cycle index �
larger than � and to calculate the susceptibility over the many measurements on
the coarsest level� Furthermore� the optimal multigrid algorithm di
ers from the
one that has been described for the simple Gaussian model 
������	 the cycle index
may change from one level to another depending on the parameter m�

The magnetization Mh can be evaluated on any level �plug ���� in ����� without
going back to �ner levels� Thus� many measurements of M�

h can be made within

a cycle� and their average M�
h can be used as an estimate for the discrete sus�

ceptibility hM�
h i� In practice� measurements are taken only on the coarsest level�

after each relaxation sweep there� since only there substantial changes in Mh are
introduced�

We next study the number si of relaxation sweeps the algorithm needs to perform
on level i� i�e� on the grid with meshsize hi � �ih� �i � �� �� � � � � � � log��N�����
in order to achieve accuracy � in the estimation of the susceptibility� The total

expected error � in measuring hM�i is calculated by Fourier analysis in App� B�
From �B��� the total error in measuring hM�i relatively to the standard deviation
	� where 	 �

p
hM�i � hM�i� � p

�hM�i � O� LT
��m�L�

�� is

�r �
�

	
� O

� lX
i�	

s
����
i h�iL

�� �
� �m�L�

�� �m�h�i

�
� r�d�e ����

where the last term added here �r�d�e� is the relative discretization error estimator
which is discussed in App� C� It is important to emphasize here that raising p� the
order of the discretization error� beyond p � � has no bene�t� �See �C��� This
point� incidentally� was missed in Ref� ��
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The total work �operations� on all the levels is clearly

W �
lX

i�	

siO�L�hi�� ����

The optimal choice for si �yielding either minimal � for a given W or minimalW

for a given �� is obtained when ��r
�si

� 
�
�W
�si

� �� which by ���� and ���� yields

si � 
�

�
L��h�i

�� �m�L�

�� �m�h�i

����
� 
��

�i��
�
�� �m�L�

�� �m�h�i

����
�

where 
�� 
� and 
� are independent of i� Hence� the optimal cycle index at level
i is

�iopt �
si�
si

� ����
�
�� �m�h�i
�� � m�h�i

����
� ����

The actual values of ���� for constructing an optimal multigrid cycle are given
in Table I as a function of mhi� However� we will see in the experiments that
the results are not much sensitive to changes of � within quite large margins� In
fact� analyzing the following three cases would show wide ranges of � at which
the optimal order W � O����r � is still obtained� For each of the cases we will use
�xed �� hence si � s�i where s � ��� � �����cycles� Since hiL

�� � O��i�l�� we
can perform the summations in ���� and ����� Using the discussion in App� C
and the relation 	 � O� LT

��m�L�
�� the general relative discretization error can be

calculated in each of the three cases�

�� For the case hi �
�
m at all levels �i � �� � � � � l�

�r � O

�
s����

��l�� � ���l

�� �������

�
�O���lp� � ����

and

W � O

�
s
�l � �l

�� ����

�
����

for any � � � � ��� where p� � min��� p�� Actually� by choosing � and the
approximation order p so that � is signi�cantly smaller than ��p� � the second
term in ���� can be ignored� yielding W � O����r �� While � � �opt indeed
minimizes W��r � the other cycle indices �� � � � ��p�� give practically the

same e�ciency� This case is very similar to the simple Gaussian case 
���

�� For the case hi �
�
m at all levels �i � �� � � � � l�

�r � O

�
s����

��l�� � ��l

�� �������

�
�O���l� ����

� � �



and W is as before ����� for any � � � � � As any � in this range is
already smaller than ��� the second term in ���� can be ignored� yielding
again W � O����r ��

�� As h � � the last case will evolve eventually to the case hi �
�
m for i �

�� �� � � � � k � � and hi �
�
m for i � k� k � �� � � � � l� Generally� in this case

�r � O

�
s������l��

�kX
j�	

���������j
�

�O

�
s������l��

�� ���������k

�� �������
m�L����������

�k
�

�O���lp� �� ����

andW is as before ����� for any � � � � ��� where �k � l�k stays constant as
h� �� As mentioned earlier� a multigrid cycle as described in Table I indeed
minimizes W��r � but by choosing any �xed � in the domain �� � � � ��p� �
the third term in ���� can be neglected� again yielding the optimal e�ciency
W � O����r ��

��� Numerical results

We have tested the multigrid algorithm for di
erent values of m with grid of sizes
up to ���� Our main aim was to show that using appropriate values of � the
susceptibility can be calculated in an optimal time� while the use of unsuitable
values of � undermines optimality� The susceptibility has been measured over just
one cycle� Within the cycle� many measurements are taken� in fact after each
Monte Carlo step on the coarsest level� the level with just one internal point�

i�e� hl � L��� The average of the measurements� M�
h � is an approximation for

hM�
h i ��b�� which is also an approximation for the thermodynamic limit hM�i

��b�� The relative accuracy is de�ned as �r �
jM�

h
�hM�ij
� and it is averaged over

an ensemble of ����� runs � � We de�ne  to be the expected value of �RAN���r�
where �RAN is the amount of work spent in the cycle� measured by the number
of times a random number is generated� Thus�  should turn out to be a constant
if and only if the algorithm solves to relative accuracy �r in O����r � operations�
We measured  for three di
erent cases� Results are presented in Table II for
L � �� T � �� h	 � ��N and hl � ���� showing that the algorithm is not
sensitive in a wide range of suitable �� We see that any appropriate cycle index
will lead to the optimal e�ciency� i�e�  tends to a constant as N grows �see

� The experiments for m � � and N � ��� using Tab� I and � � � are made over
an ensemble of ��� runs and �� runs� respectively�
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cases m � ���� 	 � ������ and m � �� 	 � ����� � ������ In the last case�
m � ��� 	 � ���� � �����  turns out to be a constant when cycle index � is
used� but cycle index �� as explained above� is too big for this case� For any case�
cycle index � �W �cycle� is below the optimal range� demonstrating logarithmic
growth of � The main conclusion is that an optimal algorithm� with practically
constant � can always be devised�

In Table III� we compare between our optimal multigrid Monte Carlo algorithm
and a conventional multigrid algorithm� where the susceptibillity is measured once
per V�cycle 
��� It is clear that better accuracy means using larger grids� Therefore�
as the accuracy is improved the ratio between the complexity of the two algorithms
increases� For example� in order to achieve a certain accuracy in the case m �
� and N � ���� it would cost a conventional algorithm ��� times the work
required by the optimal multigrid algorithm� as presented here� Practically� while
the computational time of the conventional algorithm 
�� is N���r �the cost of
conventional algorithms as described in Refs� � and �� would be even somewhat
bigger�� the computational time of our algorithm is about ����r � independently of
the grid sizeN � �Note that� for maximal e�ciency� a conventional algorithm should
use the smallest possible N which still gives r�d�e comparable to �r� According
App� C� this would mean N � O�����p� ���

� Summary

The calculation of a thermodynamic limit of any observable to a relative accuracy
�r usually requires by a Monte Carlo process

O�Ndz���r �

computer operations� where �r is the error relative to the standard deviation of
the obervable� N is the linear dimension of the lattice needed to approximate
the thermodynamic limit to accuracy �r� d is the dimension and z is the critical
exponent�

Multigrid algorithms potentially can reduce and even eliminate not only the critical
slowing down factor Nz but also the volume factor Nd�

The parameters of the multigrid algorithm� such as the cycle index � and the
coarse�to��ne interpolation order depends not only on the involved model and its
discretiztion but also on the observable in question� For the optimal calculation of
the susceptibility in the one dimensional massive Gaussian model it is essential to
use linear interpolation and a cycle index which varies with the mass size� In this
case the critical slowing down and the volume factor are completely eliminated
leading to the optimal e�ciency O����r ��
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Appendix A� Fourier transform expressions

In the continuous case� by substituting ��� into ��� and into the left part of ���
one gets

H�u� � ��

�L

�X
j��

j�c�j �
m�L

�

�X
j��

c�j �A��

and the right hand side of ���� From �� and �A��� it can be shown by straight�
forward calculations that

hcji � � �A��

hc�j i �
LT

��j� �m�L�
�A��

hc�j i �
�L�T �

���j� �m�L���
� �A�

Hence� the average magnetization �hMi� and the susceptibility �hM�i�hMi�� can
be calculated using ���� �A�� and �A��� leading to results ��a� and ��b� in Sec� ����

In the discrete case� by substituting ��� into ��� and into the left part of ��� one
gets

Hh�u� �
�L

h�

N��X
j��

c�j sin
��j�h���L�� �

m�L

�

N��X
j��

c�j � �A��

and the right hand side of ���� From �� and �A�� it can be derived that

hcji � � �A��

hc�j i �
Th�

L sin��j�h���L�� �m�Lh�
� �A��

The average discrete magnetization ��a� and the discrete susceptibility ��b� in
Sec� ��� are obtained by applying �A�� and �A�� to ����

Appendix B� Fourier analysis of the expected error in the estimation of

the susceptibility

The relaxation sweep on level i �with meshsize hi � �ih� i � �� �� � � � � � �
log��N���� strongly a
ects� hence e
ectively samples� only those Fourier coe��
cients cj �cf� ���� for which j � O�L�hi�� Hence� the number si of relaxation
sweeps needed to be performed on level i depends on the contribution of these
components to the deviations in measuring hM�i� By ���

M� �


��

X
j�k

�cjck��jk�� �B��

� 		 �



Consider �rst a term �j� k� in ���� for which both j and k are O�L�hi�� hence the
term is e
ectively sampled O�si� times in a cycle� According to �A��� �A�� and
�A� in App� A� the standard deviation of the term is



jk��

�
h�cjck��i � hcjcki�

����
� O�h�i ��

� �m�h�i �
��L��T ��

hence the standard deviation of its average over the O�si� samples is

O�s
����
i h�i ��

� � m�h�i �
��L��T �� There are O�h��i L�� such terms� where each

pair of them is uncorrelated� hence their total contribution is

O�s
����
i h�i ��

� �m�h�i �
��L��T ��

In the case j � O�L�hi�r� and k � O�L�hi� where r � � �i�e�� hi � hi�r �� the
term �j� k� in ���� is e
ectively sampled as follows �see also ref� �� in an inner
loop� for a �nearly� �xed value of cj� the values of ck are averaged O�si�si�r�
times� yielding an average whose deviation is of the order

O

�
cj
jk

�
si
si�r

�����
hc�ki���

�
� O

�
cj
jk

�
si�r
si

� LT

��k� �m�L�

�����
�

Then� in an outer loop� the cj in this average is averaged over O�si�r � samples�
giving results with deviations of order
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There are O�h��i h��i�rL
�� such terms� e
ectively uncorrelated� hence their total

deviation is O�s
����
i h

���
i h

���
i�r��

��m�h�i �
��������m�h�i�r�

����L��T �� Summing
over integers r � � gives again
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Therefore� the total error in measuring hM�i is
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Appendix C� Calculation of the discretization error hM�i � hM�
h i�

To calculate the discretization error� observe �rst that for N
� � j � N the term

in ��b� is smaller than

Th�

L��� �m�h��
� min

�
Th�

�L�
�
Th�

m�L�

�
�

hence the sum of all these N
� terms is less than

CLT min

�
�

N�
�

�

m�L�N

�
�

where C � ��� A similar estimate� but with a di
erent value of C� is obtained for
the sum of all terms N

� � j �� in ��b��

For j � N
� � each term in ��b� can be approximated by a Taylor expansion as

follows�
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�

where �
� � � � �

� � Comparing this with the jth term in ��b�� we conclude that the
total discretization error for these terms is approximately

LT�N��
N����X
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� �

��j� �m�L�
� CLT min
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N�
�

�

m�L�N
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For general p�order discretization� a similar estimation would give

CLT min

�
�

Np �
�

m�L�N

�
�

Therefore� the total discretization error is

CLT min

�
�

Nmin
��p�
�

�

m�L�N

�
� CLTN�min
��p��

hence the relative �to 	� discretization error estimator is

r�d�e �
C��� �m�L��

Np� �m�L�N
� �C��

where p� � min��� p��

Clearly� there is no advantage in raising the order of the discretization error beyond
p � ��
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Table I

Constructing an optimal multigrid cycle�
the optimal cycle index� �iopt � at level i as a function of mhi

�the mass size times the meshsize at level i�

mhi �iopt practical

�iopt

�� � ���� �

�� ���� �

� ��� �

� ��� 

 ���� �

� ���� �

�� � ���� �

� 	� �



Table II

Performane in measuring susceptibility�
showing � number of random generations times the square of the obtained relative accuracy�

for the indicated values of the system size N and the cycle index �

N

m �  � �� �� � ��� ��� ���

��� � �� � ��� ��� ���� ��� ���

� ��� ��� �� ��� ��� ���

� � � ��� ��� ��� 

� � ��� ��� ��� ��� ���

� Tab� I ��� ��� �� ��� ��� ��� ��� ���

� ��� ��� �� ��� ��� ��� ��� ���

� ��� ��� �� ��� ��� ��� ��� ��

�� � ��� ��� �� ��� ���� ���� ����

� or Tab� I ��� ��� �� ��� ��� ��� �

� ��� ��� �� ��� ���� ���� ��

� 	� �



Table III

Computational time �in units of ���r � in measuring the susceptibility
on a grid with N gridpoints to relative accuracy �r�

conventional multigrid method �one measurement per cycle� as in Refs� �� � or ���
vs� optimal multigrid method

N

multigrid

m algorithm  � �� �� � ��� ��� ���

��� conventional ��� ���� ���� ����� ��� ���

optimal � ��� ��� ��� ��� ���

� conventional �� ��� ���� ����� ����� ���� ����� �����

optimal ��� ��� �� ��� ��� ��� ��� ���

�� conventional �� ���� ���� ����� ����� ����� �����

optimal ��� ��� �� ��� ��� ��� �
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Table Captions

I� Constructing an optimal multigrid cycle� the optimal cycle index� �iopt � at
level i as a function of mhi �the mass size times the meshsize at level i��

II� Performane in measuring susceptibility� showing � number of random gen�
erations times the square of the obtained relative accuracy� for the indicated
values of the system size N and the cycle index ��

III� Computational time �in units of ���r � in measuring the susceptibility on a grid
withN gridpoints to relative accuracy �r� conventionalmultigrid method �one
measurement per cycle� as in Refs� �� � or ��� vs� optimal multigrid method�
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