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Abstract

Multigrid algorithms are presented which, in addition to eliminating
the critical slowing down, can also eliminate the ”volume factor”.
The elimination of the volume factor removes the need to produce
many independent fine-grid configurations for averaging out their
statistical deviations, by averaging over the many samples produced
on coarse grids during the multigrid cycle. Thermodynamic limits of
observables can be calculated to relative accuracy &, in just 0(5;2)
computer operations, where ¢, is the error relative to the standard
deviation of the observable. In this paper, we describe in details
the calculation of the susceptibility in the one dimensional massive
Gaussian model, which is also a simple example of path integral.
Numerical experiments show that the susceptibility can be calculated
to relative accuracy ¢, in about 85;2 random number generations,
independently of the mass size.
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1 Introduction

One of the aims in statistical physics is to calculate various average properties
of configurations governed by the Boltzmann distribution. This is usually done
by measuring these averages over a sequence of Monte Carlo iterations. Unfortu-
nately, such processes tend to suffer from several independent inefficiency factors
that multiply each other and thus produce very expensive computations.

The best known of these inefficiency factors is the critical slowing down (CSD).
This is the phenomenon, typical to simulations of critical systems, that with the
increase in lattice size there also comes an increase in the number of full Monte
Carlo passes over the lattice needed to produce a new configuration which is statis-
tically “useful”, i.e., substantially independent of, or only weakly correlated to, a
former configuration. Considerable efforts have been devoted to reduce the critical
slowing down. For simple cases with real variables, classical multigrid methods
(5.7.10) ¢can eliminate the CSD. For more complicated models, (e.g. #* or discrete
models) more recent publications report on simulation techniques that partially
(7.12) p completely (1.8.9.13) eliminate the CSD. This means that the time to
produce an independent configuration is proportional to the number of gridpoints.

The elimination of the CSD is very important but there is another no less impor-
tant factor of slowness, this is the volume factor. To calculate a thermodynamic
quantity to a certain relative accuracy &,, one needs to produce 0(5;2) essentially
independent configurations to average out the deviation exhibited by each of them,
where the relative accuracy e, is the error relative to the standard deviation of the
observable in question. Also, the size of the grid must increase as some positive
power of £, 1. Thus, even if the CSD has been completely eliminated, the overall
work increases as O(e,TQNd), where N is the linear lattice size and d is the dimen-
sion. An important advantage of the multigrid approach is that it can drastically
reduce the volume factor N¢ as well, by averaging over many samples produced
in prolonged Monte Carlo passes on coarse grids. Indeed, we will exhibit cases in
which the volume factor is completely eliminated, together with the CSD.

The elimination of both the volume factor and the CSD means that a thermody-
namic limit can be calculated to an accuracy of +¢ in optimal time, i.e. in only
0(5_2) computer operations. This is just the same order of complexity as needed
to calculate, by statistical trials, any simple “pointwise” average, such as the fre-
quency of “heads” in coin tossing. By contrast, both the volume and the CSD
factors multiply the statistical factor (5_2) in the operation count of conventional
algorithms.

The elimination of the volume factor has first been demonstrated (346 for the
Gaussian model with constant coefficients. It has been shown there, for the one-
dimensional Gaussian model, that the susceptibility can be calculated to accuracy
&y in about 42 random number generations, while the average energy per degree
of freedom requires 35;2 such generations for a similar accuracy. In the two-
dimensional Gaussian model, the susceptibility can be measured to accuracy &, in
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about 20z, 2 random number generations.

In this paper we treat the one dimensional massive Gaussian model and we show
that using an appropriate multigrid algorithm the susceptibility can be calculated
in an optimal time. Stated differently, we show that the multigrid algorithm
effectively produce an independent sample in just O(1) computer operations. More
precisely, the result is that the susceptibility is calculated to relative accuracy
gr in less than 85;2 random generations, essentially independently of the mass
size, although the algorithm flow does change with that size (see Sec 2.4). The
computational time of this "optimal multigrid” algorithm is thus smaller by a
factor N9 compared to that of a conventional multigrid algorithm, e.g. such as

that of Refs 5, 7 and 10, which measure the observable only once per multigrid
cycle (cf. Table III).

From quantum mechanics point of view, the one dimensional massive Gaussian
model describes an action of a discretized path integral with quadratic potential
(see Sec. 2.2). Therefore, the elimination of the volume factor is important also
for path integral calculations.

2 One dimensional massive Gaussian model: fast claculation of the
susceptibility

A multigrid algorithm for simple continuous-state models has been described by
Brandt, Ron and Amit (5), and independently, by Goodman and Sokal (7). The
later also tested it for the Gaussian model and reported that it indeed eliminates
the CSD, for dimension d > 2. The two approaches are not the same: while Brandt
et al. use linear interpolation, Goodman and Sokal employ constant interpolation.
We have recently shown (3:46) that our multigrid Monte Carlo approach (unlike
Goodman and Sokal) can be used not only for eliminating the CSD, but also for
eliminating the volume factor. Here we extend this work to the one dimensional
massive Gaussian model.

2.1 Continuous case

The Hamiltonian associated with the continuous case is:

L L
H(u):/o u%d:z;+m2/0 u?dz, (1)

where u = u(x) is a real continuous function (configuration) defined for 0 <« < L
and m is a real number denoting the mass size. Homogeneous Dirichlet boundary
conditions, u(0) = u(L) = 0, are used. Consequently, a general configuration u(x)
can be expanded by:

oo

u(x) = Z ¢;jsin(yma /L), (2)

J=1
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where the Fourier coefficient ¢; are real. The magnetization is given by:

L <
M(u):%/o u(:z:)d:z::gz*—J, (3)

s
=17

where E*, here and below, stands for a summation over odd integers. The prob-

ability density of each configuration u is given by the density function of the
Boltzmann distribution

P e~ H(w)/T A

(u) = W’ (4)

where T is the temperature and Z(T') is a normalization factor. It can be shown

(see App. A) that the average magnetization ({M)) and the susceptibility ((M?) —

(M)?) are:
(M) =0 (5a)

ALT S 1
7r2 — 7r2j4—|—m2L2j2'

(M%) —(M)* = (M?) = (50)

We define any statistics for the continuum as the limit of the statistics for systems
truncated to a finite number of Fourier components.

2.2 Discrete case

In order to measure such statistical averages numerically, it is necessary to dis-
cretize the system. On a grid with meshsize h = L/N, the discretized Hamiltonian
Hp(u), approximating (1), can be written as:

1 N N-1
Hp(u) = z Z(Uz —u;_1)? +m?h Z u?, (6)

where u; = u(x;) are the variables at gridpoints x; = th, 0 < ¢ < N, respectively.
For the simplicity of the multigrid algorithm we assume N = 2%, Assuming again
zero boundary conditions, ug = upy = 0, a general grid configuration can be
represented by

u; = Z cjsin(jma;/L). (7)




Similarly to the continuous case, the probability distribution is given by (4) where
Hp(u) replaces H(u). Therefore, one can derive (see App. A):

(Mp) =0 (9a)
Th4 cos?(jwh/(2L))
2 Z 481n jﬂ'h/(QL)) —|—m2h2 Sifl?(jﬁh/(QL))' (96)

From quantum mechanics viewpoint , the discretized Hamiltonian (6) can be the
action of a discretized path integral w, where u; , ¢ = 0,..., N are the positions
of a single particle, which travels from u; to u;41 in timestep h. The left part of
the Hamiltonian stands for the kinetic energy of the particle and the right part
stands for the quadratic potential energy of the particle. The density function for
the path v is just as the Boltzmann distribution we have described above.

2.3 Description of the multigrid cycle

Consider the following generalized Hamiltonian:

N

1
Hp(u) = 7 Z(uz —u;_1)"+h Z oy
=1
N-1 N-1
+m2h by, Z u? +m?hay, Z UjUj_1- (10)

On the finest grid, ¢; =0 (i =1,...,N —1),a; =0 and by, = 1 are taken. The

more general form of the Hamiltonian is needed for the algorithm recursion.

The coarse grid with meshsize H = 2h is constructed by taking every other grid-

point. The coarse-grid function uf = (uOH, e ,u?, e ,u%m) describes a displace-
h

ment of the fine-grid function u” = (ug,...,u;, ..., uy); i.e., it modifies the latter

through interpolation and addition:

ul =g + II@UH, (11)

where @ is the fine-grid configuration at the stage of switching to the coarse-grid

and II@ denotes the linear interpolation from grid H to grid h.

The fine-grid Hamiltonian Hh(uh) resulting from that interpolation can be written
as follows:

Hp(a" + Ihutly = Hy (@) + Hp(u®), (12)
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where Hy, (i) is given by (10) and Hp(ufl) is:

| N2 N/2—1
H H H 2 H H
Hp(u™) = EZ(UI —ui P+ H DY bfug
N-1 N-1

+m?Hby Z(uﬁf +m?Hap Z u?uﬁ_l, (13)

with ; -
ap h ap h
= Ghoy Dby = G PO 14

“H=5 ton Tt (14a)

and

h “h_ ~h
_ Tt 2u;’ — Uy
2h2
Oy + 207 + oy
+ 4

m2by,

2
m2ah

_h b ok
(Uj_q +2u; + i)

+ (al_y +2al | + 20k 4+ 20k +al,)

(I=i/2=1,....N/2-1), (14b)

representing fine-to-coarse induced field-like terms. The coefficients aff and b
depends only on a” and b". The coarse field terms qb}{ are calculated from the
details of the fine-grid configuration at coarsening and are fixed throughout the
processing on the coarser level. The variables of the coarse grid u? are initially
set to zero, corresponding to zero initial displacements.

Having calculated the field ¢ once for all, H is directly calculated in terms of
the coarse grid configuration u™; there is no need to explicitly perform (12) in
order to relax the coarser level. One can therefore run a long Monte Carlo process
with Hp (13) before explicitly updating ul by (11).

The entire algorithm can be described by a sequence of multigrid cycles for the
finest level. A cycle for any given (“current”) level is recursively defined by the
following five steps.

1. 1 Monte Carlo sweeps are first made on the current level. Then, if this level
is the coarsest, go to 5.

2. The next coarser level is created from the current one by determining the
coefficients (14a) and the coarse field-like terms (14b).

3.~ multigrid cycles for the coarse level are performed. (v may change from the
current level to another.)
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4. Update the current level by performing (11).
5.  Additional v9 Monte Carlo sweeps are finally made on the current level.

The Monte Carlo sweeps are performed by changing each variable in its turn
randomly according to its associated distribution, regarding its neighbors as fixed.

The values of v1, v2 and 7 are discussed below.

The massive Gaussian model displays criticality as m — 0. The described cycle,
even with v = 1 (a V-cycle), would eliminate the critical slowing down, but the
volume factor still remains intact. However, the main issue here is to eliminate
the volume factor as well, for any mass size m; the way to do so is described next.

2.4 Fast sampling of susceptibilty

As in the simple Gaussian model the susceptibility (5b) is dominated by contribu-
tions from large-scale fluctuations (low-frequency Fourier components), regardless
2 Therefore, the purpose of the simulation is to sample quickly as
many such fluctuations as possible. The way to do so is to use a cycle index ~
larger than 1 and to calculate the susceptibility over the many measurements on
the coarsest level. Furthermore, the optimal multigrid algorithm differs from the
one that has been described for the simple Gaussian model (3’4’6); the cycle index
may change from one level to another depending on the parameter m.

of the size m

The magnetization M}y can be evaluated on any level (plug (11) in (8)), without
going back to finer levels. Thus, many measurements of M,% can be made within

a cycle, and their average M,% can be used as an estimate for the discrete sus-
ceptibility <M£> In practice, measurements are taken only on the coarsest level,
after each relaxation sweep there, since only there substantial changes in M}, are
introduced.

We next study the number s; of relaxation sweeps the algorithm needs to perform
on level i, i.e. on the grid with meshsize h; = 2h, (1 =0,1,...,{ = logy(N/2)),
in order to achieve accuracy ¢ in the estimation of the susceptibility. The total
expected error ¢ in measuring <M2> is calculated by Fourier analysis in App. B.
From (B2), the total error in measuring (M?) relatively to the standard deviation
o, where o = /(M%) — (M?)2 = \2(M?) = O(=LL—), is

2 +m2L2
! 2 272
€ ~1/2,3, 37 +m°L
=—=0 R LT e .d. 15
er = (;Sl : 7r2—|—m2h22>+r e (15)

where the last term added here (r.d.e) is the relative discretization error estimator
which is discussed in App. C. It is important to emphasize here that raising p, the
order of the discretization error, beyond p = 3 has no benefit. (See (C1). This
point, incidentally, was missed in Ref. 4.)
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The total work (operations) on all the levels is clearly

l

W =" s;0(L/hy). (16)

1=0

The optimal choice for s; (yielding either minimal ¢ for a given W or minimal W
for a given ¢) is obtained when % + /\1%% = 0, which by (15) and (16) yields

2/3 2/3
oo = o[ L0t 72 + m2L2\%/ _ 2y2%/3 72 4 m2L2\?/
! Y x2 4 mQh? 72 4+ mQh? ’

where A1, A2 and A3 are independent of ¢. Hence, the optimal cycle index at level

1 1s
_ Sitl _ 28/3( 2+ m?h )2/3

= 17
’)/Zopt kY 7T2 _|_4m2h22 ( )

The actual values of (17) for constructing an optimal multigrid cycle are given
in Table I as a function of mh;. However, we will see in the experiments that
the results are not much sensitive to changes of 4 within quite large margins. In
fact, analyzing the following three cases would show wide ranges of v at which
the optimal order W = 0(5;2) is still obtained. For each of the cases we will use
fized ~, hence s; = s7' where s = (1] + v9)-#cycles. Since h; L™! = O(Qi_l), we
can perform the summations in (15) and (16). Using the discussion in App. C
and the relation o = O(#W), the general relative discretization error can be
calculated in each of the three cases:

1. For the case h; < - at all levels (¢ = 0,...,1)

—1/2_2—31
_ —1270 & —Ip.
5,«—0(8 1_2_371/2>+0(2 Pe) (18)
and
Y

for any 2 < v < 28, where py, = min(3,p). Actually, by choosing v and the
approximation order p so that v is significantly smaller than 22P+ | the second
term in (18) can be ignored, yielding W = O(e;-2). While v = 7,y indeed
minimizes We2, the other cycle indices 2<y< 22p*) give practically the

same efficiency. This case is very similar to the simple Gaussian case (4.

2. For the case h; > - at all levels (2 = 0,...,1)

=0l
T 1—2-141/2

> + 027 (20)



and W is as before (19), for any 2 < v < 4. As any 7 in this range is
already smaller than 22, the second term in (20) can be ignored, yielding
again W = O(e; 2).

3. As h — 0 the last case will evolve eventually to the case h; < 7 for 1 =
0,1,....,k—1and h; > = for e =k, k+1,...,l. Generally, in this case

i
. O<3_1/27_’/2 2(2—171/2)3')

j=0

L1 e 1T s e
-|-O<3 /’y / Y m*L*(2 7/)

+ 027, (21)

and W is as before (19), for any 2 < v < 26 where k=1—k stays constant as
h — 0. As mentioned earlier, a multigrid cycle as described in Table I indeed
minimizes WeZ, but by choosing any fixed 4 in the domain (2 < v < 22Px)
the third term in (21) can be neglected, again yielding the optimal efficiency
W =0(2).

2.5 Numerical results

We have tested the multigrid algorithm for different values of m with grid of sizes
up to 512. Our main aim was to show that using appropriate values of v the
susceptibility can be calculated in an optimal time, while the use of unsuitable
values of v undermines optimality. The susceptibility has been measured over just
one cycle. Within the cycle, many measurements are taken, in fact after each
Monte Carlo step on the coarsest level, the level with just one internal point,

ie. hy = L/2. The average of the measurements, W, is an approximation for
<M£> (9b), which is also an approximation for the thermodynamic limit (M?)

. . MZ—(M? .
5b). The relative accuracy is defined as g, = [M, (M) and 1t 1s averaged over
y - g

an ensemble of 10000 runs ' . We define « to be the expected value of #RAN-c2,
where #RAN is the amount of work spent in the cycle, measured by the number
of times a random number is generated. Thus, o should turn out to be a constant
if and only if the algorithm solves to relative accuracy &, in 0(5;2) operations.
We measured « for three different cases. Results are presented in Table II for
L=1,T =1, hy = 1/N and h; = 1/2, showing that the algorithm is not
sensitive in a wide range of suitable v. We see that any appropriate cycle index
will lead to the optimal efficiency, i.e. « tends to a constant as N grows (see

The experiments for m = 64 and N = 512 using Tab. I and v = 6 are made over
an ensemble of 4000 runs and 400 runs, respectively.
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cases m = 0.5, 0 = 0.05749 and m = 64, 0 = 1.672- 10_4). In the last case,
m = 400, 0 = 4.397 - 107%, & turns out to be a constant when cycle index 3 is
used, but cycle index 6, as explained above, is too big for this case. For any case,
cycle index 2 (W-cycle) is below the optimal range, demonstrating logarithmic
growth of a. The main conclusion is that an optimal algorithm, with practically
constant «, can always be devised.

In Table III, we compare between our optimal multigrid Monte Carlo algorithm
and a conventional multigrid algorithm, where the susceptibillity is measured once
per V-cycle (5). Tt is clear that better accuracy means using larger grids. Therefore,
as the accuracy is improved the ratio between the complexity of the two algorithms
increases. For example, in order to achieve a certain accuracy in the case m =
64 and N = 512, it would cost a conventional algorithm 330 times the work
required by the optimal multigrid algorithm, as presented here. Practically, while
the computational time of the conventional algorithm (5) s 4Ne? (the cost of
conventional algorithms as described in Refs. 7 and 10 would be even somewhat
bigger), the computational time of our algorithm is about 85;2, independently of
the grid size N. (Note that, for maximal efficiency, a conventional algorithm should
use the smallest possible N which still gives r.d.e comparable to ¢,. According

App. C, this would mean N = 0(5—1/1)*)_)

3 Summary

The calculation of a thermodynamic limit of any observable to a relative accuracy
¢r usually requires by a Monte Carlo process

O(NCH_ZET_?)

computer operations, where ¢, is the error relative to the standard deviation of
the obervable, N is the linear dimension of the lattice needed to approximate
the thermodynamic limit to accuracy ¢,, d is the dimension and z is the critical
exponent.

Multigrid algorithms potentially can reduce and even eliminate not only the critical
slowing down factor N* but also the volume factor Ne.

The parameters of the multigrid algorithm, such as the cycle index 4 and the
coarse-to-fine interpolation order depends not only on the involved model and its
discretiztion but also on the observable in question. For the optimal calculation of
the susceptibility in the one dimensional massive Gaussian model it is essential to
use linear interpolation and a cycle index which varies with the mass size. In this
case the critical slowing down aend the volume factor are completely eliminated
leading to the optimal efficiency O(c;?2).
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Appendix A: Fourier transform expressions

In the continuous case, by substituting (2) into (1) and into the left part of (3)

one gets
>0

m? ZOO 99, m°L 2

and the right hand side of (3). From (4) and (A1), it can be shown by straight-

forward calculations that

{cj) =0 (A2)
LT
2
(ej) = 22+ m2L? (43)
31272

4
() = (7252 + m2L22 (A4)
Hence, the average magnetization ((M)) and the susceptibility ((M?) — (M)?) can
be calculated using (3), (A2) and (A3), leading to results (5a) and (5b) in Sec. 2.1.

In the discrete case, by substituting (7) into (6) and into the left part of (8) one

gets
N-1

L 2L
=7 Z c? sin’ (yrh/(2L)) + mT Z c?, (A5)
1

J=
and the right hand side of (8). From (4) and (A5) it can be derived that

[\

{cj) =0 (A6)
o Th?
\G) = T2 rhj L)) £ 2L

The average discrete magnetization (9a) and the discrete susceptibility (9b) in
Sec. 2.2 are obtained by applying (A6) and (A7) to (8).

(AT)

Appendix B: Fourier analysis of the expected error in the estimation of
the susceptibility

The relaxation sweep on level ¢ (with meshsize h; = 2h: i = 0,1,...,0 =
logy(N/2)) strongly affects, hence effectively samples, only those Fourier coefhi-
cients ¢; (cf. (2)) for which j = O(L/h;). Hence, the number s; of relaxation
sweeps needed to be performed on level ¢ depends on the contribution of these
components to the deviations in measuring (M?). By (3)

_ % S *ejen/ (k). (B1)
i,k
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Consider first a term (7, k) in (15) for which both j and k are O(L/h;), hence the
term is effectively sampled O(s;) times in a cycle. According to (A2), (A3) and
(A4) in App. A, the standard deviation of the term is

4 1/2 B B
(o) = tejen?) = OB i) L0,

hence the standard deviation of its average over the O(s;) samples is
O( 1/2h4(7r + m2h2) 1L_?’T). There are O(hi_2L2) such terms, where each

pair of them is uncorrelated, hence their total contribution is
O(s; P h3(x2 + m?h3) "' L72T).

In the case j = O(L/h;_,) and k = O(L/h;) where r > 1 (i.e., h; > h;_,. ), the
term (j, k) in (15) is effectively sampled as follows (see also ref. 4): in an inner
loop, for a (nearly) fixed value of ¢;, the values of ¢j are averaged O(s;/s;_, )
times, yielding an average whose deviation is of the order

o (s _1/2<c2>1/2 _of &G (zi=r LT 12
gk \ sj_p k gk s;  w2k2 4 m?2L2 '

Then, in an outer loop, the ¢; in this average is averaged over O(s;_, ) samples,
giving results with deviations of order

3'_—1/2 8i— 12 2,2 2 72—1/2, 2\1/2
172
_O< - ( 2k2—|—m2L2)_1/2(7r2j2—|—m2L2)_1/2LT>
J

T r—=r

_ O( —1/212;2 (x? —|—m2h?)_1/2(7r2 —I—mQh?_r)_l/QL_?’T).

There are O(h; 1h ! L2) such terms, effectively uncorrelated, hence their total
deviation is O( 1/2h3/2h3/2( —|—m2h2) 1/2(7r2—I—mQh?_r)_1/21}_2T). Summing

2
over integers r Z 0 gives again

0<3;1/2h?/2(7r2+ m?13)"V2TL2 N 1 —|—m2h?_r)_1/2>
r>0

= O(s7 2132 + m202)" L7201,
Therefore, the total error in measuring (M?) is
{
€= 0(2 T3 4 m2h?)_1L_2T>. (B2)
=0
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Appendix C: Calculation of the discretization error (M?) — (M?7).

To calculate the discretization error, observe first that for % < 7 < N the term
n (9b) is smaller than

Th* . (Th* Th?
32 1 m2h2) =0\ 53 2gs )

hence the sum of all these % terms is less than

) 1 1
C LT min (WW)

where C' = .5. A similar estimate, but with a different value of C, is obtained for
the sum of all terms % < j < oo in (5b).

For j < %, each term in (9b) can be approximated by a Taylor expansion as

follows: .
ALT 1— (42
w? < - %(JQ—L) )+ m2L2%(1 = §(57?)
_4LT (J )2
2 11 m212;2

where % < p< % Comparing this with the jth term in (5b), we conclude that the
total discretization error for these terms is approximately

N/2-1

" 1 1 1
_9 .
LI 3 g < CFTin (G ooy )
J:

For general p-order discretization, a similar estimation would give

1 1
C LT min (N m2L2N>

Therefore, the total discretization error is

1 1
Nmin(3,p) " m2L2N

C LT min ( ) < CLTN~min(G.p)

hence the relative (to o) discretization error estimator is

C(7r2 + m2L2)

(C1)

where py = min(3, p).

Clearly, there is no advantage in raising the order of the discretization error beyond

p=3.
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Table 1

Constructing an optimal multigrid cycle:
the optimal cycle index, v;,,, at level ¢ as a function of mh;
(the mass size times the meshsize at level ¢)

mh; |7, |practical

Viopt

<< 1[6.35 6

D 16.05 6
1 5.40 5)
2 4.19 4
4 3.15 3
8 2.70 3
>> 11252 3
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Table 11

Performane in measuring susceptibility:
showing «, number of random generations times the square of the obtained relative accuracy,
for the indicated values of the system size N and the cycle index ~

418 1(16|32] 64 [128 256|512

0.5 2.4 5 |7.319.8]12.3] 14.6{ 17.4

2.203.5/4.5[5.11 5.3 5.9

w2

—
9:
o | =
—

64 1.6/2.9(4.215.3/ 59|59 |6.3]6.2

1.6(2.9 4.215.3/6.1[6.5]|6.7|6.8

D | W

1.5(2.6/4.2| 5.8 6.8 |7.7|7.8|8.4

400 2 1.8/ 3.9 6.4 9.7/ 12.8] 15.5| 18.6

3 or Tab. 11.6/2.9/4.3/ 5.6/ 6.8 | 7.5 | 8

6 1.502.8 4.9 7.7/ 11.2[ 16.2] 20
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Table 111

Computational time (in units of 5;2) in measuring the susceptibility
on a grid with NV gridpoints to relative accuracy &;:
conventional multigrid method (one measurement per cycle, as in Refs. 5,7 or 10)
vs. optimal multigrid method

multigrid
m | algorithm | 4| 8 |16 | 32 | 64 | 128 | 256 | 512

0.5 | conventional] 6.8 21.8 50.5| 112.2| 237 | 484.6

optimal 2 128(35] 3.7 | 38| 38

64 | conventionall 4.9 17.4] 52.6| 115.6| 236.7 485.2| 992.9( 2048.3

optimal |[1.6/2.9|4.2]| 53 | 59 | 59 | 6.3 6.2

400 | conventionall 4.7/ 16.8| 50.6[ 112.2| 235.1{ 501.9] 960.9

optimal |1.6/29|4.3| 56 | 6.8 | 7.5 8
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II:

II:

Table Captions

Constructing an optimal multigrid cycle: the optimal cycle index, v;,,, at
level ¢ as a function of mh; (the mass size times the meshsize at level 7).

Performane in measuring susceptibility: showing «, number of random gen-
erations times the square of the obtained relative accuracy, for the indicated
values of the system size N and the cycle index ~.

Computational time (in units of 5;2) in measuring the susceptibility on a grid
with NV gridpoints to relative accuracy e,: conventional multigrid method (one
measurement per cycle, as in Refs. 5,7 or 10) vs. optimal multigrid method.
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