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Abstract. The numerical solution of the advection-diffusion problem in the inviscid limit with
closed characteristics is studied as a prelude to an efficient high Reynolds-number flow solver. It is
demonstrated by a heuristic analysis and numerical calculations that using upstream discretization
with downstream relaxation ordering in a multigrid cycle with appropriate residual weighting leads to
an efficient solution process. Upstream finite-difference approximations to the advection operator are
derived whose truncation terms approximate “physical” (Laplacian) viscosity, thus avoiding spurious
solutions to the homogeneous problem when the artificial diffusivity dominates the physical viscosity
[A. Brandt and I. Yavneh, J. Comput. Phys., 93 (1991), pp. 128–143].
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1. Introduction. Efficient multigrid algorithms for the numerical solution of
partial differential problems normally require good ellipticity measures on all scales of
the problem, which implies that nonsmooth solution components can be resolved by
local processing [2]. But problems with small ellipticity measures are marked either by
indefiniteness or by anisotropies. In the latter case, there exist so-called characteristic
directions of strong dependence. Some nonsmooth components of the solution are
then advected along these characteristics, and hence they cannot be resolved locally
[1]. A typical example is steady flow at high Reynolds numbers (small viscosity).

When applied to such problems of small ellipticity the usual multigrid algorithms
often exhibit a severe degradation of performance compared to that seen in elliptic
problems. Indeed, most multigrid codes in use today for solving steady flows at high
Reynolds numbers, although yielding a great improvement over previous single-grid
solvers, fall far short of attaining the so-called textbook multigrid efficiency for gen-
eral (even smooth) flows. To regain this efficiency the multigrid algorithm requires
modifications that take into account the anisotropic properties of the operator. For
example, it was shown in [4] and [9] that using upstream discretization and down-
stream relaxation ordering yields a fully efficient multigrid solver for flows whose
characteristics (streamlines) start at some part of the boundary and end at another
without recirculating (entering flows). To obtain efficient multigrid solvers for flows
with closed characteristics, however, different modifications were proposed, such as
defect-correction cycles and residual overweighting [5]. The main drawbacks of the
latter approaches are: (a) they are not likely to generalize efficiently to orders of
accuracy higher than one; (b) they require W cycles, which may be substantially
more expensive than simple V cycles in parallel computation; (c) they suggest dif-
ferent treatment for different types of flow, viz., recirculating versus entering flows.
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The upshot of the present work is to obtain a unified approach for both types of
flow by employing upstream discretization and downstream relaxation ordering for
recirculating flows as well. In section 2 we formulate the simple model problem of
advection-diffusion and present the first differential approximation (FDA) to its dis-
cretized form. In section 3 we present the two-level cycle and use the approximation
of section 2 in a heuristic analysis for a priori prediction of the performance of this
algorithm. In section 4 new first-order upstream discretizations for the advection op-
erator are presented, whose first truncation terms approximate isotropic diffusivity.
These schemes are shown to eliminate spurious solutions to the homogeneous (i.e.,
unforced) small-viscosity advection-diffusion equation, such as those reported in [3].
Section 5 presents numerical calculations testing the accuracy of the discretization
and the efficiency of the multigrid algorithm and how it compares to the predictions
of section 3. Section 6 summarizes the main conclusions and further research plans.

2. The scalar advection-diffusion equation. We study the scalar advection-
diffusion equation with closed characteristics as a prelude to the study of flow prob-
lems. This equation serves well as a preliminary problem, since the advection part
(i.e., momentum equations) is responsible for the degraded performance observed in
the solution of the incompressible-flow equations by the usual multigrid algorithm [5].
Also, as is shown for entering flows in [4], the solution process of the advection part
of the system can be effectively decoupled from that of the elliptic part that is due
to the continuity equation. Hence, efficient solution of the advection problem is a
necessary stage in the development of a fully efficient flow-equations solver, and [4]
suggests that the resulting advection-problem solver can indeed be used in designing
the sought-after flow solver.

The advection-diffusion equation in two dimensions is

Lεu = −ε∆u + aux + buy = f, (x, y) ∈ Ω,(1)
u = g, (x, y) ∈ ∂Ω,

where ε is a positive constant and a, b, f , and g are given functions of x and y.
Equation (1) is discretized on a uniform grid of meshsize h, whose gridlines lie parallel
to the x and y coordinates. The characteristic direction of the advection operator
in (1) is given (locally) by dy/dx = b/a = tan(φ), where φ is the (local) angle of
nonalignment between the x coordinate and the characteristic direction. We will
focus our attention on the particular case where the characteristics defined by a and
b form closed loops (as in vortices), one of which may coincide with ∂Ω (as in internal
flows).

Suppose that (1) is discretized by some stable finite-difference discretization of
first-order accuracy. The main aspects of the problem can be analyzed by substituting
for the discrete operator its FDA—see [8] and also [1, 2, 9]. For the advection-diffusion
equation with positive but vanishingly small ε we need only consider the advection
operator, since the tiny diffusion will be dominated by the artificial diffusivity rep-
resented by the truncation terms (except at stagnation points). Let Lh denote a
first-order accurate discrete approximation to the advection operator. Then, by a
Taylor series expansion, we generally have

Lhuh = a uh
x + b uh

y − h(T̃h
1 uh

xx + T̃h
2 uh

xy + T̃h
3 uh

yy) + O(h2),(2)

where uh denotes the discretized function, h being the meshsize of a uniform grid.
Here, T̃h

j are functions of x and y, the specific details of which are determined by a
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and b and the discretization. The FDA is the approximation of Lh by the differential
operator that remains in (2) after the O(h2) terms are neglected. (Hence, it applies
only to sufficiently smooth uh, since the neglected terms are higher derivatives.)

We now assume for simplicity of the discussion that the equation is normalized
such that a2 + b2 = 1 , and introduce a (conformal) local coordinate system, (ξ, η),
where ξ denotes the local “streamwise” coordinate parallel to the characteristic di-
rection, while η denotes the “cross-stream” coordinate that is perpendicular to the
characteristic. Thus,

∂ξ = a∂x + b∂y,(3)
∂η = a∂y − b∂x,

and

∂xx = a2 ∂ξξ + b2 ∂ηη − 2ab ∂ξη,

∂yy = b2 ∂ξξ + a2 ∂ηη + 2ab ∂ξη,(4)
∂xy = ab ∂ξξ − ab ∂ηη + (a2 − b2) ∂ξη.

The FDA of Lh in the local coordinate system is therefore

L̃h = −h
(
Th

1 ∂ηη + Th
2 ∂ξη + Th

3 ∂ξξ

)
+ ∂ξ,(5)

where, by (2) and (4),

Th
1 = b2 T̃h

1 − ab T̃h
2 + a2 T̃h

3 ,

Th
2 = −2ab T̃h

1 + (a2 − b2) T̃h
2 + 2ab T̃h

3 ,(6)
Th

3 = a2 T̃h
1 + ab T̃h

2 + b2 T̃h
3 .

We assume a consistent and stable discretization, which requires that the artificial
viscosity operator represented by the first truncated term be elliptic, implying that
the O(h) part of the operator in (5) is of positive type. Under special circumstances,
such as consistent alignment of the characteristics with the grid, Th

1 (and Th
2 ) vanish,

and this property is marginally violated. In this case the physical diffusion term
becomes important, no matter how small ε may be, and the analysis below does not
apply. Accordingly, we will assume below that Th

1 is large compared to h, which is
the usual case.

3. Two-level error-reduction analysis. We now analyze the error reduction
attainable with a two-level cycle using upstream discretization and downstream re-
laxation ordering.

3.1. Two-level cycle. The proposed two-level cycle for a given discrete problem
Lhuh = fh is defined as follows.

• Starting with some approximation to uh, perform ν1 (small integer) relaxation
sweeps.

• Calculate the residuals, rh = fh −Lhũh , where ũh is the current approxima-
tion to the solution, and transfer them to a twice-coarser grid 2h, multiplied
by a globally uniform weight W .

• Solve the coarse-grid problem, L2hv2h = Wr2h , for the correction. Here, r2h

is the restriction of rh to the coarse grid.
• Interpolate and add the correction v2h to the fine-grid approximation.
• Perform ν2 (small integer) fine-grid relaxation sweeps.
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In studying the asymptotic performance of the two-level cycle, the number of pre-
relaxation sweeps ν1 need not be distinguished from the number of postrelaxation
sweeps ν2. (Recall that we associate asymptotic performance with the spectral radius
ρ of the iteration matrix, and that ρ(AB) = ρ(BA) for any pair of square matrices A,
B of the same dimension.) We denote the total number of sweeps by ν = ν1 + ν2 .

In analyzing the two-level cycle we shall make many simplifying assumptions.
The degree to which these assumptions are justified needs to be judged by the degree
to which numerical results match the predictions of the analyses.

3.2. The model problem and analysis. We analyze the two-level convergence
for the discrete approximation to (1) in the limit of vanishing ε for problems with
closed characteristics by considering the following model problem on grid h:

Lhuh(ξ, η) = fh(ξ, η) ,(7)

where Lh is, as above, the discretization of the advection operator. For the domain
of solution and boundary conditions we require periodicity in ξ in order to simulate
closed characteristics, and we choose for simplicity of the discussion ξ ∈ [0, 1]. The
boundary conditions in the cross-stream direction are not germane in the present
context. For simplicity, we let −∞ ≤ η ≤ ∞ .

The main point of our approach is to use discretization that is purely upstream,
and to relax the equation in downstream ordering, starting at ξ = 0. Downstream
ordering means that we relax a variable only after relaxing all other unknowns which
participate in the equation that corresponds to this variable (except, perforce, at
ξ = 0). Thus, a full relaxation sweep results in the elimination of all the residuals
except at a narrow band (of O(h) width) that stretches from η = −∞ to ∞ near
ξ = 1 (which coincides with ξ = 0 due to the periodicity). Neglecting the width of
this band, we find that the residual function, rh, which remains after at least one full
relaxation sweep has been carried out, can be modeled by

rh(ξ, η) =
{

Rh(η), ξ = 0 (mod 1),
0, otherwise.

The fine-grid error vh satisfies the residual equation. Wherever the residual vanishes
we now revert to FDA, obtaining

L̃hvh = 0,(8)

with L̃h defined in (5). We now add a further simplifying assumption that Th
j in (5)

are independent of η. Hence, we may expand (8) in a Fourier series in η. For an error
component v̂h

ω(ξ) exp(iωη) of frequency ω, (5) and (8) then yield(
hω2Th

1 (ξ) + O(h) +
d

dξ

)
v̂h

ω(ξ) = 0,(9)

where all the O(h) terms but the first can be neglected in the homogeneous equation,
since they multiply derivatives and are therefore small compared to dv̂h

ω/dξ. The
solution to (9) in the interval (0, 1) is therefore given by

v̂h
ω(ξ) = Ah

ω exp

(
−hω2

∫ ξ

0
Th

1 (s) ds

)
,(10)
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where Ah
ω is the amplitude of v̂h

ω at ξ = 0+, which we shall determine shortly. (Super-
scripts + (−) will denote an infinitesimal positive (negative) increment.) In particular,
at ξ = 1−, we have v̂h

ω = Ah
ωD(h, ω), with

D(h, ω) = exp(−hω2T̄h
1 ),(11)

where T̄h
1 is the average value of Th

1 over the entire domain, under the assumption
that Th

1 is η-independent (and recalling that the domain length in the ξ direction is
1).

It is important to note that D(h, ω) is approximately the factor by which a single
relaxation sweep amplifies (reduces) an error component that oscillates at frequency
ω in the η direction. This is due to the fact that, given upstream differencing, the
downstream relaxation ordering yields numerical integration; and D(h, ω) is the factor
by which this integration over the domain reduces the error. Equation (11) implies
that relaxation reduces error components with large ω very efficiently, but components
that are smooth along η need to be corrected on the coarse grid.

At ξ = 0 (mod 1), the FDA is no longer useful. Instead, we have a jump in v̂h
ω

that is proportional to the Fourier coefficient of Rh(η) corresponding to frequency ω.
We denote this jump by δh

ω. The periodicity in ξ now implies by (10) and (11) that

Ah
ω = δh

ω/(1 − D(h, ω)).(12)

Now, following the two-level algorithm, we attempt to approximate the (weighted)
residual equation on the coarse grid 2h. We assume that the same discretization
stencil is used on the coarse grid as on the fine. (Note this important assumption on
which the entire method hinges.) We also assume that the restriction operator is such
that the jump condition at ξ = 0 is approximated correctly on the coarse grid. In
practice this holds, provided that a proper averaging, such as full-weighted residual
transfers, is used. Analogously to (10), (11), and (12), respectively, we obtain

v̂2h
ω (ξ) = A2h

ω exp

(
−2hω2

∫ ξ

0
T 2h

1 (s) ds

)
,(13)

D(2h, ω) = exp(−2hω2T̄ 2h
1 ),(14)

and

A2h
ω = Wδ2h

ω /(1 − D(2h, ω)),(15)

where W is a constant weight to be chosen. Since the stencils of Lh and L2h are the
same, we also assume T̄ 2h

1 = T̄h
1 , and hence, by (14),

D(2h, ω) = D(h, ω)2.(16)

Also, since we assume that the restriction operator transfers the jump condition cor-
rectly, we have δ2h

ω = δh
ω. Equations (12), (15), and (16) now yield

A2h
ω

Ah
ω

= W
1 − D(h, ω)
1 − D(h, ω)2

=
W

1 + D(h, ω)
.(17)

Neglecting again the effects of intergrid transfers and aliasing, we assume that the
remaining error after adding the coarse-grid correction is vh − v2h. Hence, the fine-
grid error is amplified by the factor (v̂h

ω − v̂2h
ω )/v̂h

ω . In addition, ν relaxation sweeps
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performed on the fine grid amplify the error by D(h, ω)ν , as noted above. The two-
level error-amplification factor µtl is then given by the absolute value of the product
of these terms. Note, however, that the determining values of v̂h

ω and v̂2h
ω in the

coarse-grid correction term depend on where one begins relaxing on the fine grid
immediately following the coarse-grid correction (since all other fine-grid values at
the end of one or more sweeps are determined solely by the values where relaxation
begins, due to the upstream differencing and downstream relaxation ordering). If
the fine-grid relaxation begins at 0+, that is, at or shortly after the point where the
residual was nonzero, then we have

µtl =
∣∣∣∣(1 − A2h

ω

Ah
ω

)
Dν

∣∣∣∣ =
∣∣∣∣(1 − W

1 + D

)
Dν

∣∣∣∣ ,(18)

where D = D(h, ω). However, if the fine-grid relaxation begins at 0− (since there is
some small overlap in the region being relaxed), then

µtl =
∣∣∣∣(1 − A2h

ω D2

Ah
ωD

)
Dν

∣∣∣∣ =
∣∣∣∣(1 − WD

1 + D

)
Dν

∣∣∣∣ .(19)

3.3. Optimal residual weighting. By (11) we have 0 < D < 1, and in order
to obtain an h-independent analysis we assume now that D can take on any value in
the interval (0, 1). The optimal value of W is that which minimizes the supremum of
µtl over D ∈ (0, 1). For any fixed W , the supremum is evidently obtained either for
D → 1 or for

Dm
def= D ∈ (0, 1) :

∂µtl

∂D
= 0.

From (18) and (19) we can thus obtain Dm as a function of W and ν, from which
we can then calculate W opt (the value of W which yields the fastest convergence) for
either of these cases. For ν = 1 we obtain W opt = 16/9 for (18), yielding µtl = 1/9,
and W opt = 16/7 for (19), yielding µtl = 1/7. For larger ν the tedious calculations
need to be carried out numerically. But W opt tends to 2 for both cases rather quickly.
This is expected, since this value is the ratio of the Green’s functions on the coarse and
fine grids for components that are very smooth in the cross-characteristic direction;
other components are reduced by relaxation. With W = 2 we obtain for both (18)
and (19)

µtl =
∣∣∣∣1 − D

1 + D
Dν

∣∣∣∣ .(20)

Equating the derivative of (20) with respect to D with zero, we get as the only relevant
root,

Dm =
√

1 + ν−2 − ν−1.(21)

The two-level error-amplification factor is now obtained by substituting (21) into (20).
For sufficiently small ν−2 we may neglect this term, obtaining Dm ≈ 1 − ν−1 and

µ̄tl
def= sup

D∈(0,1)
µtl ≈

∣∣∣∣ ν−1

2 − ν−1 (1 − ν−1)ν

∣∣∣∣ ≈ (2νe)−1.(22)

In fact, (22) gives an excellent approximation of the maximal µtl in (20) for any
ν, erring by less than 2% for ν ≥ 2. By curious coincidence, the same asymptotic
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TABLE 1
The number of cycles necessary to reduce the L2 residual norm by a factor of 108 in Example

1. The problem is taken from [10], and MGD9V is the automatic method of de Zeeuw which is used
there.

Levels Grid W= 1 W= 2 MGD9V
4 33 × 33 16 6 15
5 65 × 65 26 7 17
6 129 × 129 41 7 22
7 257 × 257 65 8 N.A.
8 513 × 513 108 8 N.A.

two-level error-amplification factor for large ν, (2νe)−1, is obtained for the Poisson
equation on a rectangle using Gauss–Seidel relaxation in red-black order [7]! Thus,
this analysis leads us to expect efficiency that is comparable to that obtained for the
Poisson problem.

Example 1. We apply our algorithm to the advection-diffusion problem with
closed characteristics used in [10] (originally in [6]):

−ε∆u + a(x, y)ux + b(x, y)uy = 0,

on Ω = (0, 1)× (0, 1), with u(x, y) = sin(πx)+sin(13πx)+sin(πy)+sin(13πy) on ∂Ω,
and

a(x, y) = 4x(x − 1)(1 − 2y), b(x, y) = −4y(y − 1)(1 − 2x).

For the advection term we use the same discretization as is used on the finest grid in
[6] and [10]: standard upstream (SU), defined by

SU =
1
h

[ (|ai,j | + |bi,j |)ui,j − |ai,j |ui1,j − |bi,j |ui,j1 ],(23)

where

i1 = i − sign(ai,j), j1 = j − sign(bi,j).

In [10], ε = 10−5. We use this value only at the stagnation point, adding no viscos-
ity elsewhere to maintain upstream discretization. Since the “physical” viscosity is
dominated by the artificial viscosity elsewhere anyway, the difference is small. (Alter-
natively, we could use a much smaller ε everywhere.) As in [10], the initial guess for
u in Ω is zero, and we cycle until the L2 norm of the residuals is reduced to at most
10−8 times its initial value. We performed this test with 4, 5, 6, 7, and 8 levels, with
the coarsest grid always 5×5, including boundary points (as in [10]). We used V(1,1)
cycles throughout, with the usual full-weighted residual transfers and bilinear inter-
polation. (See section 5 for details on implementation of the relaxation.) In Table 1
we compare our results with W=1 and 2 to those reported for MGD9V, the automatic
method of de Zeeuw (available up to six levels), using a so-called “sawtooth” cycle
with one ILLU (incomplete line LU) relaxation sweep per level. It must be stressed
that the efficiency and robustness of this method is convincingly demonstrated in
[10], and all the results achieved on ten other problems (including nonrecirculating
advection-diffusion) were far better than these.

Evidently, the present method performs very well, with efficiency comparable to
that of elliptic equations in this simple test problem. Clearly, the downstream relax-
ation ordering itself is not sufficient for the recirculation problem (nor is ILLU). Both
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MGD9V and the present method with no residual overweighting show clear deteri-
oration as the grid is refined, while with proper overweighting the convergence rate
remains excellent even for very fine grids. We reiterate that our residual overweight-
ing approach may not apply to MGD9V, since there different stencils are used on the
different grids, requiring different overweighting.

3.4. Several bands of residuals. It may not always be easy to obtain a single
band of residuals per vortex. This happens when the relaxation is carried out in piece-
wise downstream ordering, as would be the case in a domain-decomposition setting,
for example. Our analysis can be extended to the case where several bands of nonzero
residuals remain after relaxation. It is found that one then requires two coarse-grid
corrections, with optimal weights 1 and 2 approximately. This seems to imply that
a W cycle is required in this situation. Also, one must then use upstream intergrid
transfers, so as to avoid averaging over interfaces between subdomains, which may
actually cause divergence.

4. Discretization. Flows in which the streamlines do not start and end at
boundaries, but constitute closed curves, require special considerations in the dis-
cretization. In such cases, even a very small viscosity plays an important role in
determining the main flow throughout the domain. The solution in the limit of van-
ishing viscosity depends very strongly on how these coefficients tend to zero. In effect,
the advection terms determine the behavior of the solution along streamlines, whereas
the viscous terms determine its cross-stream form. And since the boundary is often a
streamline itself, the propagation of information from the boundary into the domain
is governed by the viscous terms no matter how small they may be. This effect is
discussed in detail in [3, 9], where it is shown for both the advection-diffusion prob-
lem and the incompressible Navier–Stokes equations that solutions with schemes in
which the numerical viscosity is anisotropic (having different viscosity coefficients for
the cross-stream and streamwise directions), such as standard upstream-difference
schemes, may be spurious.

In the most general case it can be shown that even isotropic viscosity is not
sufficient for convergence of the solution, and one must actually specify a uniform
viscosity. We do not know how to do this while retaining the purely upstream structure
(but see remarks in section 6). However, for the homogeneous advection-diffusion
problem, there are several indications (though no proof) that isotropy suffices. This
is shown below and also in [3, 9], where it is also shown (in a numerical example)
to suffice for the incompressible Navier–Stokes equations. This is consistent with
the fact that the vorticity in the Navier–Stokes equations satisfies a homogeneous
advection-diffusion equation.

To obtain a discretization scheme that exhibits the appropriate physical-like be-
havior for vanishing viscosity we must thus either add sufficient explicit isotropic
viscosity that will dominate the artificial viscosity of the discrete advection operator,
or else derive a discretization of the advection operator that satisfies the condition
of isotropy in its lowest-order truncated terms. Since we want our scheme to remain
purely upstream, we follow the latter approach.

Consider the standard upstream scheme of (23) and assume for simplicity of
discussion a ≥ b ≥ 0 . From (2) we have by a Taylor expansion

T̃h
1 = 0.5 a, T̃h

2 = 0, T̃h
3 = 0.5 b.(24)

Hence, in order to obtain isotropic artificial viscosity we may either add some
approximation of 0.5h(a−b)uxx, or else subtract some approximation of 0.5h(a−b)uyy.
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In order to retain an upstream scheme we define this additional viscosity at the point
(i − 1, j).

For general a and b we obtain in the first case the isotropic-viscosity upstream
scheme IVU1, defined by

IVU1 = SU + 0.5 | |ai,j | − |bi,j | |(ui,j − 2ui1,j + ui2,j),(25)

if |ai,j | > |bi,j |, and

IVU1 = SU + 0.5 | |ai,j | − |bi,j | |(ui,j − 2ui,j1 + ui,j2)

otherwise. In the second case we obtain scheme IVU2, defined by

IVU2 = SU - 0.5 | |ai,j | − |bi,j | |(ui1,j+1 − 2ui1,j + ui1,j−1),(26)

if |ai,j | > |bi,j |, and

IVU2 = SU + 0.5 | |ai,j | − |bi,j | |(ui+1,j1 − 2ui,j1 + ui−1,j1)

otherwise. Here i1, j1 are defined as in (23), and similarly

i2 = i − 2 sign(ai,j), j2 = j − 2 sign(bi,j).

The first truncated term in scheme IVU1 is thus −0.5 min(|ai,j |, |bi,j |)∆u, while that
of IVU2 is −0.5 max(|ai,j |, |bi,j |)∆u. Both schemes have isotropic artificial viscosity,
but that of IVU1 is smaller, and in fact it vanishes upon alignment of the characteristic
directions with the grid.

Both discretizations are stable in downstream-ordered Gauss–Seidel relaxation.
The former is a nonnegative-weighted average of the standard first-order and second-
order upstream schemes, both of which are stable in this relaxation. The latter
produces an M matrix. As expected, there were no stability problems in any of our
many numerical calculations.

5. Numerical experiments. We first test numerically the discretizations de-
rived in Section 4 on a model problem for which the standard upstream scheme has
been shown to yield spurious solutions [3, 9]. Then, the asymptotic error reduction
of two-level and multilevel cycles are investigated for several problems.

5.1. Accuracy test. The accuracy of the different discretizations is tested on
the model problem

−ε ∆u + a ux + b uy = 0,(27)

with a and b given by

a = sin(πy) cos(πx), b = − cos(πy) sin(πx).(28)

(These coefficients are the same as those of Example 2 below, and a picture of the
characteristics appears in Figure 1(a).) The domain of solution is the unit square,
centered at the origin, with a square of diagonal 0.5, whose sides form a 45 degree
angle with the axes, removed from its center. On the outer boundary u = 1 is
prescribed, and on the inner boundary, u = 0. We solve this problem with the
three upstream schemes, SU, IVU1, IVU2, and also the (nonupstream) isotropic-
viscosity scheme used in [3], denoted ISO. No “physical” viscosity is added: ε = 0.
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(b)(a)

(c) (d)

FIG. 1. Characteristics of Examples (a), 2, (b) 3, (c) 4, (d) 5.

These solutions are compared to that obtained with a standard second-order upstream
scheme with physical viscosity coefficient 0.001. The latter solution is obtained on a
257 × 257 grid. In Table 2 we present L1 norms of the differences between the test
solutions at various resolutions and the second-order accurate solution (restricted
to the corresponding grid by injection). Since the solution is smooth and the 0.001
physical viscosity dominates the second-order truncation terms at this high resolution,
the latter solution is assumed to be very accurate.

Evidently, the three schemes with isotropic artificial viscosity produce convergent
solutions, but the SU scheme does not, despite the fact that its average viscosity is
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TABLE 2
L1 difference norms between the solutions obtained with several schemes at different resolutions,

and a high-accuracy solution obtained on grid 257 × 257 (see text for details). The three isotropic-
viscosity schemes are seen to yield convergent solutions, but the SU scheme does not.

Grid SU IVU1 IVU2 ISO
33 × 33 0.0993 0.0153 0.0430 0.0265
65 × 65 0.0865 0.0094 0.0295 0.0187

129 × 129 0.0750 0.0057 0.0163 0.0098

smaller than that of IVU2 and ISO. IVU1, which has the least artificial viscosity of
the four schemes tested, produces the smallest error.

5.2. Efficiency tests. The remainder of our numerical calculations are aimed
at testing the performance of the algorithm in various configurations and comparing
to the analytical predictions of (19) and (20). We test the SU scheme (as this is the
most widely used first-order scheme) and the IVU1 scheme (which is more accurate
than IVU2 and also employs just a four-point stencil). In all these tests we use first-
order upstream residual restriction and bilinear interpolation of the corrections. The
restriction is performed as follows: for all even i and j on the fine grid we define i1, j1
as in (23), and restrict to the corresponding coarse-grid right-hand side at coarse-grid
point (i/2, j/2) the average of the fine-grid residuals at points (i, j), (i1, j), (i, j1), and
(i1, j1). This restriction gives slightly better results than standard full weighting in
multivortex problems, since residuals are less likely to be transferred from one vortex
to another.

The finest grid in all the tests is 129 by 129, and six levels are employed except
in the two-level tests. We include no “physical” viscosity except at stagnation points
(a = b = 0), where it is required for well-posedness. We calculate convergence factors
as follows: the boundary conditions and right-hand sides are chosen to be zero; (the
choice is immaterial for linear problems, but this allows us to normalize the solution
by a constant factor every few cycles in order to avoid roundoff errors). The initial
solution field is pseudorandom, and 100 cycles are performed. We calculate the con-
vergence factor as the (geometric) average error-convergence per cycle over the last
80 cycles. The averaging is used because in some cases the convergence history is
not smooth, and the value corresponding to any particular cycle may not carry much
meaning. However, it should be noted that in all cases the convergence factors in the
vicinity of the optimal W were not sensitive to the exact choice of W .

Example 2. The first test for efficiency is the problem used above to test the
discretization, but without the inner “island” (so as to have pure recirculation every-
where). The characteristics of this problem, which form a single clockwise-rotating
vortex, are plotted in Figure 1(a). A relaxation sweep is implemented by sweeping
four times over the domain, and in each such sweep relaxing roughly one-quarter of
the variables as follows: in the first sweep only variables at locations where both
a(x, y) and b(x, y) are nonnegative are relaxed (designated first quadrant); in the sec-
ond sweep only variables corresponding to locations where a(x, y) is nonnegative and
b(x, y) is nonpositive are relaxed (second quadrant); in the third sweep only variables
at locations where both a(x, y) and b(x, y) are nonpositive are relaxed (third quad-
rant); in the fourth sweep only variables corresponding to locations where a(x, y) is
nonpositive and b(x, y) is nonnegative are relaxed (fourth quadrant). Finally, all stag-
nation points (in this case just one) are relaxed last. This entire process comprises
a single clockwise sweep. Of course, each quarter-sweep is performed in downstream
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TABLE 3
Comparison of error-amplification factors obtained by analytical prediction and two-level nu-

merical calculations of Example 2 for W = 2 and W opt. The optimal values of W were obtained
from (19).

ν W Two-Level Analysis SU IVU1
1 2.00 0.172 0.207 0.239
1 2.29 0.143 0.182 0.220
2 2.00 0.090 0.090 0.112
2 2.14 0.072 0.077 0.084
3 2.00 0.061 0.056 0.082
3 2.10 0.048 0.044 0.064

order, i.e., x and y increasing in the first quarter-sweep, x increasing and y decreasing
in the second, etc. It is efficient to store the order of relaxation of the entire sweep
during a setup-sweep (which costs very little), so that from then on each full clockwise
sweep costs nearly the same as an ordinary lexicographic Gauss–Seidel sweep.

Note that we specify nonnegative and nonpositive in the above description. That
is, it should be ensured that the boundaries of the quadrants are included in the
quadrant. This was important in some of the tests.

Such a clockwise sweep indeed eliminates all the residuals except along a narrow
band that extends from the center of the vortex to the boundary. But if the vortex
rotates counterclockwise, several such bands would remain. Hence, in Examples 3–5
below, where both clockwise and counterclockwise vortices exist (as would be the gen-
eral case), we perform an analogous counterclockwise sweep following each clockwise
one. The quadrant where this counterclockwise sweep starts has some bearing on
performance. In our experiments we use exactly the reverse order. This allows us to
save some work by performing the counterclockwise sweep over just three quadrants,
since the fourth quadrant (a(x, y) nonpositive and b(x, y) nonnegative) has just been
relaxed in the clockwise sweep. Thus, we begin with the third quadrant (a and b non-
positive), then the second, and finally the first. (Note, by the way, the difference from
the usual symmetric Gauss–Seidel: here the sweeps are all performed in downstream
ordering within each quadrant, but the quadrants are scanned symmetrically).

In Examples 3–5 (especially 4) there was also some sensitivity to in which quad-
rant one chooses to start the relaxation sweep. That is, a somewhat different conver-
gence rate and optimal overweighting were obtained if one performed the clockwise
sweep as above, than if one relaxed, say, the second quadrant first, then the third,
then the fourth, and finally the first. Hence, in these tests we shifted the relaxation
starting-point by one quadrant after every cycle so as to obtain results that represent
some average or “typical” case.

We first performed two-level tests in order to compare the numerical results with
the analysis. We used W = 2 and the theoretically optimal W , calculated from (19).
This is the relevant value for this example, since there is a one-line overlap between
the quadrants. The results are given in Table 3. Evidently, the analysis captures the
main features of this problem very well, despite the numerous simplifications, as seen
especially in the SU results.

Calculations were also carried out with V(1,0), V(1,1), and V(2,1) cycles, with W
= 1, 2 and the optimal value, which was determined experimentally. The numerical
results are summarized in Table 4. We find that the experimental V-cycle results
also match the two-level predictions fairly well in the vicinity of the optimal residual-
weighting factors. But the optimal W ’s are somewhat higher than predicted, although
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TABLE 4
Error-amplification factors obtained in numerical calculations of Example 2. The optimal values

of W were obtained experimentally (see text).

Cycle W SU IVU1
V(1,0) 1 0.795 0.898
V(1,1) 1 0.676 0.831
V(2,1) 1 0.536 0.724
V(1,0) 2 0.280 0.440
V(1,1) 2 0.143 0.302
V(2,1) 2 0.069 0.133
V(1,0) opt 0.168 (W = 2.44) 0.232 (W = 2.50)
V(1,1) opt 0.077 (W = 2.27) 0.066 (W = 2.41)
V(2,1) opt 0.039 (W = 2.15) 0.041 (W = 2.25)

they do show the expected dependence on the number of relaxation sweeps performed.
In other problems, reported below, the optimal value varied, but it was always fairly
close to 2.

The overall performance when the optimal W is used is very satisfactory. As
noted above, this performance is not sensitive to moderate changes in W (see also
below).

Example 3. This example features flow with four vortices rather than just one.
Here, a and b are given by

a = cos(2πy) sin(2πx), b = − sin(2πy) cos(2πx),(29)

and the characteristics are plotted in Figure 1(b). The domain, as in all the examples
except Example 5, is the unit square centered at the origin. The numerical results
using V(1,1) and V(2,1) cycles appear in Tables 5 and 6, respectively. The convergence
performance remains excellent, even though some nonvanishing residuals remain after
the relaxation at parts of the borderlines between vortices (where the flow leads away
from the borderline). Recall, however, that here and below each full relaxation sweep
consists of one clockwise sweep followed by three-quarters of a counterclockwise sweep
(see description of implementation above), in order to allow for the opposite-sign
vortices.

Example 4. In order to test the effect of grid-alignment of the borderlines between
vortices we solve a problem in which this borderline is not aligned with the grid. In
this problem a and b are given by a1 + a2 and b1 + b2, respectively, where

ai = sin(πyi) cos(πxi), bi = − cos(πyi) sin(πxi), i = 1, 2,(30)

with

x1 = (x + 0.5)2 + 0.5, y1 = (y + 0.5)2 + 0.5,

x2 = (x − 0.5)2 + 0.5, y2 = (y − 0.5)2 + 0.5.

This represents a superposition of two opposite-sign vortices. The characteristics are
depicted in Figure 1(c), and the numerical performance is shown in Tables 5 and 6.
Here we see some loss of efficiency, but the performance is still satisfactory and far
better than is usually exhibited in such problems.

Example 5. Here we test a mixed problem, where the flow enters and leaves
through the boundary, but there also exists a large recirculation zone. This is obtained
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TABLE 5
Error-amplification factors obtained with V (1, 1) cycles for W = 2 and W opt. The latter were

found experimentally.

Example SU IVU1
3 0.072 (W = 2.00) 0.179 (W = 2.00)
3 0.052 (W = 2.07) 0.101 (W = 2.29)
4 0.182 (W = 2.00) 0.230 (W = 2.00)
4 0.130 (W = 1.88) 0.206 (W = 2.05)
5 0.061 (W = 2.00) 0.185 (W = 2.00)
5 0.047 (W = 2.05) 0.109 (W = 2.23)

TABLE 6
Error-amplification factors obtained with V (2, 1) cycles for W = 2 and W opt. The latter were

found experimentally.

Example SU IVU1
3 0.035 (W = 2.00) 0.090 (W = 2.00)
3 0.023 (W = 2.06) 0.042 (W = 2.24)
4 0.113 (W = 2.00) 0.129 (W = 2.00)
4 0.063 (W = 1.84) 0.128 (W = 1.97)
5 0.030 (W = 2.00) 0.091 (W = 2.00)
5 0.020 (W = 2.07) 0.048 (W = 2.19)

by redoing Example 2, but in an extended domain:

Ω = (−0.5, 1) × (−0.5, 0.5).

The mesh is still uniform, and the finest grid is now 193 by 129. The characteristics
are shown in Figure 1(d), and the numerical performance is given in Tables 5 and 6.
As in the other examples, there was virtually no sensitivity to the order in which the
relaxation sweeps were performed (that is, clockwise first and then counterclockwise
or vice versa).

Summary. Often, one may not wish to search for optimal residual weighting
factors for every problem. Instead, one can simply use the nominal value W = 2. In
the “realistic” Examples 3–5, one saves at most 25% of the time spent in relaxation
by using the optimal value rather than 2, and usually much less. This would also be
the case in Example 1 if we were to employ the “symmetric” relaxation. Even with
this nominal value the convergence rates are comparable to those of elliptic problems.

6. Conclusions and further research. An experimental approach that is
hoped to eventually lead to a fully efficient solver for general high-Reynolds flows
has been introduced, analyzed, and tested on the advection-diffusion problem in the
inviscid limit. The numerical tests mostly match the predictions very well, indicat-
ing that the main cause for slow convergence of the usual multigrid algorithms for
recirculating flows has indeed been understood, and a way to eliminate it has been
found.

The multigrid V-cycle, using downstream relaxation and upstream discretization,
was shown to yield an efficient solver for the tested problem in several simple situations
of closed characteristics and in a mixed entering/recirculation problem. The tests were
performed with the classical standard first-order upstream discretization scheme and
also with a novel first-order upstream discretization, that was shown to preclude the
spurious solutions reported in [3].
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The present approach is cheaper to implement than that developed in [5], and can
straightforwardly be applied to mixed entering/recirculating flows. More important,
there is potential for success with high-order discretization, for which the approach
of [5] yields an inadequate compromise. However, the results obtained are still pre-
liminary. The effect of the intergrid transfers on the small band of residuals and its
consequences in terms of error-reduction efficiency should be investigated over a wide
variety of cases, along with a study of how to deal with (or avoid) situations where
there remain several bands of nonvanishing residuals per vortex. Then, further re-
search should be directed towards higher-order discretization. For this case too, an
effectively upstream discretization needs to be developed—one whose truncation error
represents isotropic artificial diffusivity. One approach is to use a predictor-corrector-
type discretization, employing an upstream scheme as a (local) driver and a possibly
higher-order (not necessarily upstream) scheme as a (local) corrector. Finally, the
present approach has only been tested on the advection problem. Experiments with
the incompressible Navier–Stokes equations for flows with closed streamlines need to
be performed, employing distributive Gauss–Seidel relaxation, as shown in [4]. These
will no doubt raise further questions.

It is anticipated that the techniques investigated here will carry over to three
dimensions, although the implementation will be considerably more complicated. This
is supported by the fact that simple experiments performed with the overweighting
methods of [5] in three dimensions exhibited the expected performance.

An obvious drawback of the entire approach is that it is inherently sequential, and
efficient parallel implementations are hard to envisage. Some parallelization might be
achievable by performing a downstream line Gauss–Seidel relaxation. Also conceivable
is a domain decomposition approach which leaves several lines of residuals per vortex.

Another drawback of the present approach is that it is not directly applicable for
flows with significant additional viscosity, since this entails using discretizations that
are not purely upstream. Methods that deal with such flows as well are presently
being investigated.
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