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Abstract

A novel class of multigrid algorithms for the variable�coupling isotropic
Gaussian models is presented� In addition to the elimination of the
critical slowing down �which otherwise might become much worse
than usual in the case of strongly varying coupling values�� the �vol�
ume factor� is also eliminated� That is� the need to produce many
independent �ne�grid con�gurations for averaging out their statisti�
cal deviations is removed� by applying multigrid cycles that sample
mostly on coarse grids� Thermodynamic limits can be calculated to
relative accuracy �r in just O����r � computer operations� where �r
is the error relative to the standard deviation of the observable� In
this paper� such an optimal algorithm is obtained for the calculation
of the susceptibility in the d�dimensional variable�coupling isotropic
Gaussian model �with numerical experiments for d � 	� 
�� Some ba�
sic general rules for the operation of multigrid algorithms� applicable
to much wider classes of models� are derived�

KEY WORDS� multigrid� Monte Carlo� critical slowing down� vol�
ume factor� thermodynamic limit� variable�coupling isotropic Gaus�
sian model�



� Introduction

One of the aims in statistical physics is to calculate various average properties
of con�gurations governed by the Boltzmann distribution� This is usually done
by measuring these averages over a sequence of Monte Carlo iterations� Unfortu�
nately� such processes tend to su
er from several independent ine�ciency factors
that multiply each other and thus produce very expensive computations�

The best known of these ine�ciency factors is the critical slowing down �CSD��
This is the phenomenon� typical to critical systems� that with the increase in lattice
size there also comes an increase in the number of full Monte Carlo passes over the
lattice needed to produce a new con�guration which is statistically �useful�� i�e��
substantially independent of� or only weakly correlated to� a former con�guration�
More precisely� the process requires O�Nz� Monte Carlo sweeps� hence O�Nd
z�
computer operations� to create a new independent con�guration� where N is the
linear lattice size� d is the dimension and z � � is the CSD exponent �typically
z � 
�� Considerable e
orts have been devoted to reduce the critical slowing

down� For simple cases with real variables� classical multigrid methods ����������

can eliminate the CSD �i�e�� obtain z � ��� For more complicated models� �e�g�
��� nonlinear ��models or discrete models� more recent publications report on

simulation techniques that partially ������������������� or completely ����������	�������

eliminate the CSD� This means that the computer work to produce an independent
con�guration is proportional to the number of gridpoints� i�e�� O�Nd� operations�

This paper treats the Gaussian models with non�constant couplings� therefore of
special interest are cases where the couplings change strongly from one subdo�
main to another� In such cases� the usual critical slowing down of the point�by�
point Monte Carlo process is compounded by a very severe sampling slowness�
i�e�� the number of sweeps for producing an independent con�guration may grow
as O�a�N�� where a� is the maximal ratio between the values of the coupling�

In addition to the CSD factor Nz there is another� no less important factor of
slowness� namely� the above Nd factor� called the volume factor� Indeed� to cal�
culate a thermodynamic quantity to a certain relative accuracy �r� one needs to
produce O����r � essentially independent con�gurations to average out the devia�
tion exhibited by each of them� where the relative accuracy �r is the error relative
to �� the standard deviation of the observable in question� Also� the size Nd of the
grid must increase as some positive power of ���r � Thus� even if the CSD has been
completely eliminated� the overall work increases as O����r Nd�� An important
advantage of the multigrid approach is that it can drastically reduce the volume
factor Nd as well� by averaging over many samples produced on coarse levels of
the multigrid cycle� Actually� even for extreme cases of large a� we will demon�
strate below that by suitable cycling and sampling procedures one can completely
remove both the volume factor and the compounded CSD mentioned above�

The elimination of both the volume factor and the CSD factor means that a
thermodynamic limit can be calculated to an accuracy of �� in optimal time� i�e�
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in only O������� computer operations� This is just the same order of complexity
as needed to calculate� by statistical trials� any simple �pointwise� average� such
as the frequency of �heads� in coin tossing� By contrast� both the volume and
the CSD factors multiply the statistical factor ������� in the operation count of
conventional algorithms�

The elimination of the volume factor has �rst been demonstrated ����	���� for the
Gaussian model with constant coe�cients� It has been shown there� for the one�
dimensional Gaussian model� that the susceptibility can be calculated to accuracy
�r in about ����r random number generations� while the average energy per de�
gree of freedom requires ����r such generations for a similar accuracy� In the
two�dimensional Gaussian model� the susceptibility can be measured to accuracy
�r in about 
����r random number generations� Moreover� we have shown for the

one dimensional massive Gaussian model ��� that the susceptibility is calculated
to relative accuracy �r in less than ����r random generations� essentially inde�
pendently of the mass size� although the algorithm �ow does change with that
size�

These previous calculations have not provided convincing demonstration of the
power and generality of the approach� because the constant�coe�cient Gaussian
models in rectangular �or periodic� domains can be treated with similar e�ciency
also by Fourier�based algorithms or by closed�form Fourier analysis �as indeed used

in the aforementioned works ������	���� both for calculating the desired physical
quantities and for analyzing the multigrid algorithms�� To demonstrate more
general applicability of the multigrid approach� the elimination of both the CSD
and the volume factor is shown here for variable�coe�cient cases for which Fourier
methods are inapplicable�

A multigrid simulator for the variable�coupling Gaussian model provides an im�
portant basis for general nonlinear models� where non�constant couplings stochas�
tically emerge at coarser levels of the multigrid Monte Carlo processing� Indeed�
in a companion paper���� the removal of the CSD and the volume factor is shown
for some cases of a simple nonlinear model � the anharmonic crystal�

We show that in order to reach optimality in the variable�coupling Gaussian
model� the multigrid algorithm for such cases must di
er from the algorithms
in ��� �� 	�� 	�� mainly in the following two aspects� Firstly� instead of the sim�
ple linear interpolation that we have used in ��� �� 	�� 	��� weighted interpolation

must be used� Secondly� variable sampling should be applied during the multigrid
cycle� in particular� the Monte Carlo process should sample more frequently re�
gions with smaller coupling values� Precise rules for the interpolation weights and
for the sampling frequency �implying also general rules for switching between the
multigrid levels� are derived below�

The algorithms have been implemented for strongly discontinuous cases �large
a�� in one and two dimensions� The results are as good as those previously

attained ������	���� for constant coe�cients� For the one dimensional variable�
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coupling Gaussian model� the susceptibility is calculated to accuracy �r in about
less than ����r random number generations� In the two�dimensional variable�
coupling Gaussian model� the susceptibility can be measured in about less than

���� random generations� These results are independent of the coupling ratio
a��

Thus� our multigrid algorithm e
ectively produces an independent sample in just
O�	� computer operations� The computational time of this �optimal multigrid�
algorithm is thus smaller by a factor O�Nd� compared to that of a conventional

multigrid algorithm� e�g� such as that of Refs 	
� 	� and 
	� which measures the
observable only once per multigrid cycle�

For simplicity� the present work deals only with isotropic models� Modi�cations
to the anisotropic case are brie�y discussed in App� B�

� Variable�coupling isotropic Gaussian model in general dimension

��� Continuum and discrete models

The general variable�coupling d�dimensional isotropic Gaussian Hamiltonian is
de�ned in the continuum by

H�u� �

Z


a�x���

�u

�x�
�� � � � �� �

�u

�xd
���dx� � � � dxd �	�

where u � u�x� � u�x�� � � � � xd� and a�x� are real functions de�ned for x �
�x�� � � � � xd� � � � � is a domain in Rd on the boundary of which values of u are
prescribed� For de�niteness� we assume homogeneous Dirichlet �u � �� boundary
conditions�

The magnetization is de�ned here as

M�u� �
	

j�j
Z


u�x�dx� � � � dxd� �
�

where j�j is the volume of �� and the probability density of the con�gurations is
the Boltzmann distribution

P �u� �
	

Z
e�H�u�� ���

where the temperature T is absorbed in H�u� and Z is a normalization factor
�the partition function� derived from the condition

R
u P �u�du � 	� As the density

function is given� average properties of interest are the average magnetization
hMi � RuM�u�P �u�du and the susceptibility

� � hM�i � hMi�� ���
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Clearly� in the case of the sign�symmetric Hamiltonian �	� and the homogeneous
boundary conditions� hMi � ��

Discrete approximations will be calculated by placing a grid �h of points xi over
the domain �� where i � �i�� � � � � id� is a vector of integers� xi � �x�i � � � � � x

d
i � �

�i�h� � � � � idh�� h being the �real and positive� meshsize� The value of the discrete
con�guration uh at the point xi will be denoted uhi � For simplicity� we will assume
that the boundary of � is a union of pieces each of which is included in a grid
hyperplane� so that boundary conditions can be discretized in the most direct and
obvious way� e�g�� uhi � � for xi in the boundary� but extensions to more general
cases are quite straightforward� The discrete Hamiltonian and magnetization will
be given� respectively� by the second�order discretizations

Hh�u
h� � hd��

X
hi�ji

aij �u
h
i � uhj �

� ���

and

Mh�u
h� �

hd

j�j
X
i

ui� ���

where hi� ji is any pair of nearest�neighbor sites� including the case that one
of them is on the boundary� and

P
i runs over all interior sites� �In case of

non�homogeneous boundary conditions� to obtain a second order approximation�
boundary values multiplied by 	�
 should be added to the sum in ����� The cou�
pling coe�cient aij is a proper homogenization of a�x�� i�e�� it represents harmonic

averaging �the inverse of the average of a�x���� in the i to j direction� compounded
with usual averaging in the perpendicular directions� Similarly to the continuous
case� the probability distribution is given by ���� with Hh�u

h� replacing H�u��
The discrete averages which estimates the continuum averages are naturally the
discrete average magnetization hMhi and the discrete susceptibility

�h � hM�
h i � hMhi� � hM�

h i� ���

Fourier expansions were used for the constant�coe�cient Gaussian model ����	����

�a�x� � 	� and the massive Gaussian model ��� to compute continuum and discrete
averages analytically and to construct an optimal multigrid algorithm� When
a�x� is not constant� or when � is not rectangular� Fourier expansions can no
longer serve� neither for exact calculations of continuum �thermodynamic limit�
and discrete averages� nor for analyzing the multigrid Monte Carlo simulations� A
more general way to analyze the multigrid Monte Carlo algorithm in the variable�
coupling Gaussian models is described below �see Sec� 
����

��� Extreme Monte Carlo slowness

In some cases the usual critical slowing down of the point�by�point Monte Carlo
simulation is compounded by a very severe sampling slowness resulting from widely
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di
ering values of the coupling aij � For example� if a�x��	 in a region all around
the boundary while a�x� � a� in some interior subdomain� then when a� is getting
large the interior spin block becomes strongly coupled� Therefore� point�by�point
relaxation would allow only small �uctuations in this spin block� although a uni�
form movement of the block is physically probable� Clearly� as a� increases a
uniform block movement becomes much slower� Generally� for this reason� the
decorrelation time may increase proportionately to a�� i�e�� the number of Monte
Carlo sweeps required to produce a new e
ectively independent con�guration may
increase like O�a�N��� where N � O�h��� is the typical number of grid points in
each coordinate� Thus� for large a� there is additional reason for constructing an
accelerated multigrid algorithm�

We demonstrate this compounded slowdown of point�by�point simulations by an
example� We have measured the simulation e�ciency by the integrated autocor�
relation time

	 �
	




�X
t���


�t� ��a�

as determined from the normalized autocorrelation function


�t� �
hAiAi
tii � hAi�
hA�i � hAi� ��b�

where Ai is the measurement of M� produced by the simulation at the end of the
i�th sweep over the entire lattice� As an example we consider the one�dimensional
variable�coupling Gaussian model in the interval ��� 	� with the step function a�x�
determined by�

a�x� �

�
	 if � � x � ��
�
a� if ��
� � x � ����
	 if ���� � x � 	�

���

We have measured 	 for the point�by�point Monte Carlo process for di
erent
values of a�� Results are presented in Table I� showing that for a� �� 	� the
autocorrelation time 	 is indeed proportional to a�N�� where N � �

h �

Table I

measuring the autocorrelation time 	 for the susceptibility
in the Monte Carlo process
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N a� � 	 a� � 	� a� � 	�� a� � 	���

� 	 � �� �	�

� � 
� 
�� 	�
��

	� 	
 �� ���

�
 �� 
��

��� Description of the multigrid cycle

Consider the one�dimensional variable�coupling Gaussian model in the interval
��� L�� The generalized discretized Hamiltonian� Hh�u

h�� on a grid with meshsize
h � L�N � can be written as

Hh�u� �
	

h

NX
i��

ai�ui � ui���� � h

N��X
i��

�iui �	��

where ui is the variable at the gridpoint xi � ih� � � i � N � and ai denotes
the coupling between ui�� and ui� 	 � i � N � For simplicity of the multigrid
algorithm we assume N � 
k� On the �nest grid� �i � � �i � 	� � � � �N � 	�� but
the more general form of the Hamiltonian is needed for the algorithm recursion�

The coarse grid with meshsize H � 
h is constructed by taking every other grid�
point� The coarse�grid function uH � �uH	 � � � � � u

H
I � � � � � u

H
N��� describes a displace�

ment of the �ne�grid function uh � �u	� � � � � ui� � � � � uN �� i�e�� it modi�es the latter
through interpolation and addition�

uh � �uh � IhHu
H � �		a�

where �uh is the �ne�grid con�guration at the stage of switching to the coarse grid
and IhH denotes the following weighted interpolation from grid H to grid h�

�
IhHu

H
�
i
�

�
uHI if i � 
I
aiuHI 
ai��uHI��

ai
ai��
if i � 
I � 	�

�		b�

�see Sec 
�� for the reasons behind this prescription��

The �ne�grid HamiltonianHh�u
h� resulting from that interpolation can be written

as follows�
Hh��u

h � IhHu
H� � Hh��u

h� �HH�uH�� �	
�

where Hh��u
h� is given by �	�� and HH �uH� is�

HH �uH� �
	

H

N��X
I��

aHI �uHI � uHI���
� �H

N����X
I��

�HI u
H
I �	��

� � �



with

aHI �

ai��ai
ai�� � ai

�I � i�
 � 	� 
� � � � �N�
� �	�a�

and

�HI � � aHI

h�

�ui�� �
aHI � aHI
�


h�
�ui �

aHI
�


h�
�ui
�

�
ai


�ai�� � ai�
�i�� �

�i



�
ai
�


�ai
� � ai
��
�i
��

�I � i�
 � 	� 
� � � � �N�
 � 	�� �	�b�

The coarse�grid couplings aHI depend only on the �ne�grid couplings ahi � The

coarse �eld terms �HI are calculated from the details of the �ne�grid con�guration
at coarsening and are �xed throughout the processing on the coarser level� The
variables of the coarse grid uHI are initially set to zero� corresponding to zero initial
displacements�

Having calculated the �eld �H once for all� HH can now be directly calculated in
terms of the coarse grid con�guration uH � there is no need to explicitly perform
�	
� in order to perform a Monte Carlo step on the coarser level� One can therefore
run a long Monte Carlo process with HH before explicitly updating uh by �		a��

The Monte Carlo process for HH can itself include a transition to a still coarser
grid� 
H� and so on� Thus� more precisely� the entire algorithm is de�ned as
a sequence of multigrid cycles for the �nest level� where a cycle for any given
��current�� level is recursively de�ned by the following �ve stages�

	� ��i Monte Carlo steps are �rst made for each variable ui on the current level�

��i � � and may change from one cycle to another� In the case of constant

coupling� ��i will generally also be a constant ���i � ���� and then the steps

are actually performed as a sequence of �� Monte Carlo sweeps� each including
one step per gridpoint� Similar organization in partial sweeps is suitable for
variable ��i �


� If the current level is the coarsest� go to �� Otherwise� the next coarser level
is created from the current one by determining its couplings �	�a� and �eld
terms �	�b��

�� 
 multigrid cycles for the coarse level are performed� The �cycle index� 

may change from one current level to another�

�� Update the current level by performing �		a��

�� Additional ��i Monte Carlo steps are �nally made at each variable ui on the

current level� ��i � � and may change from one cycle to another� and the
steps may well again be ordered in �partial� sweeps�

The Monte Carlo steps are performed by changing each variable in its turn ran�
domly according to its associated distribution� regarding its neighbors as �xed�
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The values of ��i � �
�
i and 
 are discussed below�

Exactly the same �ve stages de�ne also the multigrid cycle in a general domain
� in any dimension� For the recursion� the d�dimensional Hamiltonian in ��� is
generalized to

Hh�u
h� � hd��

X
hi�ji

ahij �u
h
i � uhj �

� � hd
X
i

�hi u
h
i � �	��

where
P

i runs over all interior sites� Since the interpolation Ih�h is a linear oper�
ator� the coarse grid Hamiltonians will again have the same form as �	��� except
that the range of neighbors i for each site j �i�e�� the points i for which a�hij �� ��

will depend on the order of the weighted interpolation �see Sec 
���� It will be
explained below that the couplings at the �ne grid h determine the coe�cients of
the interpolation operator Ih�h� As a result� a�hij will depend on the couplings at

grid h� and the �eld ��hi is directly derived from the current �ne grid con�guration

�uh� ahij and from �hi � similar to ��	�a�� �	�b�� in the one�dimensional case� In our

standard d�dimensional example we take � � ��� L�d� h � L�N � N � 
k� so that
hd�j�j � N�d�

��� Weighted interpolation

Why the particular form �		b� is chosen for the interpolation operator

Ih�h� For e�cient coarse�grid sampling� all physically probable large�scale con�gu�

ration changes should have approximations of the form Ih�hu
�h� with approximately

the same energy changes� For any probable set u�h of �probable� displacements
at the subset of points belonging to the coarse grid� Ih�hu

�h should give a similarly

probable set of displacements at all points� Otherwise� large�scale movements u�h

would be associated with energy di
erences much larger than physically probable�
prohibiting their amplitudes from approaching physically probable sizes� yielding
ine�cient coarse grid sampling� all likely samples would remain in some neighbor�
hood of the original con�guration �u�

I I+1

i-1 i i+1

a ai i+1

Figure 	� One�dimensional grid�
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the �ne grid couplings are denoted by ai and ai
��
and the bolded points are the coarse grid points�

For example �see Fig� 	�� if ai �� ai
� at some �ne grid site i � 
I � 	 �not
belonging to the coarse grid�� then ui is likely to be much closer to ui�� than to
ui
�� hence the usual linear interpolation� if used instead of �		b�� would enforce
unlikely moves� unless uHI �uHI
� is small� Thus� under linear interpolation� likely
coarse�grid moves would have small di
erences� hence a small overall amplitude
�see demonsrations in Sec� 
�� below��

Given any neighboring values uhi�� and uhi
�� the most probable value for uhi is
that which minimizes �	��� satisfying

�Hh�u�

�uhi
�


ai
h

�uhi � uhi��� �

ai
�

h
�uhi
� � uhi � � h�i � �� �	��

Hence� when the displacements in uhi�� and uhi
� are u
H
I and uHI
�� respectively� the

most likely displacement in uhi is given by �		b�� since this keeps �	�� unchanged�

Similar considerations can be used to derive weighted interpolation for general
higher�dimensional problems �except that� for obtaining relations analogous to
�	��� the Hamiltonian should �rst be restricted to a local set of points around the
point i� and its minimization for any given coarse�grid values should be done over
all non�coarse points in the set� yielding a certain value at i which is a function
of the coarse values�� More simply� except in certain pathological cases� one can
generally use compounded forms of �		b�� For example� the weighted interpolation
Ih�h that we have used for the two�dimensional problem is given� in terms of the
notations in Fig� 
� by

i j k

l m n

p

I K

O Qo q

� 
� �



Figure 
� Two�dimensional grid�
the �ne grid connections are denoted by solid lines�

the bolded points are the coarse grid points�

�
Ih�hu

�h
�
r
�

����������������������
���������������������

u�hI if r � i

u�hO if r � o

u�hQ if r � q

u�hK if r � k
aiju�hI 
ajku

�h
K

aij
ajk
if r � j

ailu
�h
I 
alou

�h
O

ail
alo
if r � l

aopu�hO 
apqu�hQ
aop
apq

if r � p

aknu
�h
K 
anqu�hQ

akn
anq
if r � n

amj �I
h
�h
u�h�j
aml�I

h
�h
u�h�l
amp�Ih�hu

�h�p
amn�Ih�hu
�h�n

amj
aml
amp
amn
if r �m�

�	��
where aij is the �ne grid coupling between sites i and j� Other slightly di
erent

de�nitions for Ih�h could also be used ��������������� �Prescription �	�� results from
choosing the smallest possible local set in deriving each of the relations analogous
to �	��� In pathological cases larger sets should be used��

��� Analysis for fast sampling of susceptibility

In case of constant�coupling Gaussian models it has been shown ������	���� that the
susceptibility is dominated by contributions from large�scale �uctuations �low�
frequency Fourier Components�� Therefore� the purpose of the simulation is to
sample quickly as many such �uctuations as possible� An optimal multigrid algo�
rithm is achieved by applying a cycle index 
 larger than 
d and calculating the
susceptibility by averaging over many measurements on the coarsest level�

This is not always the exact situation in the variable�coupling Gaussian models�
Here� the scales that dominate the contribution to the susceptibility are determined
by the strength of the coupling a�x�� An optimal Monte Carlo process should
sample more frequently regions with smaller values of the coupling a�x��

In the constant�coupling models� the Fourier components are mutually indepen�
dent� Moreover� since the Monte Carlo process is local� a relaxation sweep on a
certain level changes e
ectively only those Fourier components with wavelength
comparable to the meshsize of that level� These two observations enabled us
������	���� to estimate the number of Monte Carlo sweeps needed at di
erent lev�
els of the multigrid cycle� In the variable�coupling Gaussian model the Fourier
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analysis no longer holds� Instead� we develop a new type of analysis that approxi�
mately decouples the various scales� In this analysis each con�guration is written
as a combination of local movements from all levels� These movements will not be
entirely independent �see e�g� condition �
	� below�� but they will su�ce for the
purpose of our considerations�

The analysis and our numerical experiments �see� Sec� 
��� treat zero boundary
conditions� but the derived rules will be suitable for general boundary conditions�

The magnetization Mh can be evaluated on any level� without going back to �ner
levels �plug �		a� � �		b� into ��� to obtain an expression of MH as an explicit
linear function of uH�� Thus� with negligible extra work� many measurements of
M�
h can be made within a cycle� and their average can be used as an estimate for

the discrete susceptibility hM�
h i�

To study the number nki of relaxation steps that the algorithm needs to perform
at site i on a grid with meshsize hk � 
kh� �k � �� 	� � � � � l � log��N�
��� in order
to achieve accuracy � in the estimation of the susceptibility� let the number of
internal sites at level k be denoted by vk� and let uki � uk�xki � be the spin at xki
�site i on level k�� where i � Vk � fj � �j�� � � � � jd� � 	 � j�� � � � � jd � N�
k � 	g�
The coarsest level �k � l� includes only one internal variable�

The interpolation from any level k to the next��ner level k�	 is denoted by I
hk��
hk

or simply Ik��k � It is de�ned by �		b�� where H is substituted with hk� h with
hk�� and the couplings ai are those of level k � 	�

We de�ne a multiscale set of basis functions as follows� Each level k is associated
with vk ��functions f�i�kgi�Vk de�ned on that level by

�i�k�xkj � � �ij �j � Vk�� �	��

Our set of basis functions are then de�ned as the �ne�grid functions

�i�k � I	�I
�
� � � � Ik��k �i�k� �	��

Each �ne�grid con�guration u	 can then be represented as

u	�x	j � �
lX

k�	

X
i�Vk

cki �
i�k�x	j � �j � V	� �
��

where the coe�cients fcki gk�	�����l
i�Vk are uniquely determined by requiring the total

contribution to �
�� of each �ner level �k � 	� to be orthogonal to each basis
function of the next�coarser level �k�� i�e�� requiring

X
j�Vk��

�Ik��k �i�k�jc
k��
j � � �k � 	� � � � � l i � Vk�� �
	�

� 
� �



Indeed� to see that the coe�cients ckj are uniquely determined� note �rst that their

number �
Pl

k�	 vk� equals the number of equations in �
��� �
	�� Then note that
�
	� implies the orthogonality relations

�
m��X
k�	

X
j�Vk

ckj�
j�k� �i�m� � � �m � 	� � � � � l i � Vm�� �

�

Hence� for a given con�guration u	� the single coarsest�level coe�cient cl� is deter�
mined by

cl���
��l� ���l� � �u	� ���l�� �
��

Furthermore� having determined all the coe�cients cki for all k � m� a set of vm
equations for the level�m coe�cients fcmj gj�Vm is given by

X
j�Vm

��j�m� �i�m�cmj � �u	�m� �i�m� �i � Vm� �
��

where

u	�m � u	 �
lX

k�m
�

X
i�Vk

cki �
i�k�

from which the coe�cients fcmj gj�Vm are uniquely determined since the vm 	 vm

matrix ��j�m� �i�m� is stronglly diagonally dominant� Therefore� the representation
�
�� is indeed unique�

This representation enables us to understand exactly the role of each step in the
multigrid cycle� A relaxation step at xki mainly changes cki � while c

k
j for any j �� i

is much less a
ected� A relaxation sweep on level k e
ectively samples fckj gj�Vk �
the stochastic coe�cients of that level� while its e
ect on any other cmi �m �� k�
is drastically reduced as m� k increases� and completely vanishes for m � k �due
to the orthogonality relations�� See details of particular cases demonstrated in
App� A�

According to �
�� the magnetization ��� can be expressed as a linear combination

of the stochastic variables fcki gk�	�����l
i�Vk � namely�

Mh�u� �
lX

k�	

X
i�Vk

ski c
k
i � �
��

Hence

M�
h�u� �

lX
k�	

lX
m�	

X
i�Vk

X
i�Vm

skmij cki c
m
j �
��

� 
� �



where skmij � ski s
m
j � Since we are interested in the estimation of the susceptibility

� � hM�i � hMi� � hM�i � lim
h�	

hM�
h i �
��

to a certain accuracy �� the number nki of relaxation steps at each uki depends on
the standard deviation of each term in �
��� namely on

skmij ��cki c
m
j � � skmij �h�cki cmj ��i � hcki cmj i������ �
��

Since hcki i � � for any k � �� � � � � l and i � Vk� and cki � c
m
j are almost uncorrelated

for �i� k� �� �j�m� �see App� A�� it follows that

skmij ��cki c
m
j � � skmij ��cki ���c

m
j �� �
��

Now� we make an arbitrary partition of fcki g into R subsets� �i� k� and �j�m� will

be in the same subset Ir if and only if ski ��c
k
i � � smj ��c

m
j �� In other words� for

all �i� k� � Ir we assume ski ��c
k
i � � �r� Then� for each �i� k� � Ir we require

our algorithm to satisfy nki � nr� where nr increases with the typical standard
deviation �r of the subgroup�

If �i� k� and �j�m� are in the same subgroup Ir� then the term skmij cki c
m
j in �
�� is

sampled at least nr times� For a given r� there are jIrj� such terms which are only
weakly correlated �see App� A�� therefore� using �
��� the standard deviation ofX

�i�k���j�m��Ir
skmij cki c

m
j

is at most
jIrj��rp

nr
� ����

If �i� k� � Ir and �j�m� � It and �r � �t then skmij cki c
m
j is sampled at least nr

times� Therefore� for a given r and t with �r � �t� there are jIrjjItj such terms
which are almost uncorrelated �see App� A�� hence the standard deviation ofX

�i�k��Ir

X
�j�m��It

skmij cki c
m
j

is at most pjIrjjItj�r�tp
nr

� ��	�

One can combine the error estimations in ���� and ��	� and get the total error
estimate in measuring the susceptibility hM�i

� �
X
r

pjIrj�rp
nr

X
t��t��r

p
jItj�t� ��
�

� 
� �



We assume that the deviation in each con�guration is dominated by the largest
typical standard deviation �largest �r�� i�e�� the quantity

p
jIrj�r decreases geo�

metrically with r� Therefore� the total error estimate in measuring the suscepti�
bility and the total number of computer operations are respectively

� �
X
r

jIrj��rp
nr

����

and
W �

X
r

jIrjnr� ����

The optimal choice for nr �yielding either minimal � for a given W or minimal W
for a given �� is obtained when ��

�nr
� ��

�W
�nr

� �� which by ���� and ����� yields

nr � ���
���
r ����

where �� and �� are independent of r� Indeed� insertion of ���� into ���� and

���� yields the optimal relation W � ���� as long as
P

r jIrj����r is bounded

independently of Nd� Since clearly � � O��� for W � O�	�� where � is the
standard deviation of the susceptibility� another way to write the obtained relations
is W � O��������

It is important to emphasize that the result in ���� is independent of jIrj� Hence�
forth� changing the partitioning into subsets will not change the result� This
optimal variable sampling rule can also be written as

nki � O��ski ��c
k
i ��

����� ����

In order to construct an optimal multigrid algorithm with a convenient sampling
rule� it is necessary to approximate ski ��c

k
i � for k � �� � � � � l and i � Vk� The

contribution extent of cki to the magnetization� ski � can be computed directly from
�
��� giving

ski �
hd

Ld

kd �

hdk
Ld

�k � �� � � � � l i � Vk�� ����

According to the observations in App� A

��cki � � O

��
h��dk

Aki

�����
�k � �� � � � � l i � Vk� ����

where Aki �
P

j�hi�ji akij denotes the sum of the couplings extending from site i on

level k� Substitution of ���� and ���� into ���� yields the sampling rule that we
have used in our numerical experiments

nki � C�Aki �
����h

���d
�

k � ����

� 
� �



where C is a constant independent of k and i�

This rule implies the cycle index


 � 

���d
� ����

since� by �	�a�� values of Aki on di
erent levels �di
erent k� are comparable� How�
ever� the number of Monte Carlo steps actually taken at each site of each visited
level is goverened by the more precise rule ���� �see examples in Sec� 
����

We conclude with a remark concerning the discretization error� The size Nd of
the �nest grid that should be employed increases of course with the decrease of ��
because one needs to have a grid for which the computed average is only distance �
from its in�nite�grid value� Therefore� it is necessary to construct a discretization
scheme� for the observable in question� with the dependence N � N��� such that
N���d � O������ In other words� one should apply a discretization scheme with
an error smaller than O� �p

Nd
�� i�e�� a discretization of order at least d�
� �We

have used a second�order discretization� for d � 	 and d � 
��

��� Numerical results

We have tested the multigrid algorithm� by applying the variable sampling rule
����� for di
erent coupling functions in one and two dimensional lattices with grids
of sizes up to 	�
� and 	�
��� respectively� Our main aim was to show that us�
ing the variable sampling rule properly the susceptibility can be calculated in an
optimal time� The susceptibilty has been measured over just one cycle� Within
the cycle� many measurements of the magnetization Mh are taken� in fact after

each relaxation sweep on each level� The average of the measurements� M�
h � is

an approximation for hM�
h i ���� which is also an approximation for the thermody�

namic limit hM�i ���� The relative accuracy is de�ned as �r �
jM�

h
�hM�ij
� � where

� denotes the standard deviation of the susceptibility� We de�ne the performance

index � to be the expected value of �RAN���r � where �RAN is the amount of work
spent in the cycle� measured by the number of times a random number is gener�
ated� Thus� � should turn out to be bounded if and only if the algorithm solves
to relative accuracy �r in O����r � operations� or in other words� the algorithm
eliminates completely both the critical slowing down and the volume factor� We
measured � for di
erent kinds of step functions and coupling strengths� Results
are presented below� In most cases �r is averaged over an ensemble of 	�� runs�
for the cases that smaller ensembles were used� the deviation in measuring � is
given in parantheses�

Example ��

In the 	D problem on � � ��� 	�� the couplings are de�ned by the step function

a�x� �

�
	 if � � x � ���
a� if ��� � x � 	�

� 
� �



For large a�� the subinterval ����� 	� is strongly coupled� hence the con�guration
there is almost a constant� This subinterval should therefore be relaxed much less
than the subinterval ��� ����� Practically� according to the variable sampling rule�
the number of relaxation sweeps over ����� 	� should be �

a
���
�

times their number

over ��� ����� and each level must be relaxed � times as many sweeps as the next
�ner level� except that the coarsest level �H � 	�
�� where the weak couplings

happen to completely disappear is visited very rarely� only once per a
���
� cycles�

The resulting values of � are presented in Table II � � for di
erent a�� It is clear
that� independently of the coupling strength a�� an optimal e�ciency comparable
to the constant�case �a� � 	� e�ciency is obtained� i�e�� � remains uniformly
bounded as N grows�

Table II

Performance indices � for Example 	

N

a� � � 	� �
 �� 	
� 
�� �	
 	�
�

	 
�	� ��

 ���� ���� ���� ��
� ���� ���	�� ���� ���	�� ���� ���
��

	� 
��	 ���� ���� ���� ���� ���� ���� ����	� ���	 ������ ���� ������

	��� 
��	 ���� ���� ��
	 ���� ���� ���� ����	� ���� ������ ��	� ����	�

	���� ���� 	��	 
��� ���� ���� ���� ���� ���	�� ��
� ���	�� ���� ���
��

Example ��

Again on � � ��� 	�� the couplings are now de�ned by the step function

a�x� �

�
	 if � � x � ��
�
a� if ��
� � x � ����
	 if ���� � x � 	�

The number of relaxation steps over the subinterval ���
�� ����� should by ���� be
�

a
���
�

times the number elsewhere� On the coarsest level� the strong couplings are

no longer present� turning this level to be by far the most sampled one� As before�
cycle index � has been used� The measurements of � are presented in Table III�

� For the constant�coupling case� uniform sampling with cycle index 
 � � is used�

� 
� �



demonstrating again optimal e�ciency� Note that for this example� pointwise
Monte Carlo schemes �see Sec� 
�
� would yield � � O�a�N���

Table III

Performance indices � for Example 


N

a� � � 	� �
 �� 	
� 
�� �	
 	�
�

	 
�	� ��

 ���� ���� ���� ��
� ���� ���	�� ���� ���	�� ���� ���
��

	� 	��� 
�

 
��� ���� ��	� ��
� ���� ���	�� ���� ���	�� ��
� ���	��

	��� ���� 	�	� 	��� 	��� 	��� 
��� 
�	� ������ 
��� ������ 
��� ������

	���� ���� 	�	� 	��� 	��� 	��� 
��
 	��� ������ 
�	
 ������ 
�		 ������

Example ��

The coupling function is de�ned by

a�x� �

�����
����

	 if � � x � ��	���
a� if ��	��� � x � ������
	 if ������ � x � ����
�
a� if ����
� � x � ���	
�
	 if ���	
� � x � 	

In this example� the steps �jumps� in the coupling function coincides with the
geometry of the subintervals only for grids with meshzise H � �

�� � As in the pre�
vious examples� cycle index � has been employed with suitable variable sampling
according to ����� Note that on a grid with meshsize H � �

� the strong couplings
still hold� but on the two coarsest grids the strong couplings do not exist anymore�
Hence� on these two grids uniform sampling �full sweep� should be done� The
measurements of � are presented in Table IV� demonstrating optimal e�ciency�
independently of a��

Table IV

Performance indices � for Example �

� 
� �



N

a� 	� �
 �� 	
� 
�� �	
 	�
�

	 ���� ���� ���� ��
� ���� ���	�� ���� ���	�� ���� ���
��

	�� ���	 ��
� ���� ���� ��
� ���	�� ���
 ���	�� ��
� ���	��

	��� 
��	 ��
� ���� ���� ���� ���	�� ���� ���	�� ��
� ���	��

Example ��

In the 
D problem on � � f� � x� y � 	g� the couplings are de�ned by the step
function

a�x� y� �
n
a� if ��
� � x� y � ����
	 otherwise�

Here� cycle index � has been used� accompanied with rule ����� The results are
presented in Table V � � demonstrating again optimal behavior �� practically
bounded independently of N and a��� By contrast� the pointwise Monte Carlo
would yield � � O�a�N���

Table V

Performance indices � for Example �

N�

a� �� �� 	�� �
� ��� 	
�� 
��� �	
� 	�
��

	 ���� ���	 	���� 	���� 	���� 
���� ����	� 

��	 �	���� 
���
 ������ 
	�	� �	����

	��� 	��� 
��� ���� ��
� ���� ���� ����
� 	
��� �
��	� 	���� �
�	�� 		��� �	����

��� Two�level diagnostic tests

The two�level tests enable us to check and better understand the performance
of the multigrid algorithm� In this kind of test we estimate the deviation from
the desired observable average �e�g� the discrete susceptibility hM�

h i� introduced
by each coarsening from some �ne level �meshsize h� to the next�coarser level
�meshsize 
h�� Here� we will use such an analysis to check the performance of
di
erent interpolation schemes� The examples are such that weighted interpolation
is required already on the �ne grid� For each transition from a �ne�grid equilibrium

� For the constant�coupling case� uniform sampling with cycle index 
 � � is used

� 
	 �



con�guration to the coarse grid we have measured the discrete susceptibility after
each relaxation sweep on the coarse grid� and calculated the di
erence between the
average of very many �practically in�nite� such measurements and the true �ne�
grid discrete susceptibility hM�

h i� this di
erence represents the deviation caused
by the �ne�to�coarse transition� Averaging this deviation over an ensemble of
many �ne�grid equilibrium con�gurations yields the �average coarsening deviation�
�ACD�� Note that if the number of passes on the coarse grid is not su�ciently large
�as in some of our experiments below� the measured ACD may be much larger than
the true one�

Example ��

The couplings are de�ned by the step function

a�x� �

� 	 if � � x � ��
�
	��� if ��
� � x � ����
	 if ���� � x � 	 �

for N � � and h � 	��� The standard deviation is �h � �������

Table VI below presents the coarsening deviation in susceptibility� averaged over
an ensemble of � � 	�� con�gurations in the case of linear interpolation and over
� � 	�� con�gurations in the case of weighted interpolation�

Table VI

Average coarsening deviation in the susceptibility for Example 	

number of passes ACD using ACD using

on the coarse grid linear interpolation weighted interpolation

	��� ����� ����	��


��� ����� ����			

���� ��������

���� ��������


 ����
 ���������

In this example� the coarse grid includes only one internal point� thus the statistics
on that level can be computed analytically �
 passes�� Generally� in problems that
require much sampling at one site in a certain level� the statistics accumulation
can be accelerated by analytical averaging at that site�

� �� �



The coarsening deviation in the case of linear interpolation has the same order as
the standard deviation �h� In the case of weighted interpolation the true ACD
is smaller by a factor of about 	�� � 	�� �essentially proportional to a��� When
the number n of passes �and e
ective measurements� on the coarse grid is not
su�ciently large� an additional deviation of about �h�

p
n enters the measured

ACD�

We conclude that an optimal algorithm can be constructed with weighted inter�
polation and not with linear interpolation�

Example ��

The couplings are de�ned by the step function

a�x� �

�
	 if � � x � �����
	��� if ����� � x � ���
�
	 if ���
� � x � 	 �

for N � � and h � 	��� The standard deviation is �h � �������

Table VII below presents the coarsening deviation in susceptibility� averaged over
ensemble of � � 	�� con�gurations in the case of weighted interpolation and over
	�� con�gurations in the case of linear interpolation �except for �
��� and �����
passes where the ensemble sizes are ����� and 
���� respectively��

Table VII

Average coarsening deviation in the susceptibility for Example 


number of passes ACD using ACD using

on the coarse grid linear interpolation weighted interpolation

	��� ������ �������


��� ���
�� ����
��

���� ���

� ����
��

���� ���	�
 ����	��

	���� ���	�� ����	��

�
��� ���	�� ����	�	

����� ������

In the previous example� the linear interpolation weights and the weighted interpo�
lation weights were totally di
erent over the whole interval� resulting in large ratio

� �
 �



between the linear interpolation ACD and the weighted interpolation ACD� Here�
the linear interpolation coincides with the weighted interpolation except for the
weights at the �ne grid points ����� and ���
�� Indeed� the average coarsening de�
viation using weighted interpolation is smaller only by a factor of � compared with
that of the linear interpolation� More �jumps� in the variable�coupling function
would demonstrate much worse performance of the linear interpolation relative to
that of the weighted interpolation�

� Summary

The calculation of a thermodynamic limit of any observable to a relative accuracy
�r by a usual Monte Carlo process requires O�Nd
z���r � computer operations�
where �r is the error relative to the standard deviation of the obervable� N is the
linear dimension of the lattice needed to approximate the thermodynamic limit to
accuracy �r� d is the dimension and z is the critical exponent�

In the variable�coupling isotropic Gaussian models the overall work might increase
as

O�a�Nd
z���r �

where a� denotes the maximal ratio between values of the coupling�

Multigrid algorithms can reduce and even eliminate not only the critical slowing

down factor a�Nz but also the volume factor Nd�

By a novel method� the parameters of the multigrid algorithm such as the cycle
index 
 and the sampling rule can be determined as functions of the coupling co�
e�cients� For the optimal calculation of the susceptibility in the variable�coupling
Gaussian model it is essential to use weighted interpolation and the variable sam�
pling rule�

The optimal e�ciency is obtained independently of the coupling function discon�
tinuities� with performance as good as in the constant�coupling case� The critical
slowing down and the volume factor are completely eliminated� and the total re�
quired computational work is just O����r ��
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Appendix A� Numerical examples for illustrating the analysis

To illustrate the details of the theoretical analysis �Sec� 
���� some numerical ex�
amples are provided below� We consider the one�dimensional variable�coupling
Gaussian model with three di
erent coupling functions� For each example we �rst

� �� �



solve the related system ��
�� and �
	�� and then measure the following three
properties�

a� the typical local amplitude h�cki ��i��� for k � �� � � � � l and i � Vk�

b� the change introduced to any c	i as a result of one relaxation step on the �nest

grid� relative to h�c	i ��i����
c� the average change introduced to cki as a result of one relaxation sweep on the

�nest grid� relative to h�cki ��i���� This average is de�ned as

	

vk

X
i�Vk

�
P

m��cki �m�� � �cki �m������

M���h�cki ��i���

where m is the relaxation sweep number and M � 	�� is the ensemble size
�number of sweeps��

Example ��

The constant�coupling case� a�x� � 	 for x � ��� 	��

The typical local amplitude� h�cki ��i��� � O�h
���
k ��

A relaxation step at x	i changes mostly c	i � while c
	
j for j �� i is much less a
ected�

Fig� � presents an example of the in�uence of one relaxation step at x	i on c	j �
showing a drastic decrease as j moves away from i�

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1
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2

2.5

Figure �� The change of c	j relative to h�c	j ��i����

� �� �



as a result of one relaxation step at x	�� with N � 	��

Table VIII shows the average relative change introduced to cki as a result of one

relaxation sweep on the �nest level �ensemble size isM � 	���� The fast weakening
of the e
ect with increasing k is apparent�

Similarly� a relaxation sweep on any levelm would introduce large relative changes
on that level� with the changes in ckj decreasing exponentially as function of k�m

if k � m� and with no change at all in ckj if k � m�

A corrolary of all these observations is the weak correlation between di
erent
levels� i�e�� fcki gi�Vk are weakly correlated to fcmi gi�Vm for k �� m� Moreover� in
order to sample e
ectively all scales� a multilevel algorithm should be introduced
�see Sec� 
����

Table VIII

measuring the change introduced to cki � relative to h�cki ��i����
as a result of one relaxation sweep on the �nest �k � �� level

N k � � k � 	 k � 
 k � �

� 	��
 ���	

� 	��� ���� ���


	� 	��� 	��	 ���� ��
�

Example ��

The 	D variable coupling

a�x� �

�
a� � 	�� if � � x � ���
	 if ��� � x � 	�

As in the constant�coupling case� cki represents the local amplitude of the con�gu�
ration on level k at site i� with weak correlation between local amplitudes on the
same level� While the typical local amplitude in the weakly coupled subdomain

is h�cki ��i��� � O�h
���
k �� the typical local amplitude in the strongly coupled sub�

domain is h�cki ��i��� � O�h
���
k �

p
a��� Therefore� using ����� the weakly coupled

subdomain should be sampled about a
���
� times as often as the strongly coupled

subdomain�

Table IX shows the relative change in cki as a result of one relaxation sweep on the

�nest level �ensemble size M � 	�� for N � � and �� andM � 
 �	�� for N � 	���

� �� �



Table IX

measuring the change introduced to cki � relative to h�cki ��i����
as a result of one relaxation sweep on the �nest level

N k � � k � 	 k � 
 k � �

� 	��	 	�
�

� 	��	 ���� ����

	� 	��� 	��� ���� ����

The general behavior exhibited in Table IX is very much the same as in the
constant�coe�cient case �Table VIII�� It might also be noted that the variable

sl��� cl��� turns out in this example to have the largest standard deviation� which

practically means that the site xl��� should be the most sampled site�

Example ��

The 	D variable coupling

a�x� �

�
	 if � � x � ��
�
a� � 	�� if ��
� � x � ����
	 if ���� � x � 	�

As in the cases mentioned above� the deviations at all scales have been found to
have weak correlations between them� The typical local amplitudes are h�cki ��i��� �

O�h
���
k � and h�cki ��i��� � O�h

���
k �

p
a�� in the weak�coupled domain and in the

strong�coupled domain� respectively�

In this case the Monte Carlo process su
ers severe slowness� The measurements�
presented in Table X �ensemble size is M � 
 �	���� con�rm this observation� The
variable sl�c

l
� has the largest standard deviation� but the change introduced to the

movement on that coarsest grid is only a small fraction �roughly a
����
� � of the

typical movement�

Table X

measuring the change introduced to cki relative to h�cki ��i����
as a result of one relaxation sweep on the �nest level

� �� �



N k � � k � 	 k � 
 k � �

� 	��� ��	�

� 	��
 	��
 ��	�

	� 	��
 ���� ���� ��		

Appendix B� Modi�cations to the anisotropic case

The general d�dimensional anisotropic Hamiltonian is de�ned in the continuum by

H�u� �

Z



� dX
i�j��

aij �x�
��u

�xi�xj

�
dx� � � � dxd

where the matrix faij�x�g is positive de�nite at every point x� Even when the
continuum problem is isotropic� the problem emerging at some coarser level of the
multigrid algorithm may well have severe anisotropies�

A measure of the anisotropy at a point x is given by the ratio

� �
max

P
ij aij �x��i�j

min
P

ij aij �x��i�j

where both the max and the min are taken over the sphere
Pd

i�� �
�
i � 	� Ex�

perience and theory developed in multigrid solvers for anisotropic PDE problems
����� indicate that the following modi�cations to the basic algorithm are necessary
under severe anisotropy �large ��� and are useful already at milder anisotropy
�� � �� say��

In case the anisotropy is consistently aligned with the discretization grid� exhibit�
ing uniformly strong couplings in some direction and uniformly weak in others�
for instance

a�� � a�� � � � � � akk �� ak
��k
� � ak
��k
� � � � � � add

and
a�ij �� aiiajj �

then semi�coarsening in the strong�coupling directions �x�� x�� � � � � xk� should be
employed� That is� the next coarser grid in the multigrid algorithm should have
twice the �ne�grid meshsize only in those �strong�coupling� directions� while in all
other directions the meshsize should remain as in the �ne grid�

In more general situations� an approach similar to �algebraic multigrid� �AMG�

can be adopted� In AMG solvers for PDE ���������� the next�coarse�level variables
are typically selected by the requirement that each current��ne�level variable is
�strongly connected� to at least some coarse�level variables in its neighborhood�

� �� �
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