
Completion Energies and ScaleEitan Sharon, Achi Brandt�, Ronen BasriyDept. of Applied MathThe Weizmann Inst. of ScienceRehovot, 76100, IsraelNovember 6, 1997AbstractThe detection of smooth curves in images and their completion over gaps are two impor-tant problems in perceptual grouping. In this study we examine the notion of completionenergy of curve elements, showing and exploiting its intrinsic dependence on length andwidth scales. We introduce a fast method for computing the most likely completion betweentwo elements, by developing novel analytic approximations and a fast numerical procedurefor computing the curve of least energy. We then use our newly developed energies to �ndthe most likely completions in images through a generalized summation of induction �elds.This is done through multiscale procedures, i.e., separate processing at di�erent scales withsome interscale interactions. Such procedures allow the summation of all induction �elds tobe done in a total of only O(N logN) operations, where N is the number of pixels in theimage. More important, such procedures yield a more realistic dependence of the induction�eld on the length and width scales: the �eld of a long element is very di�erent from thesum of the �elds of its composing short segments.

�Research supported in part by Israel Ministry of Science Grant 4135-1-93 and by the Gauss Minerva Centerfor Scienti�c Computation.yResearch supported in part by the Unites States-Israel Binational Science Foundation, Grant No. 94-00100.The vision group at the Weizmann Inst. is supported in part by the Israeli Ministry of Science, Grant No. 8504.Ronen Basri is an incumbent of Arye Dissentshik Career Development Chair at the Weizmann Institute.



1 IntroductionThe smooth completion of fragmented curve segments is a skill of the human visual systemthat has been demonstrated through many compelling examples. Due to this skill people oftenare able to perceive the boundaries of objects even in the lack of su�cient contrast or in thepresence of occlusions. A number of computational studies have addressed the problem ofcurve completion in an attempt to both provide a computational theory of the problem andas part of a process of extracting the smooth curves from images. These studies commonlyobtain two or more edge elements (also referred to as edgels) and �nd either the most likelycompletions that connect the elements or the smoothest curves traveling through them. Themethods proposed for this problem generally require massive computations, and their resultsstrongly depend on the energy function used to evaluate the curves in the image. In addition,these methods ignore the size of the edge elements, and consequently often give inconsistent(and undesired) results at di�erent scales (see, e.g., [1]). It is therefore important to developmethods which simplify the computation involved in these methods while providing resultscompetitive with the existing approaches. Below we present such a method that directly relatesto a number of recent studies of completion and curve salience [13, 28, 5, 10, 17, 30] (seealso [23, 33, 2, 9, 25, 34, 20, 18, 11, 12, 24]). Along with simplifying the computations proposedin these studies our method also takes into account the size of edge elements, allowing for aproper computation of completion and saliency at di�erent scales.A number of studies have addressed the problem of determining the smoothest completionbetween pairs of edge elements [27, 23, 2, 13, 28, 5]. These studies seek to de�ne a functionalthat, given two edge elements de�ned by their location and orientation in the image, selects thesmoothest curve that connects the two as its minimizing curve. The most common functional isbased on the notion of elastica, that is, minimizing the total squared curvature of the curve [13].Scale invariant variations of this functional were introduced in [28, 5]. While the de�nition ofscale-invariant elastica is intuitive, there exists no simple analytic expression to calculate itsshape or its energy, and existing numerical computations are orders-of-magnitude too expensive,as will be shown below.In the �rst part of this paper we revisit the problem of determining the smoothest completionbetween pairs of edges and introduce two new analytic approximations to the curve of leastenergy. These approximations are obtained by assuming that the deviation of the two inputedgels from the straight line connecting them is relatively small. This assumption is valid inmost of the examples used to demonstrate perceptual completions in humans and monkeys [14,16, 8, 15, 32]. We show that under this simplifying assumption the Hermite spline (see, e.g.,[19]) provides a good approximation to the curve of least energy and a very good approximationto the least energy itself. We further develop a second expression, which directly involves theangles formed by the edgels and the straight line connecting them. The second expression1



is shown to give extremely accurate approximations to the curve of least energy even whenthe input edgels deviate signi�cantly from the line connecting them. We then introduce anew, fast numerical method to compute the curve of least energy and show that our analyticapproximations are obtained at early stages of this numerical computation.Several recent studies view the problems of curve completion and salience as follows. GivenM edge elements, the space of all curves connecting pairs of elements is examined in an attemptto determine which of these completions is most likely using smoothness and length considera-tions. For this purpose [10, 30] de�ne an a�nity measure between two edge elements that growswith the likelihood of these elements being connected by a curve. By �xing one of the elementsand allowing the other element to vary over the entire image an induction �eld representing thea�nity values induced by the �xed element on the rest of the image is obtained. The system�nds the most likely completions for the M elements by applying a process that includes asummation of the induction �elds for all M elements.In the second part of this paper we use our newly developed completion energies to de�nean a�nity measure that encourages smoothness and penalizes for gap length. We then use theinduction �elds de�ned by this a�nity measure to solve the problem of �nding the most likelycompletions for M elements. Since in practice edge elements are never dimensionless, becausethey are usually obtained by applying �lters of a certain width w and length l to the image,we adjust our a�nity measure to take these parameters into account. We do so by relatingthe scale of these �lters to the range of curvature radii that they detect, and by determiningthe orientational resolution required for representing properly all signi�cantly di�erent edgeelements of every scale. Finally, we show that due to the smoothness and decay propertiesof our a�nity measure it can be implemented in all signi�cantly di�erent (l; w) scales, usingmultigrid methods, and run e�ciently in time complexity O(N logN), where N is the numberof pixels in the image.Several existing studies acknowledge the importance of scale in curve detection and per-ceptual grouping (e.g., [34, 6]). These studies apply �lters of di�erent size to the image todetermine the local properties of the measured curves (such as the local curvature), but theydo not incorporate scale in the global stage of connecting the edgels to form curves. In contrast,we introduce a method for completion and curve extraction that incorporates scale in all stagesof the computation. We apply �lters of di�erent lengths and widths to the image to detectedgels of di�erent size and curvature. We then use these edgels to complete over gaps accordingto the size of the edgels. The long and thin elements are allowed to reach farther within afairly speci�c orientation, while the short and fat elements are allowed to reach closer withina wide range of orientations. Moreover, none of the mentioned studies provide a comprehen-sive completion process in all di�erent scales in a total complexity which is practically linear.(O(N logN), where N is the number of pixels in the image.) It should be also pointed out thatsome of the psychophysical studies of curve detection and perceptual grouping indicate (even2



if indirectly) a dependence of curve completion on scale (see [21, 22]).The paper is divided as follows. In Section 2 we review the notion of elastica and its scaleinvariant variation. In Section 3 we introduce the two analytic approximations to the curve ofleast energy. Then, in Section 4 we develop a fast numerical method to compute the curve ofleast energy and compare it to our analytic approximations. Finally, in Section 5 we constructan a�nity measure taking into account the length and width of the edge �lters applied to theimage. We then discuss a multiscale (multigrid) method for fast summation of induction �elds.2 ElasticaConsider two edge elements e1; e2 positioned at P1; P2 2 R2 with directed orientations 	1and 	2 respectively measured from the right-hand side of the line passing through P1 and P2.Below we shall con�ne ourselves to the case that 	1;	2 2 (��2 ; �2 ). Denote by r = kP2 � P1k,we may conveniently assume that P1 = (0; 0) and P2 = (r; 0). This is illustrated in Fig. 1.Let C12 denote the set of all smooth curves through e1 and e2. Denote such a curve by itsorientation representation 	(s), where 0 � s � L is the arclength along the curve. That is,x(s) = R s0 cos(	(ŝ))dŝ and y(s) = R s0 sin(	(ŝ))dŝ. Also denote the curvature of the curve at sby �(s) = d	(s)=ds.
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Elastica was already introduced by Euler. It was �rst applied to completion by Ullman [27],and its properties were further investigated by Horn [13].One of the problems with the classical elastica model is that it changes its behavior witha uniform scaling of the image. In fact, according to this model if we increase r, the distancebetween the two input elements, the energy of the curve connecting them proportionatelydecreases. This can be easily seen by rescaling s, that is setting ŝ = �s where 0 < � 2 R, andletting 	̂(ŝ) = 	(ŝ=�), so that�el(	̂) = Z L0 (d	̂(�s)d(�s) )2ds = 1��el(	): (2)This is somewhat counter-intuitive since psychophysical and neurobiological evidence sug-gests that the a�nity between a pair of straight elements drops rapidly with the distancebetween them [15]. Also, the classical elastica does not yield circular arcs to complete cocircu-lar elements. To solve these problems Weiss [28, 5] proposed to modify the elastica model tomake it scale invariant. His functional is de�ned as�inv(	) def= L Z L0 �2(s)ds : (3)We believe that a proper adjustment of the completion energy to scale must take into accountnot only the length of the curve (or equivalently the distance between the input elements),but also the dimensions of the input edge elements. Both the elastica functional and its scaleinvariant version assume that the input elements have no dimensions. In practice, however, edgeelements are frequently obtained by convolving the image with �lters of some speci�ed widthand length. A proper adjustment of the completion energy as a result of scaling the distancebetween the elements should also consider whether a corresponding scaling in the width andlength of the elements has taken place. Below we �rst develop useful approximations to the scaleinvariant functional. (These approximations can also be used with slight modi�cations to theclassical elastica measure.) Later, in Section 5, we develop an a�nity measure between elementsthat also takes into account both the distance between the elements and their dimensions.3 Analytic simpli�cation of �invAlthough the de�nition of both the classical and the scale invariant elastica functionals isfairly intuitive, there is no simple closed-form expression that speci�es the energy or the curveshape obtained with these functionals. In this section we introduce two simple, closed-formapproximations to these functionals. Our approximations are valid when the sum of angles j�1j+j�2j is relatively small. This assumption represents the intuition that in most psychophysicaldemonstrations gap completion is perceived when the orientations of the curve portions to be4



completed are nearly collinear. With this assumption we may also restrict for now the range ofapplicable orientations to 	1;	2 2 (��2 ; �2 ).Since the curve of least energy is supposed to be very smooth, it is reasonable to assumethat within the chosen range of 	1;	2 the smoothest curve will not wind much. Consequently,it can be described as a function y = f(x), as in Fig. 1. Expressing the curvature in terms ofx and y we obtain that�inv(	) = L Z L0 �2(s)ds = L Z r0 (f 00)2(1 + (f 0)2) 52 dx : (4)For small j�1j+ j�2j we have that due to the smoothness of the minimizing curve, both f 0and f 00 are of the order of magnitude of max fjt1j; jt2jg, where ti = tan�i, i = 1; 2. Thereforewe get that L ' r, and that the variation of f 0 becomes unimportant for the comparison of�inv(	) over di�erent curves 	 2 C12 that are relevant for the minimization. Thus for smallj�1j+ j�2j, �inv(	) ' r Z r0 (f 00)2dx : (5)Hence Einv def= min	2C12 �inv(	) ' r min	2C12 Z r0 (f 00)2dx : (6)The minimizing curve is the appropriate cubic Hermite spline (see Appendix A)f(x) = x(x� r)� 1r2 (t1 � t2)x� t1r � ; (7)where t1 = tan�1 and t2 = tan�2, so thatEinv ' 4(t21 + t22 � t1t2) : (8)Evidently, this simple approximation to Einv is scale-independent. This leads us to de�nethe scale-invariant spline completion energy as:Espln(�1;�2) def= 4(t21 + t22 � t1t2) : (9)Although the spline energy provides a good approximation to the scale invariant elasticameasure for small values of j�1j + j�2j, the measure diverges for large values. An alternativeapproximation to Einv can be constructed by noticing that for such small values tan�1 ' �1and tan�2 ' �2. Thus, we may de�ne:Eang(�1;�2) def= 4(�21 +�22 ��1�2) : (10)5



We refer to this functional as the scale-invariant angular completion energy. This measuredoes not diverge for large values of j�1j + j�2j. In fact, when �1 = �2 = �=2 we obtainEang = Einv = �2. In Section 4 below we show that this angular energy is obtained inan early stage of the numeric computation of Einv, and that it provides extremely accurateapproximations to the scale invariant least energy functional even for relatively large values ofj�1j+j�2j. In fact, particularly good approximations are obtained for small j	1 +	2j, i.e., forthe range of nearly cocircular elements. Using the numeric computation we can also derive thesmoothest curve according to Eang :�	(s) = 3(	1 +	2)s2 � (4	1 + 2	2)s+	1 : (11)The angular completion energy can be generalized as follows:Egang(�1;�2) = a(�21 +�22) + b(�1 � �2)2 ; (12)where Eq. (10) is identical to Eq. (12) with a = b = 2. That is, the angular completion energyis made of an equal sum of two penalties. One is for the squared di�erence between �1 and �2,and the other is for the growth in each of them. This suggests a possible generalization of Eangto other weights a � 0 and b � 0.In de�ning the curve of least energy and its approximations we seek the smoothest comple-tion between two given edge elements. An interesting variation of this problem is the following.Given a single edge element e1 = (P1;�1), and given a location in the image P2, suppose wepass the smoothest curve from e1 through P2, what orientation would this curve take at P2?This question is relevant, for instance, in studies, such as [10, 30], which compare, given anedge element, several di�erent candidate elements for completion.Consider the angular completion energy (Eq. (10)). Notice �rst that when a scale invariantenergy is used the answer will not depend on the position of P2, but only on the orientation�1. According to Eang the minimal energy is obtained when the orientation of the element atP2 is given by �2 = 12�1. (A similar result is also approximately true for the spline, the scale-invariant elastica and the classical elastica energies.) For the generalized angular completionenergy (Eq. (12)) the preferred orientation is �2 = aa+b�1. The energy �eld induced by oneedge element, therefore, does not prefer circular completions (�1 = �2). A circular completioncan be preferred if we modify the angular energy to be:Ecirc(�1;�2) def= a�21 + b(�1 � �2)2 ;for which, if we �x �1, the lowest energy is obtained when �2 = �1. This energy, however, isnon-symmetric for �1 and �2.Finally, we note that the new approximations at small angles can also be used to approximatethe classical elastica energy, sinceEel def= min	2C12 �el(	) ' 1rEang(�1;�2) ' 1rEspln(�1;�2) : (13)6



4 Computation of EinvWe now introduce a fast numeric method to compute Einv. We use the scale-invariance propertyof �inv (as in [5]) in order to reformulate the minimization problem. That is, every curve 	corresponds to a rescaled version of it, e	, which satis�es L = 1 and �inv(e	) = �inv(	). Wecan see this by setting (scaling) ~s = s=L and de�ning e	(~s) def= 	(L~s). Then, the minimizationproblem takes the form: mine	 (Z 10 (e	0(~s))2d~s) s:t: (14)Z 10 sin(e	(~s))d~s = 0; e	(0) = 	1; e	(1) = 	2 :Denoting the extremal curve found by e	min(~s), set L = r=(R 10 cos(e	min(~s))d~s), so thatR L0 cos(e	min(s=L))ds = r. Thus, 	min(s) def= e	min(s=L) will be the \minimal curve". In fact,to calculate Einv it is not necessary to calculate L, since Einv = �inv(e	min). Now, Eq. (14) canbe transformed by the Euler-Lagrange equations (see, e.g., [7]) into an ODE problem. That is,a necessary condition for e	(~s) to be an extremal curve is that it should satisfy for some �:2e	00 = � cos e	 s:t: (15)Z 10 sin(e	(~s))d~s = 0; e	(0) = 	1; e	(1) = 	2 :Considering the very nature of the original minimization problem, and also by repeatedlydi�erentiating both sides of the ODE equation, it can be shown that its solution must be verysmooth. Hence, we can well approximate the solution by a polynomial of the forme	n(s) = (1� s)	1 + s	2 + s(1� s) nXk=0 aksk ; (16)where n is small. (By comparison, the discretization of the same problem presented in [5] is farless e�cient, since it does not exploit the in�nite smoothness of the solution on the full interval(0,1). As a result the accuracy in [5] is only second order, while here it is \1-order", i.e., theerror decreases exponentially in the number of discrete variables n+2 ( i.e., �; a0; :::; an fromEq. (15) and (16) ).) Fixing n, as well as two other integers �n and p, we will build the followingsystem of n+ 2 equations for the n+ 2 unknowns a0; a1; :::; an; and �e	00n( i+ 1n+ 2) + �n cos e	n( i+ 1n+ 2) = 0 ; (0 � i � n)collocating the ODE, and �nXj=0wj sin e	n( j�n) = 0 ;7



where wj (0 � j � �n) are the weights of a p-order numerical integration. Generally, we increasen gradually and increase �n and p as functions of n in such a way that the discretization errorwill not be governed by the discretization error of the integration. The nonlinear system of n+2equations is solved by Newton iterations (also called Newton-Raphson; see, e.g. [19].) We startthe Newton iterations from a solution previously obtained for a system with a lower n. Actually,only one Newton iteration is needed for each value of n if n is not incremented too fast. In thisway convergence is extremely fast. At each step, in just several dozen computer operations,the error in solving the di�erential equation can be squared. In fact, due to the smoothnessof the solution for the ODE, already for the simple (n = 0; �n = 2)-system and the Simpsonintegration rule (p = 3), a very good approximation to the accurate solution e	(s); � and alsoto Einv = R 10 (e	0(~s))2d~s is obtained, as can be seen in Table 1 below. The good approximationsobtained already for small values of (n,�n) suggest that Einv can be well approximated by simpleanalytic expressions, as indeed we see next.Table 1 compares the result of applying the numerical computation of Einv to several simpleapproximations, each of which can be used as the scale-invariant completion energy. Theseapproximations are:� The \(n = 0; �n = 2)-system" using the Simpson (p = 3) integration method is solvednumerically, yielding the \Simpson method" energy. Note that we can also well approx-imate the solution of this system by the analytic expression �	(s) presented in Eq. (11),which arises from approximating the system to its �rst order assuming small j	1j+ j	2j(see Appendix B). The \Simpson method" energy can be approximated analytically by�inv( �	(s)) = 4(�21 +�22 � �1�2) ;and thus is expected to yield results similar to Eang(�1;�2).� The \(n = 0; �n = 2)-system" using the Trapezoidal (p = 2) integration method canbe solved analytically for all values of �1 and �2 in (��2 ; �2 ), yielding the \Trapezoidalmethod" energy E(1)inv = (�21 +�22) + 43(�1 � �2)2 :This energy is of the type of Eq. (12)� The angular completion energy Eang(�1;�2) derived in Sec. 3. This method is referredto as the \Angular method."� The spline completion energy Espln(�1;�2) derived in Sec. 3. This method is referred toas the \Spline method."The results in Table 1 demonstrate that in the range of angles in which perceptual comple-tions are anticipated there is hardly any di�erence between the four di�erent approximations8



and the accurate solution of Einv. An even closer agreement is obtained when derivatives ofthese energies are compared (see Table 2.)Fig. 2 illustrates some of the completions obtained using Einv and the two analytic approx-imations Eang and Espln. It can be seen that the di�erences between the three curves is barelynoticeable, except in large angles where Espln diverges. Notice especially the close agreementbetween the curve obtained with the angular energy (Eq. (11)) and that obtained with thescale-invariant elastica measure even in large angles and when the angles deviate signi�cantlyfrom cocircularity.Note that although the spline curve does not approximate the scale invariant elastica curvefor large angles j�1j and j�2j it still produces a reasonable completion for the elements. Infact, when the two elements deviate from cocircularity the elastica accumulates high curvatureat one of its ends, whereas the spline curve continues to roughly follow the tangent to the twoelements at both ends (see, e.g, Fig. 2(c) and (d)). This behavior is desirable especially whenthe elements represent long curve segments (see Section 5.2).5 Completion �eld summationUntil now we have considered the problem of �nding the smoothest completion between pairsof edge elements. A natural generalization of this problem is, given an image from whichM edge elements are extracted, �nd the most likely completions connecting pairs of elementsin the image and rank them according to their likelihoods. This problem has recently beeninvestigated in [10, 30]. In these studies a�nity measures relating pairs of elements werede�ned. The measures encourage proximity and smoothness of completion. Using the a�nitymeasures the a�nities induced by an element over all other elements in the image (referred toas the induction �eld of the element) are derived. The likelihoods of all possible completions arethen computed simultaneously by a process which includes summation of the induction �eldsfor all M elements.An important issue that was overlooked in previous approaches, however, is the issue ofsize of the edge elements. Most studies of curve completion assume that the edge elementsare dimensionless. In practice, however, edge elements are usually obtained by convolving theimage with �lters of certain width and length. A proper handling of scale must take theseparameters into account. Thus, for example, one may expect that scaling the distance betweentwo elements would not result in a change in the a�nity of the two elements if the elementsthemselves are scaled by the same proportion. Below we �rst present the general type of non-scaled induction underlying previous works. We then modify that induction to properly accountfor the width and length of the edge elements.Finally, the process of summing the induction �elds may be computationally intensive.Nevertheless, in the third part of this section we show that the summation kernel obtained with9



Accur. Simps. Trapz. Angul. Splin.�1 �2 meth. meth. meth. meth. meth.0 0 0 0 0 0 0.01 0 .00039 .00039 .00023 .00040 .00040.01 .00040 .00040 .00040 .00040 .00040.02 .0011 .0011 .0010 .0012 .0012.03 .0027 .0027 .0021 .0028 .0028.1 0 .0399 .0399 .0233 .0400 .0403.1 .0399 .0400 .0400 .0400 .0403.2 .1199 .1198 .1033 .1200 .1233.3 .2793 .2792 .2133 .2800 .2989.3 0 .3590 .3588 .2100 .3600 .3828.3 .3599 .3600 .3600 .3600 .3828.6 1.0725 1.0718 .9300 1.0800 1.4084.9 2.4660 2.4600 1.9200 2.5200 5.1755.5 0 .9928 .9909 .5833 1.0000 1.1938.5 1.0000 1.0000 1.0000 1.0000 1.19381.0 2.9425 2.9379 2.5833 3.0000 7.49261.5 6.5819 6.5570 5.3333 7.0000 765.771 0 3.8851 3.8597 2.3333 4.0000 9.70211 3.9999 4.0000 4.0000 4.0000 9.7021Table 1: Comparison table for the various Einv(�1;�2) approximations. �1 and �2 are givenin radians.
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Accur. Simps. Trapz. Angul. Splin.�1 �2 meth. meth. meth. meth. meth..01 0 266.66 266.66 200.14 200 199.98.01 200 200 200 200 199.98.02 218.18 218.18 206.70 200 66.648.03 207.40 207.40 203.19 200 114.35.1 0 20.037 20.035 20.030 20 20.069.1 20.050 20 20 20 20.069.2 19.985 19.999 20.006 20 7.1266.3 19.955 19.949 20.003 20 12.741.3 0 6.6507 6.6455 6.6667 6.6667 7.0836.3 6.6685 6.6667 6.6667 6.6667 7.0836.6 6.6209 6.6163 6.6667 6.6667 3.9182.9 6.5207 6.5084 6.6667 6.6667 9.8004.5 0 3.9713 3.9643 4.0002 4.0000 4.7544.5 4.0000 4.0000 4.0000 4.0000 4.75441 3.9216 3.9180 4.0000 4.0000 5.99461.5 3.7444 3.7479 4.0000 4.0000 84.7181 0 1.9406 1.9300 2.0000 2.0000 4.39911 2.0001 2.0000 2.0000 2.0000 4.3991Table 2: Comparison table for the values of the ratios dE(�1;�2)d�1 1E(�1;�2) , where �2 = k�1 fork = 0; 1; 2; 3, and E stands for the various Einv approximations. �1 and �2 are given in radians.
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(d)Figure 2: Completion curves: elastica in solid line, �	(s) (Eq. (11)) in dotted line, and the cubicHermite spline (Eq. (7)) in dashed line. (a) �1 = 30�;�2 = 15�, (b) �1 = 30�;�2 = �15�, (c)�1 = 80�;�2 = 60�, (d) �1 = 80�;�2 = 20� .our method is very smooth. Thus, the summation of our induction �elds can be speeded upconsiderably using a multigrid algorithm. This result also applies to the summation kernelsin [30, 26, 10], and so an e�cient implementation of these methods can be obtained with asimilar multigrid algorithm.5.1 Non-scaled inductionIn [17, 30] a model for computing the likelihoods of curve completions, referred to as StochasticCompletion Fields, was proposed. According to this model, the edge elements in the image emitparticles which follow the trajectories of a Brownian motion. It was shown that the most likelypath that a particle may take between a source element and a sink element is the curve of leastenergy according to the Elastica energy function1. To compute the stochastic completion �eldsa process of summing the a�nity measures representing the source and sink �elds was used. In1Actually, the path minimizes the energy functional R L0 �2(s)ds+ �L for some predetermined constant �.12



Appendix C we show, by further analyzing the results in [26], that the a�nity measure usedfor the induction in [30, 26] is of the general type:A(e1; e2) def= e�r=r0e�Eang=(r�0) ;where r0 and �0 are strictly positive a-priori set parameters. These parameters need to beadjusted properly according to the scale involved (see Sec. 5.2). Note that for small values of(j�1j,j�2j): Eang=r ' Eel. Hence,A(e1; e2) ' e�r=r0e�Eel=�0 :Another method which uses summation of induction �elds to compute the salience of curveswas presented in [10]. In this method the a�nity between two edge elements which are cocircularhas the form: e�
re���, where 
 and � are strictly positive constants, � is the curvature ofthe circle connecting e1 and e2, and r is the distance between e1 and e2. A reasonable andstraightforward de�nition in that spirit iseA(e1; e2) def= e�
re��Esplnwhere Espln serves as an approximation for Einv according to Eq. (8). Fig. 3 shows an exampleof computing the \stochastic completion �eld," suggested by Williams and Jacobs in [30], whilereplacing their a�nity measure with the simple expression eA(e1; e2). It can be veri�ed bycomparing the �elds obtained with our a�nity measure with the �elds presented in [30] thatthe results are very similar although a much simpler a�nity measure was employed.
(a) (b)

Figure 3: Stochastic completion �elds (128 � 128 pixels, 36 orientations) with the inductione�2re�20Espln . (a) �1 = 30� and �2 = 30�, (b) �1 = 30� and �2 = �30�. The results closelyresemble those obtained in [30].
13



5.2 Induction and scaleGiven an image, an edge element is produced by selecting a �lter of a certain length l andwidth w (e.g., rectangular �lters) and convolving the �lter with the image at a certain positionand orientation. The result of this convolution is a scalar value, referred to as the responseof the �lter. An edge �lter may, for example, measure the contrast along its primary axis, inwhich case its response represents the \edgeness level", or the likelihood of the relevant subareaof the image to contain an edge of (l; w) scale. Similarly, a �lter may indicate the existenceof �ber-like shapes in the image, in which case its response represents the \�berness level" ofthe relevant subarea of the image. Below we use the term \straight responses" to refer to theresponses obtained by convolving the image with either an edge or a �ber �lter.Consider now the edge elements obtained by convolving the image with a �lter of some �xedlength l and width w. Every edge element now is positioned at a certain pixel P and is orientedin two opposite directed orientations 	 and 	 + �, where 	 is measured from the right-handside of the horizontal axis (see Fig. 4).
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Figure 4: The relation between the two straight responses (x1; y1;	1) and (x2; y2;	2). Thisrelation is governed by �1,�2, and r.The number of edge elements required to faithfully represent the image at this scale de-pends on l and w. Thus, long and thin elements require �ner resolution in orientation thansquare elements. In fact, the orientational resolution required to sample signi�cantly di�erentorientations increases linearly with l=w (see [4]). Similarly, elements of larger size require lessspatial resolution than elements of smaller size. Brandt and Dym ([4]) use these observations inorder to introduce a very e�cient computation (O(N logN), where N is the number of pixelsin the image) of all signi�cantly di�erent edge elements.Given a particular scale determined by the length l and width w of edge elements, wewould like to compute a completion �eld for this scale. Note that only curves within a relevantrange of curvature radii can arouse signi�cant responses for our l � w elements. Denote the14



smallest curvature radius that will arouse a still signi�cant response by � = �(l; w). (Largercurvature radii will arouse signi�cant responses also in larger l=w scales, implying there for afarther-reaching and more orientation-speci�c continuation.)By Fig. 5 we see that l2 = � sin� � ��and w = �� � cos� � ��22 :Consequently, we have � l2��2 � �2 � 2w� ;implying that � � l28w :Next, consider a pair of straight responses. Assuming these elements are roughly cocircular,then, using the relations de�ned in Fig. 6, the di�erential relation	0(s) = 1�(s)can be approximated by 	1 �	2r � 2�1 + �2 ;so that 
 � r� :Hence, for completion at a particular scale (l; w), it is reasonable to de�ne for every pair ofpoints P1 and P2 a scale for the turning angle 
 given by r=�(l; w). That is, in the scale (l,w)we de�ne the completion energy between the pair of straight responses so as to depend on thescaled turning angle 
�=r. Since 
 = �1 +�2, it is straightforward to show that0:5
 � qEang(�1;�2) � 
 :A reasonable de�nition for the scaled angular energy, therefore, is a monotonically decreasingfunction of �rq�21 +�22 ��1�2 :Obviously, in any given scale of straight responses, (l; w), for every �1 and �2, the inductionof P1 upon P2 should decrease with an increase of r=�. Hence, we de�ne the �eld induced by15
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 that a moving particle takes in its way between two straight responses,characterized each by a planar location and an orientation.an element e1 of length l and width w at location P1 and directed orientation 	1 on a similarelement e2 at (P2;	2) by G(l;w)(e1; e2) ~f(u1) ; (17)where u1 denotes the strength of response at e1, ~f(u1) is some appropriate function of thisresponse, and G(l;w)(e1; e2) = Fd �r��Ft ��rq�21 +�22 ��1�2� : (18)Fd and Ft (the distance and turning attenuation functions, respectively) are smoothly de-creasing dimensionless functions that should be determined by further considerations and expe-rience. Thus, our summation kernel is a product of the orientational and the spatial componentsinvolved in completing a curve between e1 and e2. As we shall see below, this de�nition hasmany computational advantages. 16



Let fuig denote the set of straight responses for a given scale (l; w), where each ui isassociated with two directed edges ei = (Pi;	i) and �ei = (Pi;	i + �). The total �eld inducedat any element ej = (Pj ;	j) by all elements fei; �eig is expressed byvj def= Xi �G(l;w) [ei; ej ] +G(l;w) [�ei; ej ]� f(ui) : (19)The total �eld induced at �ej by fei; �eig is given by�vj def= Xi �G(l;w) [ei; �ej ] +G(l;w) [�ei; �ej ]� f(ui) : (20)Since in general the responses obtained by convolving the image with edge �lters are bi-directional we may want to combine these two �elds into one. This can be done in various ways.The simplest way is to take the sum fvj + �vjg as the completion �eld. Another possibility, inthe spirit of [30], is to take the product fvj�vjg as the completion �eld.Note that the �eld of a long straight response should be very di�erent (farther-reachingand more orientation-speci�c) than the sum of the �elds of shorter elements composing it,and should strongly depend on its width (see Fig. 7). This suggests that for a comprehensivecompletion process one must practice a multiscale process, performing a separate completionwithin each scale. The scaled induction �eld (17)-(18), avoids a fundamental di�culty of non-scaled �elds like [10, 30, 26]. The latter exhibit so weak a completion for far elements, that itwould be completely masked out by local noise and foreign local features.The fact that �lters of di�erent lengths respond di�erently depending on the curvatureradius of the measured curve was noticed also by Zucker et al. [34], who used this fact to obtainan estimate of the local curvature at every point. In contrast to this work we do not estimate thecurvatures locally, but only determine locally the range of curvatures that is compatible withthe size of the �lters. We then allow the global process of summation to detect the smoothestcurves whose curvatures are within this range. The disadvantage of estimating the curvatureslocally is that gaps may severely a�ect the curvature estimation. For example, the response of�lters of di�erent lengths when applied to a segment of a dashed, straight line will be identicalto their response if the segment was part of a curved contour.5.3 Fast multigrid summation of induction-�eldsLet n = n(l; w) be the number of sites (P ), and m = m(l; w) the number of orientations (	)at each site, that are required in order to describe all the l � w straight responses that aresigni�cantly di�erent from each other. It can be shown (see [4]) that if l and w are measured inpixel units then, for any N-pixel picture, n = O(N=(lw)) and m = O(l=w), so the total numberof l � w elements is O(N=w2). Hence, for any geometric sequence of scales (e.g., l=1,2,4,...,and w=1,3,9,...) the total number of straight elements is O(N logN). It has been shown (in17
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Figure 7: Induction �elds (200 � 200 pixels) in di�erent scales using Fd(�) = e��1��1 , andFt(�) = e��2��2 , where �1 = 0:5, �1=0.5, �2 = 128, and �2 = 1:5. (a) The induction �eld ofone long element: l = 9, w = 1=2, 25 directed orientations. (b) The sum of induction �eldsof the three shorter elements composing this long element, each consist of: l = 3, w = 1=2, 12directed orientations.[4]) that all the responses at all these elements can be calculated in only O(N logN) computeroperations, using a multiscale algorithm that constructs longer-element responses from shorterones.At any given scale l�w, it seems that the summations (Eqs. (19) and (20)), summing overi = 1; 2; :::; nm for each value of j = 1; 2; :::; nm, would require a total of O(n2m2) operations(even though some of them can be performed in parallel, as in [31]). However, using thesmoothness properties of the particular kernel (18), the summation can be reorganized in amultiscale algorithm that totals only O(nm) operations (and the number of unparallelizablesteps grows only logarithmically in nm.) To see this, note �rst that the functions in (18) wouldusually take on the typical formFd(�) = e��1��1 and Ft(�) = e��2��2 (21)(as is explained in Sec. 5.1). For the purpose of the multiscale algorithm we call any functionF smooth on scale s (in some region) iff it can (throughout that region) be interpolated, toany desired accuracy, from its values on a grid with meshsize s (the accuracy being increasedby increasing the interpolation order). We call F local on scale s if F is negligibly small outsidea disk of radius O(s). One can then easily see that, as function of e1 (similarly e2), Fd in (18)is everywhere smooth on any scale s for which s < O(�), and local on all other scales. Also (Cf.Appendix D), Ft is smooth on any scale s, in the region r > O(s). Consequently, we get thatG = FdFt is smooth on any scale s for which s < O(�), in the region r > O(s), and local on allother scales.Due to these smoothness properties of G = G(ei; ej) = G(xi; yi;	i;xj ; yj ;	j), the totalcontribution to vj (and �vj) of all elements far (on scale s) from Pj is a smooth (on scale18
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3777775Figure 8: The �lters used to detect vertical �bers of lengths 3 (left) and 5 (right) and width 1. Fibers ofother directions (total of 8 and 16 for each length scale respectively) are obtained in a similar way with properinterpolations to account for discretization misalignments.s) function of (xj ; yj;	j), hence it need not be computed separately for each j, but can beinterpolated (q-order interpolation, with as small an error as desired by using su�ciently highq) from its values on a grid with meshsize s. For this and similar reasons, multiscale algorithms,which split the summations into various scales of farness (see details in [3]) can perform all thesummations in merely O(nm) operations. Indeed, for any scale for which s < O(�), we can usethe smoothness properties of G in order to aggregate the summation onto a coarser grid (forwhich s = O(�)) in a cost of only O(nm) operations. On such a grid we can already use thelocalness of Fd(�) in order to get a cost of summation of O(nm) operations.However, the use of Fd(�) which decays this fast (see Eq. 21) is well justi�ed only in thecase of employing a multiscale completion process. The reason for this is that a single scalecompletion process (as in [30, 10]) must have the following important property: the totalin
uence of several elements of this scale that compose a longer element of a certain length ~l,should extend to a distance which is at least of the order of magnitude of ~l. This total in
uenceis well approximated by R r+~lr Fd(�)d� (since when considering distant smooth continuationsFt ' 1,) by which it can be readily shown that in the case of a single scale completion processFd should not decay any faster than Fd(�) = 1=�. Nevertheless, for such choices of the functions,the kernel G still has the property of \asymptotic smoothness" (see Appendix D). By this wemean that any q-order derivative of G with respect to any of its six arguments decays fast withrij = �(xi � xj)2 + (yi � yj)2� 12 , and the higher q is, the faster is the decay. Also, for any �xedrij (even the smallest, i.e., rij = O(l),) G is a very smooth function of 	i and of 	j. Thus,even when practicing such a single scale completion process, employing, e.g., Fd(�) = 1=�, thesummation can still be reorganized in a multigrid algorithm that totals only O(nm) operations.Figures 9-11 demonstrate the completion �eld fvj�vjg as de�ned by Eq. (19)-(20), using Fdand Ft as de�ned by Eq. (21) with the free parameters �1 = 1, �1 = 1:5, �2 = 1, and �2 = 1:5.To obtain these completions we �rst detected �bers by using di�erences of straight intensityintegrals of length 3 and 5 (width 1) in all signi�cantly di�erent directions (the actual �ltersused are shown in Figure 8). Finally, we produced a map of contour completion that combinesthe two scales. 19



The Original Image

(a)
Straight Responses: l=3 Completion Field: l=3

(b) (c)
Straight Responses: l=5 Completion Field: l=5

(d) (e)
Linear Combination: l=3,5 Canny edge detection

(f) (g)Figure 9: (a) The original image. (b)-(e) Completion �elds in length scales 3 and 5 (width1). (f) This picture shows the application of a skeleton detector to a linear combination of thetwo completion �elds (after thresholding). (g) Canny edge detection with SD=2 and T=0.2.Images are of size 200 x 200 pixels. 20



The Original Image

(a)
Straight Responses: l=3 Completion Field: l=3

(b) (c)
Straight Responses: l=5 Completion Field: l=5

(d) (e)
Linear Combination: l=3,5 Canny edge detection

(f) (g)Figure 10: (a) The original image. (b)-(e) Completion �elds in length scales 3 and 5 (width1). (f) This picture shows the application of a skeleton detector to a linear combination of thetwo completion �elds (after thresholding). (g) Canny edge detection with SD=2 and T=0.2.Images are of size 250 x 250 pixels. 21



The Original Image

(a)
Straight Responses: l=3 Completion Field: l=3

(b) (c)
Straight Responses: l=5 Completion Field: l=5

(d) (e)
Linear Combination: l=3,5 Canny edge detection

(f) (g)Figure 11: (a) The original image. (b)-(e) Completion �elds in length scales 3 and 5 (width1). (f) This picture shows the application of a skeleton detector to a linear combination of thetwo completion �elds (after thresholding). (g) Canny edge detection with SD=2 and T=0.2.Images are of size 144 x 144 pixels. 22



6 ConclusionImportant problems in perceptual grouping are the detection of smooth curves in images andtheir completion over gaps. In this paper we have simpli�ed the computation involved in theprocess of completion, exploiting the smoothness of the solution to the problem, and havede�ned a�nity measures for completion that take into a proper account the scale of edgeelements. In particular, we have introduced new, closed-form approximations for the elasticaenergy functional and presented a fast numeric method to compute the curve of least energy.In this method the error decreases exponentially with the number of discrete elements. Wethen have used our approximations to de�ne an a�nity measure which takes into account thewidth and length of the edge elements by considering the range of curvatures that can bedetected with corresponding �lters of the same scale. Finally, we have shown that solutions tothe problem of �nding the most likely completions in an image can be implemented using amultigrid algorithm in time that is linear in the number of discrete edge elements in the image.This last observation applies also to recent methods for completion and salience [10, 30]. Inthe future we intend to use the multigrid algorithm to simultaneously detect completions atdi�erent scales in order to combine these completions into a single saliency map.AppendixA Minimization over C12Below we compute the minimum of Eq. (6). It will be shown, using calculus of variations (see,e.g., [7]), that : ming2C12 Z r0 (g00)2dx = 4r (t21 + t22 � t1t2) ;where ti = tan�i ; i = 1; 2 :� Proof :Assume �rst that there exists a smooth enough function f for which the minimum isattained. Consider functions h for which 9g; ~g 2 C12 such that h = g � ~g (i.e., \test"functions, satisfying h(0) = h(r) = h0(0) = h0(r) = 0.) A necessary condition for f beingan extremal function in C12 over which a functional J assumes its minimum is that forany such test function h ddt(J(f + th)) = 0 at t = 0 ;where t is a real parameter.Since ddt(J(f + th) =23



ddt(Z r0 (f 00 + th00)2dx) =ddt(Z r0 ((f 00)2 + 2tf 00h00 + t2(h00)2)dx) =2 Z r0 f 00h00dx+ 2t Z r0 (h00)2dxwe get from the above necessary condition that R r0 f 00h00dx = 0 :Integrating the last equation twice by parts, and noting that both h and h0 vanish on theboundaries, we get that :0 = Z r0 f 00h00dx = � Z r0 h0f (3)dx = Z r0 hf (4)dx : (22)Hence, by the arbitrariness of h, we immediately get that :f (4)(x) � 0:Therefore, by considering f(0)=f(r)=0 we get that the extremal function is nothing elsethan the cubic Hermite spline f(x) = x(x� r)(ax+ b) ;and by considering also f 0(0) = t1 and f 0(r) = �t2 we solve for a and b and get thatf(x) = x(x� r)( 1r2 (t1 � t2)x� t1r ) :Consequently, Z r0 (f 00(x))2dx = 4r (t21 + t22 � t1t2) :Now, we will show that the above derived f is indeed the global minimum of the functionalJ , over C12. Take any g 2 C12, and de�ne h def= g� f . Evidently, this h quali�es as a testfunction (h(0) = h(r) = h0(0) = h0(r) = 0). It was already shown above thatddt(J(f + th) = Z r0 f 00h00dx+ t Z r0 2(h00)2dx :Note that since f (4)(x) � 0 we have by Eq. 22 thatZ r0 f 00h00 = 0 ;24



and therefore ddt(J(f + th) = t Z r0 2(h00)2dx :Assuming that R r0 (h00)2dx > 0 (that is,R r0 (g00 � f 00)2dx > 0 ) we get that J(f + th), asa scalar function of the real parameter t, assume its unique minimum at t = 0, and inparticular we have that J(f) < J(g) :If on the other hand R r0 (g00 � f 00)2dx = 0 then according to the boundary conditions wehave that g(x) � f(x).2B Analytic approximation of the \Simpson method" solutionThe \(n = 0; �n = 2)-system" (see Section 4) using the Simpson integration rule (p = 3) yieldsfor the unknowns � and e	0 the following two equations�2a0 + � cos e	0(12) = 0sin e	0(0) + 4 sin e	0(12) + sin e	0(1) = 0 ;which by the form of e	0 essentially means that�2a0 + � cos �	1 +	22 + a04 � = 0sin	1 + 4 sin �	1 +	22 + a04 �+ sin	2 = 0 :Assuming small j	1 +	2j (i.e. �1 ' �2), approximating sin(�) using its Taylor expansionaround 	1 to a �rst order we get the relationsin	1 + sin	2 ' sin (	1 +	2) cos	1 ;which when introduced into the following representation of the last equation becomes�	1 +	22 + a04 � = arcsin ��sin	1 + sin	24 � ;resulting in a0 ' �(2 + cos	1)(	1 +	2) :This implies that e	0 � ((2 + cos	1)(	1 +	2)) s2� ((3 + cos	1)	1 + (1 + cos	1)	2) s+	1 :25



Assuming now that j	1j+ j	2j is small thena0 ' �3(	1 +	2) :Hence, e	0 is well approximated by�	(s) def= 3(	1 +	2)s2 � (4	1 + 2	2)s+	1 ;for which it is straightforward to show that�inv( �	(s)) = 4(	21 +	22 +	1	2) :C Analysis of the a�nity measure used in [30, 26]In [17, 30] two induction �elds were de�ned, the source �eld and the sink �eld. The source �eldrepresents the probability of a particle to travel from a source element to all other elements inthe image, and the sink �eld represents the probability of a particle to travel from any elementin the image to a sink element. These �elds are induced by the a�nity measure based on thequantity P (2j1) which represents the probability of the particle to start at an element e1 attime t1 and arrive at an element e2 at time t2. In fact, t21 = t2 � t1, and the a�nity measurebetween e1 and e2 is of the form�A(e1; e2) = Z 1t1 e�t21=�21P (2j1)dt2 ;where the strictly positive parameter �21 is accounted for the decay of particles. Each elementof the �eld of likely completions is obtained by the product of the sum of all source �elds atthat element with the sum of all sink �elds at that element.Thornber and Williams [26] derived an explicit expression for the summation kernel, P (2j1)� log(P (2j1)) = 2log t221�Tp3 !+ 6T t21 (Qx +Qy) (23)where Qx = Qx(x2 � x1; _x1; _x2; t21), Qy = Qy(y2 � y1; _y1; _y2; t21), and the strictly positiveparameter T are all de�ned in [26]. We assume that k( _x1; _y1)k = k( _x2; _y2)k = 1, so that_x1 = cos	1; _y1 = sin	1; _x2 = cos	2, and _y2 = sin	2 (see Fig. 4).Note that when j�1j+ j�2j is su�ciently small, having the particle traveling in constant unitspeed implies that P (2j1) assumes its signi�cant value at t21 ' r, so that the a�nity measuretypically behaves as the value of its integrand at t21 = r. For t21 = r, we can approximateQx +Qy ' 53 � cos�1 � cos�2 + 13 cos (�1 +�2) ;26



from which by approximating cos(�) using its Taylor expansion to a second order we getQx +Qy ' 13Eang(�1;�2) :Substituting this in Eq. (23) and rearranging, we get for t21 = r that :P (2j1) ' ( p3r2�T )2e� 6TrEang (�1;�2) : (24)Under the above assumptions we can evaluate the a�nity measure �A(e1; e2) by the value ofits integrand at t21 = r, that is�A(e1; e2) ' e�r=�21( p3r2�T )2e� 2TrEang (�1;�2) ; (25)which practically implies that�A(e1; e2) ' A(e1; e2) = e�r=r0e�Eang(�1;�2)=(r�0) ; (26)for some strictly positive a-priori set parameters r0 and �0.Note that due to our analysis in Section. 3, when we consider the �eld induced by an elemente1 = (P1;	1), according to the above A(e1; e2), the strongest e�ect at a position P2 is in theorientation �2 = 12�1. We may change this preference by using the generalized form of Eang(Eq. 12) and set the coe�cients a and b to �t the desired preference. Also, note that when �1and �2 are held �xed and r is increased, we see that e�Eang=(r�0) increases within A(e1; e2).This property of the induction also arises from the property of the classical elastica measure �el(as is explained in Sec. 2), and has the following intuitive explanation: for any �xed �1 and �2,a particle changing its orientation from �1 to �2 turns less per unit length when r increases.Finally, we would like to note that although the stochastic completion �elds do not explicitlyshow a preference for scale, such a preference nevertheless arises. By taking the derivative ofA(e1; e2) with respect to r we can see that when we hold �1 and �2 �xed the strongest a�nitybetween two elements is obtained whenr = qEangr r0�0 ' 
r r0�0(see Sec. 5.2 for 
).D Asymptotic smoothness of the kernel GTo show the \asymptotic smoothness" of the kernel G = G(ei; ej) = G(xi; yi;	i; xj ; yj;	j)note �rst that due to its symmetry (G(ei; ej) = G(ej; ei)) we can consider only derivatives withrespect to xj, yj, 	j, and due to its translation and rotation invariance we can �x (xi; yi;	i)conveniently to be (0; 0; 0). 27



That is, for the current discussion we considerG(x; y;	) = G(0; 0; 0; x; y;	)= Fd (r=�)Ft ��=rq�21 +�22 � �1�2� ;where r = px2 + y2, �1 = � = arctan y=x, �2 = 	2 � �,Fd(�) = 1=�; Ft(�) = e��2��2 ; �2; �2 2 <+ :It can be shown that any q-order partial derivative of G(x; y;	) decays fast with r. Foremploying the multigrid fast summation algorithm it is however enough to consider only pure(not mixed) partial derivatives.Let us focus on @qxG as representing also @qyG. Having G = FdFt, we have for any naturalnumber q that @qxG = qXk=0 ck �@kxFd��@q�kx Ft� ;and so, we can focus on @qxFt and @qxFd separately. Let us �rst concentrate on @qxFt. Considering� as de�ned above (see also Fig. 4) we have that Ft(x; y;	) = Ft(r; �;	), and therefore@xFt = (@�Ft) @x� + (@rFt) @xr :Furthermore, it is inductively evident that for any order q we have the same type of expres-sion for @qxFt as for q = 1 above, for instance, for q = 2@2xFt = (@x�Ft) @x� + (@�Ft) @2x� +(@xrFt) @xr + (@rFt) @2xr= �@2�Ft� (@x�)2 + (@�Ft) @2x� +�@2rFt� (@xr)2 + (@rFt) @2xr +2 (@r�Ft) (@xr) (@x�) : (27)Considering the fast decay of @qxFt with r, q being any natural number, note �rst that@xr = x=r ;@2xr = 1=r � x2=r3 ; ::: ;and hence, inductively, 9Mq, independent of r, such that ���@kxr��� � Mq=rk�1, 8 0 � k � q. Alsonote that @x� = �y=r2 ;@2x� = 2yx2=r5 ; ::: ;28



and thus, it is inductively evident that there exists Cq and eCq, both independent of r, such thatj@x�jk � Cq=rk, 8 0 � k � q, and ���@kx���� � eCq=rk, 8 0 � k � q.Regarding @q�Ft, for natural numbers q, setting �2 = 2 (see the de�nition of Ft(�) above),note that @�Ft = (@�1Ft) @��1 + (@�2Ft) @��2 = @�1Ft � @�2Ft :Focusing on @q�2Ft, and denoting g(�2) = �2�2(�21 + �22 � �1�2), we have that Ft =e�g(�2)=r2 , and therefore@�2Ft = ��g0(�2)=r2�Ft ;@2�2Ft = ��g00(�2)=r2 + (g0(�2)=r2)2�Ft ; ::: ;which by taking into account the fact that @k�2g(�2) = 0, 8k � 3, yields inductively that 9Nqsuch that ���@k�2Ft��� � Nq=rk+1, 8 1 � k � q. Focusing now on the more general case of @k1�1@k2�2Ft,where k1 and k2 are natural numbers, and k = k1 + k2, it is obvious by the same reasoningapplied to @q�2Ft above, that 9 eNq such that ���@k1�1@k2�2Ft��� � eNq=rk, 8 0 � k � q. Regarding @qrFt,note that @rFt = �2=r3gFt ;@2rFt = �(�2=r3g)2 + 6=r4g�Ft ; ::: ;and therefore, inductively, 9Tq such that ���@krFt��� � Tq=rk+2, 8 1 � k � q. Consequently, 9 eTqsuch that ���@k1r @k2� Ft��� � eT=rk+2 ;where k1 and k2 are natural numbers, and k = k1 + k2. Thus, from Eq. 27, and the abovederived bounds, we get inductively that for any natural number q, 9fMq, such thatj@qxFtj � fMq=rq :Now, as for @qxFd, having Fd = �=r, we obviously have that for any natural number q, 9fLq,independent of r, such that j@qxFdj � fLq=rq+1.As for @q	G, note that since 	 = �2 + � we have that@q	G = Fd@q	Ft = Fd@q�2Ft :Thus, concluding from all the above, we get that for any natural number q : 9Lq, indepen-dent of r, such that j@qxG(x; y;	)j � Lq=rq, and ���@qyG(x; y;	)��� � Lq=rq, and j@q	G(x; y;	)j �Lq=rq.The fast decay of the derivatives of G with increasing r ensures that when considering thesum of inductions on an element ei by all other elements we can aggregate the many far away29



inductions into much fewer inducing representative elements, with as small an error as desiredin the total summation by employing a su�ciently high q-order aggregation. In addition, whensumming the neighboring (w.r.t. r) inductions on ei, one should use the smoothness of G withrespect to 	 in order to avoid again summing the many di�erently oriented inductions, thisagain by employing a q-order aggregation of the many di�erently oriented inductions into fewerrepresentative, controlling the error by the order of aggregation. In order to use the smoothnessof G with respect to 	 for q-order aggregation one should note that the q-order derivatives ofG with respect to 	 decays fast.In addition to the q-order aggregation described above one should also use for fast summationthe fast decay of G(xi; yi;	i; xj ; yj;	j) with respect to any of its six arguments in order to sumall inductions acting upon certain neighborhoods only into some appropriate representatives ofthese neighborhoods, interpolating from these representative sums the induction acting uponany desired element, while controlling the error by the order of interpolation.Employing fast summation of induction �elds (see Sec. 5.3), all of the above considerationsmay and should be exploited within di�erent scales of spatial and angular farness between ele-ments. For instance, given a scaled radius of curvature �(l; w), the fast decay of the derivativesof the kernel G should be considered with respect to the scaled spatial distance r=�.References[1] T. D. Alter, and R. Basri, \Extracting salient curves from images: an analysis of thesaliency network," International Journal of Computer Vision, forthcoming.[2] M. Brady, W. E. L. Grimson, and D. J. Langridge, \Shape Encoding and SubjectiveContours," Proc. First Annual Conf. Artif. Int., 1980.[3] A. Brandt, \Multilevel computations of integral transforms and particle interactions withoscillatory kernels," Comp. Phys. Comm., 65:24{38, 1991.[4] A. Brandt and J. Dym, \Fast computation of multiple line integrals," SIAM J. Sci. Comp.,to appear.[5] A. M. Bruckstein, and A. N. Netravali, \On Minimal Energy Trajectories," CVGIP,49:283{296, 1990.[6] J. Dolan and R. Weiss, \Perceptual Grouping of Curved Lines," Proc. IUW89:1135{1145,Palo Alto, CA., 1989.[7] L. E. El'sgol'ts, \Calculus of variations," International series of monographs on pure andapplied mathematics, Pergamon press, Vol. 19, 196130
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