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WAVE-RAY MULTIGRID METHOD FOR STANDING WAVE EQUATIONS∗

A. BRANDT† AND I. LIVSHITS†

Abstract. Multigrid methods are known for their high efficiency in the solution of definite elliptic problems.
However, difficulties that appear in highly indefinite problems, such as standing wave equations, cause a total loss of
efficiency in the standard multigrid solver. The aim of this paper is to isolate these difficulties, analyze them, suggest
how to deal with them, and then test the suggestions with numerical experiments. The modified multigrid methods
introduced here exhibit the same high convergence rates as usually obtained for definite elliptic problems, for nearly
the same cost. They also yield a very efficient treatment of the radiation boundary conditions.
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1. Introduction. What are the properties of highly indefinite problems that make their
solution by standard multigrid methods inefficient?

First, there is the well-known limitation on the coarsest-grid mesh-size, which should be
sufficiently fine, in fact much finer than the wavelength of the oscillatory solution, to avoid
large phase errors (cf. Sec. 6 below).

To solve these coarsest grid equations one has to apply the slowly converging Kaczmarz
relaxation (or some similar procedure): the faster Gauss-Seidel relaxation causes smooth
components of the error to diverge. As a result, the solution will cost O(N3) operations (in
two-dimensional problems), where N is the number of coarse grid points.

Another basic difficulty is posed by the nonlocal character of the radiation boundary
conditions (RBC) that usually accompany highly indefinite equations, making their discrete
expression extremely costly.

The basic approach which has guided the present work was already stated in Sec. 3.2 of
[2] and in [7]. It is based on the fact that the problematic error components (the ones which
cannot be reduced by the standard multigrid process applied to the Helmholtz equation) can
be factorized by representing it as the product of a certain high-frequency Fourier component
and a smooth envelope function (a ray function). The idea is then to reduce this type of error
by approximating these smooth envelope functions on the coarse grids.

However, a substantial number of important algorithmic aspects still had to be clarified
or invented, especially with regard to the levels of transition between wave and ray represen-
tation (such as the use of rotated coordinates for the ray representation, increasing a number
of ray functions on the finest ray grid, optimal scaling, optimal weighting, etc.).

We started our work with the model one-dimensional Helmholtz equation, with different
types of coefficients: constant, smooth and discontinuous. For this problem we developed an
efficient multigrid solver [6]. In the present paper we describe the next step of our research:
A solver for the two-dimensional Helmholtz equations with constant coefficients. The solver
is developed in the Full Approximation Scheme (FAS) multigrid version, and for full under-
standing the reader is well advised to acquire some familiarity with this version (see, e.g., [1]
or [3]).

The presented approach can clearly be extended to higher-dimensional problems. The
extension to variable coefficients is briefly discussed in Sec. 10. The approach developed
here for obtaining a fast multigrid solver can also be used in a new type of setting where only
geometrical optics (ray tracing) needs to be used throughout a very large problem domain,
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whereas the full, costly wave equations (as well as suitable intermediate levels, introduced
herein) can be restricted to special small subdomains where the pure geometrical optics rep-
resentation breaks down (see Sec. 10).

2. Characteristic Components. For simplicity, our whole discussion is restricted to a
model problem – the scalar two-dimensional standing wave equation (Helmholtz equation)

∆u(x, y) + k2u(x, y) = f(x, y), (x, y) ∈ <2,(2.1)

with constant coefficient k, where f(x, y) = 0 outside some compact set Ωf ⊂ <2.
The purpose is to construct an efficient multigrid solver for discretized standing wave

equations, e.g., with the second-order discretization

uh
i−1,j − 2uh

i,j + uh
i+1,j

h2
+
uh

i,j−1 − 2uh
i,j + uh

i,j+1

h2
+ k2uh

i,j = fi,j ,(2.2)

where ui,j ≈ u(ih, jh) and fi,j = f(ih, jh), with the radiation boundary conditions. The
problem is considered in a computational domain Ω, whose exact size will be discussed later,
but it clearly should contain Ωf .

We focus here on the highly indefinite problem, meaning that the wavelength 2π

k
of

the solutions to the homogeneous equations is much smaller than the diameter d of Ω, i.e.,
dk � 1. Otherwise the problem can already be solved by simpler modifications to the
standard multigrid solver (see [5]).

To develop an efficient solver, we need to satisfy the basic multigrid rule: Each Fourier
error component needs an appropriate grid on which it is treated efficiently. This does not
happen straightforwardly.

Let us first note that any Fourier component of the form ei(k1x+k2y), with k2
1 + k2

2 =
k2, satisfies the homogeneous (f ≡ 0) Helmholtz equation (2.1). These components will
be called here the principal components, and their frequencies k = (k1, k2) will be called
principal frequencies. In the plane of frequencies, the circle of principal frequencies will be
called the principal circle. To have an efficient discretization for principal components, and
also for components with frequencies close to the principal circle (we call such components
characteristic), we discretized the principal circle, e.g., by a uniform lattice of L lattice
frequencies

kl = (kl
1, k

l
2) = (k cos[θ(l − 1) + θ0], k sin[θ(l − 1) + θ0]), l = 1, . . . , L,(2.3)

where θ = 2π

L
and 0 ≤ θ0 < θ (see Sec. 8).

Let us consider a solution of the homogeneous equation (2.1) in the following form

u(x, y) =

∫ 2π

0

Ute
ik(x cos(t)+y sin(t))dt

or, equivalently,

u(x, y) =
L

∑

l=1

ûl(x, y)e
i(kl

1
x+kl

2
y),(2.4)

where the functions ûl(x, y) are not uniquely defined but always can be chosen so that they
are a combination of Fourier components with frequencies smaller or comparable to kθ, θ =
π/L. Note, that if we consider (2.4) with a larger L, θ becomes smaller, and the coefficient
functions ûl(x, y) in the expansion (2.4) become smoother.
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With the discretization (2.2) or any other discretization of (2.1), there is no grid on which
characteristic components can be treated efficiently. On the fine grids, where they are accu-
rately approximated by the discrete equations, they are invisible to any local relaxation since
their errors can have very small residuals. Indeed, the size of such components is not deter-
mined locally, on the scale of the fine mesh-size, but on a much larger scale. On the other
hand, on coarser grids such components cannot be approximated, because the grid does not
resolve their oscillations. (In fact, to approximate such components by (2.2) the mesh-size
h needs to be much smaller than the wavelength 2π

k
; to avoid large phase error accumulated

over the domain diameter d hk � O((dk)−1/2) must be satisfied.)
Thus, there is a need for an alternative approach for reducing characteristic error com-

ponents. Ours is based on the fact that the error v(x, y) that cannot be reduced by a usual
multigrid cycle can be represented, similarly to (2.4), by

v(x, y) =
L

∑

l=1

v̂l(x, y)e
i(kl

1
x+kl

2
y),

where, by choosing sufficiently large L, the v̂l(x, y) are smooth enough to be approximated
on coarse levels.

Turning to optical terminology, we call the functions ûl(x, y) and v̂l(x, y) the ray func-
tions, and the equations satisfied by them the ray equations. The grids on which the wave
equations and the ray equations are treated are called the wave grids and the ray grids, re-
spectively.

To reduce the error (2.4), in addition to the usual multigrid cycles on wave grids, we use
ray cycles: They include recursive derivation of ray equations on increasingly coarser ray
grids, having increasingly finer lattices (larger L). The equations on each grid are based on
the residuals of the previous ( next finer) grid, except that boundary conditions are defined and
interpolated from the next coarser grid. The resulting ray equations are relaxed on each level;
On the coarsest ray level they are solved and the radiation boundary conditions are imposed,
facilitated by the nearly pure ray representation (very smooth v̂l, with large L) obtained on
sufficiently coarse levels.

3. Ray Levels: Grids and Lattices. Any function on the n-th level of the ray cycle
(n = 1, . . . , N) has the representation

un =
Ln

∑

l=1

ûn
l (x, y)ei(kl

1
x+kl

2
y),(3.1)

where the (kl
1, k

l
2) are given by (2.3) with L = Ln.

For each principal component ei(k1x+k2y), we define a rotated Cartesian coordinate sys-
tem (ξ, η), such that the direction ξ is parallel to the vector (k1, k2). In these coordinates, this
principal component is of the form eikξ , i.e., ξ is its propagation direction. The ray function
ûn

l (x, y) will be discretized on a correspondingly rotated grid, with mesh-size hn
ξ in the prop-

agation direction and mesh-size hn
η in the perpendicular direction. The levels are enumerated

so that n = N is the level with the coarsest grid (largest hn = (hn
ξ , h

n
η ) and finest lattice, i.e.,

largest Ln).
An advantage of working with the rotated grids is that identical and relatively simple

procedures can be used for different ray functions.
Another, more basic advantage is the possibility of using the most economical ray grids.

The actual mesh and lattice sizes are determined by requiring that at the highest level (n = 1)
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we have hn
ξ = 2C/k and hn

η = C/k and Ln = 8, where typically 1.25
�
C

�
2.5. This

implies that hn
ξ = C(Ln)2/32k and hn

η = CLn/8k.
For n > 1, the size of the lattice and the mesh-sizes are calculated as

Ln =

{

2Ln−1 if n is even,
Ln−1 if n is odd,

hn
ξ = 2hn−1

ξ ,

hn
η =

{

2hn−1
η if n is even,

hn−1
η if n is odd,

or, in terms of Ln,

hn
ξ =

{

C(Ln)2/64k if n is even,
C(Ln)2/32k if n is odd,

hn
η =

CLn

8k
.

When the number of lattice points is increased by factor two, the maximal coarsening of
the mesh-sizes is chosen to satisfy h−2

η = O(h−1
ξ k) (i.e, hξ becomes four times and hη –

two times coarser before the next lattice refinement), hence the two main terms of the ray
equation (see (7) below) will have the same mesh coupling, making the equation “h-elliptic”
(see [3]). This choice of coarsening corresponds to the fact that ray solutions ûn

l that we
need are much smoother in the propagation direction than perpendicularly, in a way which is
exactly exploited by having h2

η ≈ hξ/k. Also, and most important, these mesh-sizes enable
a representation of a given ring of frequencies (specifically: a ring of width O(h−1

ξ ) around
the principal circle) using a minimal number of ray components (minimal Ln), i.e., using a
maximal distance between lattice points. This type of coarsening is also important for an
effective and accurate separation of the ray components from each other (see Sec. 4).

The rectangular domain covered by the grid on which ûn
l is defined, as well as the grid it-

self, will be denoted Ωn
l ; it is formed from a basic rectangle Ωn = {(x, y) : ‖x| ≤ dn

1 /2, |y| ≤
dn
2/2} by rotating it 2πl

Ln radians. At the highest level, the sizes d1
1 and d1

2 are chosen so that
Ω1

l all contain the wave computational domain on level Mr, which will be designated as the
“wave-to-ray switching level”; its exact choice will be discussed in Sec. 4. At each lower
(n > 1) level the dn

1 and dn
2 are defined so that each Ωn

l completely includes the associated
higher-level rectangles (Ωn−1

l/2 if l is even and both Ωn−1
(l−1)/2 and Ωn−1

(l+1)/2 if l is odd, where

l ± 1 is taken modulo Ln−1), with at least four additional mesh-sizes in each direction.

4. Ray Equations and Separation. In this section our description will be given in terms
of a Correction Scheme (CS) multigrid version which will however change in Sec. 5 below.
This means that at each lower ray level n, the represented ray functions are designed in turn
to approximate the correction needed at the next higher level n − 1, while the functions
computed on the highest ray level 1 are designed to approximate the correction needed for
the solution on the wave level m = Mr of the “wave multigrid cycle”.

The error component that needs to be reduced on a ray grid has the form

v(x, y) = v̂(x, y)ei(k1x+k2y),(4.1)
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where v̂(x, y) is smooth. A right-hand-side, that corresponds to each such error component,
can similarly be represented as

r(x, y) = r̂(x, y)ei(k1x+k2y),(4.2)

and it, as we will see, actually approximates corresponding residuals on the next finer level.
Substitution of (4.1) and (4.2) into Eq. (2.1) (with v being the solution and r the right-

hand-side) gives us an equation for the ray function v̂(x, y).

L̂v̂(x, y) = v̂xx(x, y) + v̂yy(x, y) + 2ik1v̂x(x, y) + 2ik2v̂y(x, y) = r̂(x, y).

In the rotated coordinates it simplifies to

L̂v̂(ξ, η) = v̂ξξ(ξ, η) + v̂ηη(ξ, η) + 2ikv̂ξ(ξ, η) = r̂(ξ, η).(4.3)

The operator L̂ will be approximated by the following second-order finite-difference stencil:

L̂h =







1
2hη

2

1
2hη

2

1
2hξ

2 (− 1
hη

2 − 2ik
hξ

− 1
2hξ

2 ) (− 1
hη

2 + 2ik
hξ

− 1
2hξ

2 )∗ 1
2hξ

2

1
2hη

2

1
2hη

2






,(4.4)

which is centered at the mid-point (ξ, η); for orientation, ∗ marks the coefficient at the grid-
point (ξ + hξ/2, η). This discretization has several advantages: First, the symbol of the
operator defined by (4.4) proves to be close to the symbol of the finest-grid discrete wave
operator for the desired characteristic components, i.e, the ray operators (4.4) provide an ex-
cellent approximation to (2.2) within a minimal number of lattice points, meaning a minimal
number of ray functions. Another important property of (4.4), which makes this discretiza-
tion attractive, is that its symbol is bounded away from zero (i.e., it is stable) for all other
components.

The ray equation (4.3) is almost first-order in ξ since the term v̂ξξ is small compared to
kv̂ξ for any function visible on the grid. Hence, the ray equations (4.4) can almost be solved
by one sweep of a suitable line relaxation, costing only a number of operations proportional
to the number of grid points. Thus, unlike regular multigrid cycles, in the ray cycles (in two
dimensions) there is no need to visit the coarsest possible levels in order to save computa-
tional work — the cost of solving ray equations on any ray grid is comparable to the cost
of one relaxation sweep there. The coarsest ray level is thus mainly determined by other
considerations, discussed later.

One purpose of the ray cycles is to approximate the smooth ray functions that correspond
to those residuals left unreduced after the wave cycle. This approximation can be done if each
ray grid obtains its own appropriate part of the residuals, i.e., a residual function of the form
(4.2), where r̂(x, y) is sufficiently smooth to be well approximated on that grid. Hence,
we need a procedure that for such a wave residual function r(x, y) in a characteristic ring
calculates smooth (on scale hn) functions r̂n

l (x, y) so that

r(x, y) =
Ln

∑

l=1

r̂n
l (x, y)en

l (x, y), en
l (x, y) = ei(kl

1
x+kl

2
y),

where the (kl
1, k

l
2) are defined as in (2.3), with L = Ln. We call such a procedure separation,

and we first describe it here in general terms.
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A basic tool for the separation is a simple one-dimensional three-point weighting (con-
volution) operator W = (w0, w1, w0). Consider a one-dimensional function g(α) on a grid
with a mesh-size h having the form

g(α) = a1(α)e−ipα + a2(α) + a3(α)eipα,(4.5)

where the aj(α) are smooth, compared to e±ipα, functions and π/2 � ph ≤ π. The weight-
ing coefficientsw0 andw1 are chosen so that the result of applying the convolution weighting
operator to g

(Wg)(α) = w0g(α− h) + w1g(α) + w0g(α+ h)

is an approximation to the function a2(α); Specifically,

Wg ≡ g, if g ≡ const,

Wg ≡ 0, if g(α) = e±ipα.

It is easy to find ω0 and ω1 that satisfy these conditions.
A two-dimensional weighting operator can be constructed as a tensor product of two one-

dimensional operators: It approximates the functions which are smooth in both directions and
nearly annihilates some high-frequency components.

More precisely, consider a function g(ξ, η) which can be represented as

g(ξ, η) =
∑

l

ĝl(ξ, η)e
i(pl

1
ξ+pl

2
η),(4.6)

defined in the (ξ, η) coordinate system, where the pl = (pl
1, p

l
2) are some given frequencies,

sufficiently remote from each other, and ĝl(ξ, η) are smooth functions. We assume that g is
defined on a grid Ω0 with mesh-size h = (hξ, hη), and our purpose is to approximate ĝl on
some grid ΩJ with a coarser mesh-size in the (ξl, ηl) coordinate system. We also suppose
that a sequence of grids in the (ξl, ηl) coordinates is given

Ω1 → Ω2 → . . .→ ΩJ ,

where the vector mesh-size of Ω1 is approximately h and the relation Ωj−1 → Ωj means that
Ωj coincides with Ωj−1 or that it is obtained from Ωj−1 by doubling the mesh-size in at least
one direction. An approximation to ĝl is then evaluated as follows:

ĝl ≈W J
J−1(W

J−1
J−2 (. . . (W 2

1 (I
(ξl,ηl)
(ξ,η) [g(ξ, η)e−i(pl

1
ξ+pl

2
η)])) . . .)),(4.7)

where I(ξl,ηl)
(ξ,η) is an interpolation operator from grid Ω0 to grid Ω1, and eachW j

j−1 : Ωj−1 →
Ωj is a two-dimensional weighting operator, i.e., a tensor product of two one-dimensional
weighting operators. Each of the latter can be applied in either the ξl, or ηl, or one of the two
diagonal directions (diagonal means employing either the left-lower and the right-upper, or
the left-upper and the right-lower diagonally neighboring grid-points).

What are the actual weighting directions we chose in our algorithm? Assume that on the
current fine grid Ωj−1, a function g to which a weighting is applied can be represented as

g(α, β) = gs(α, β) + eipαgh(α, β),
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where α is either ξl, ηl or one of the diagonal directions; β is perpendicular to α; gs is a
smooth function of α on the fine-grid scale and should be represented on the next coarser
grid, while eipαgh(α, β) is a high-frequency function of α and should not be transferred to
the next coarser grid (because it is either too high-frequency there and aliases with smooth
components, or it “ belongs” to another neighboring ray function). If all of the above is true,
the weighting needs to be applied in the α direction.

To construct the CS right-hand-side r̂1l on the finest ray grid, the residual function on a
wave grid with mesh-sizeO(k−1) serves as g; the wave level used for this purpose is denoted
Mr. (See details of calculating r̂1l in the Appendix A.)

To approximate a right-hand side r̂n
l on coarser (n > 1) ray levels for the l-th problem,

g is taken from the next finer (n− 1) ray level: Specifically,

g(ξ, η) = R̂n−1
l/2 , if l is even

and

g(ξ, η) =

[

en−1
(l−1)/2R̂

n−1
(l−1)/2 + en−1

(l+1)/2R̂
n−1
(l+1)/2

]

/en
l , if l is odd,

where R̂n−1
j is the residual function calculated on the (n− 1) level for the j-th ray problem.

(See further details in Sec. 8.)

5. FAS and RBC. The discussion so far has been in terms of the CS multigrid version.
Namely, each level has represented a correction to a finer level. However, the need to intro-
duce the radiation boundary conditions (RBC) on the coarsest ray grids, and the need to use
larger domains for coarser levels, imply the use of the Full Approximation Scheme (FAS). As
in previous works (see, e.g., [1] or [3]) the difference between the CS and the FAS is that
instead of the correction vm(x, y) (the function which is eventually interpolated to a finer
(higher) level and corrects its current approximation), the function for which the coarse-grid
equations are directly written is um(x, y) = vm(x, y) + um(x, y), where um(x, y) repre-
sents some known fixed approximation to the current solution, so that um(x, y) is actually
the intended full solution.

On a wave grid, as in previous works, um is taken to be Im
m+1(u

m+1) in regions where
the latter can be defined; here Im

m+1 is some fine-to-coarse transfer (injection or averaging)
and um+1 is the current solution on the next finer level. In other regions (outside the domain
where um+1 is defined) um is taken to be the latest approximation um obtained during the
last “ visit” to level m. In either case, this um is indeed fixed throughout the current “ visit”
to level m. (By a visit to level m we mean all the processing on level m and on lower levels
(coarser grids) which takes place between a switching from level m + 1 to level m and the
first following switching back from level m to level m+ 1. The purpose of such a visit is the
calculation of the correction vm.)

On a ray level n, however, it is more appropriate to take the initial approximation to the
ray function û

n

l (ξ, η) to be everywhere the value of ûn
l (ξ, η) at the previous visit to this very

level. This ensures that the boundary conditions (which are brought here from lower levels)
remain satisfied, and it saves us from the need to separate the solution approximation. Thus,
instead of the CS ray correction function v̂n

l (ξ, η), the solution function ûn
l (ξ, η) actually

calculated and stored on Ωn
l is the sum

ûn
l (ξ, η) = v̂n

l (ξ, η) + û
n

l (ξ, η).

Therefore, instead of an equation of the type (4.3), the FAS equations, actually employed in
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the calculations, are

L̂n
l û

n
l =

{

r̂n
l + L̂n

l û
n

l wherever r̂n
l can be defined

L̂n
l û

n

l elsewhere,
(5.1)

where L̂n
l coincides with the L̂ of (4.3) upon taking ξ and η to be the Cartesian coordinates

of Ωn
l ; i.e., ξ is the propagation direction of en

l . As described above r̂n
l is defined, by a

local separation procedure, from the next-finer-level residuals. Note that due to using FAS,
an equation for ûn

l is well defined also in regions of the coarse grid not covered by the fine
grid (that is, where r̂n

l cannot be defined from the fine-grid residuals).
Having calculated a solution ûn

l to Eq. (5.1) (see the cycle description below), it is of
course the difference ûn

l − ûn

l which actually represents the correction v̂n
l and which is there-

fore interpolated to the next finer level and added to the appropriate ray function(s) on level
(n − 1); except that at boundaries the full values of ûn

l are directly interpolated and replace
the boundary values of the finer ray function(s). See algorithmic details in Sec. 7 below.

On fine enough wave grids (m ≥Mr), too, the solution near the boundary is interpolated
directly from increasingly coarser grids, eventually from the ray grids. Indeed, near a bound-
ary distant from Ωf the wave solution behaves like a combination of principal components
which are smooth on the scales of the fine wave levels.

On each of the grids ΩN
l at the lowest ray level, the RBC are imposed: Each entering

ray is represented on the grid (or divided between the two grids) with the closest propagation
direction, on which its boundary values are indeed very smooth. Note that the components
represented on ΩN

l may actually have propagation direction deviating by up to θ = O(π/LN )
from the corresponding ξ direction (the propagation direction of eN

l ). Hence, if

ΩN
l = {(ξ, η) : |ξ| ≤ dN

1 , |η| ≤ dN
2 }

and

Ωf ⊂ {(ξ, η) : |ξ| ≤ dN
1 , |η| ≤ df},

for some df and for dN
1 , d

N
2 , defined as in Sec. 3., and if dN

1 ≥ df + dN
2 tan θ, then all the

exiting-only rays (rays which do not enter the domain but are created in Ωf ) can actually exit
only through the “ exit boundary” {(ξ, η) : |ξ| ≤ d1, η = d2}. Hence on all other boundaries
of ΩN

l we can impose as boundary conditions the incoming rays (or zero, if no incoming
rays are assumed). No boundary conditions are needed at the exit boundary of ΩN

l , since the
discrete equations (4.4) and the order in which we relax them (from entrance to exit) ensure
that information propagation in the negative ξ direction is effectively prohibited.

6. Phase Errors. In the previous sections we mentioned that the finest wave mesh-size
should satisfy a certain condition so that the discrete solution that can be produced by the
solver is an accurate approximation to the differential solution.
The relative error for the wave discretization (2.2) for a component eik1x+k2y with k2

1 +k2
2 =

k2 is given by

Eh(k1, k2) ≈
k4h2/γ

2πk/d
,

where 24 ≤ γ ≤ 48. Therefore, in order to have relative errors smaller than ε throughout the
computational domain, it is required that

dk3h2/(2πγ) < ε.(6.1)
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For fast convergence, the discrete solution in the ray representation needs to have a small
phase error as well, so that it can efficiently approximate the characteristic error left by the
wave grids.

In this context the choice of the lattice frequencies proves to be an important issue. Ob-
viously, the ray operators provide much better approximation to those characteristic compo-
nents which are close to the lattice components, and they are much less accurate for those
farther away. If the same principal frequencies are always picked as the lattice ones, then the
same frequencies always have the worst approximation. An easy way to improve the situation
is thus to vary the set of lattice points. One possibility is to use two sets: regular

k
n,r
l = k

(

cos((l − 1)θ, sin((l − 1)θ)

)

,(6.2)

and staggered

k
n,s
l = k

(

cos((l − 1/2)θ), sin((l − 1/2)θ)

)

,(6.3)

where in each case l = 1, . . . Ln and θ = 2π/Ln.
The relative error for the ray discretization (4.4) for a component ei(θξξ+θηη) is thus given by

Êh(θξ, θη) ≈
h2

η

12 θ
4
η +

h2

ξ

24 θ
3
ηk +

h2

ξ

8 θ
2
ξθ

2
η

2πk/d
,

with the choice of the ray parameters given in Sec. 8, where d is the size of the computational
domain. Analysis of the ray phase error shows then that in order to have ray relative errors to
be smaller than ε, the number LN of lattice points on the coarsest ray grid N , should satisfy
the following condition:

kd

5(LN)2β4
< ε,(6.4)

where β is equal to either 1 or 2 depending on whether only regular or both regular and
staggered lattices are employed at that level.
A heuristic explanation of the choice of β follows: The maximal relative error appears when
(θξ +k, θη) is a principal component which is maximally distant from the lattice points where
the ray operator indeed provides an excellent approximation to the wave finest grid operator.
The values of (θξ, θη) can be thus estimated as

θξ ≈ kθ2/2, θη ≈ kθ,

where θ = π/LN . If not one but two different sets of lattice points are employed, then the
worst approximation that could be provided by using two ray cycles will show up not for the
same “ distant” component (since the most “ distant” component of the first ray cycle becomes
a lattice one of the next ray cycle) but rather for a “ middle” component with θ = π/2LN

which has an “ average” approximation in both types of the ray cycles.
If both (6.1) and (6.4) are satisfied with R = 1/ε then the ray approximation is good

enough to provide an average convergence rate R per ray cycle for all characteristic compo-
nents.

If, however, the finest wave mesh-size does not satisfy (6.1) with ε = 1/R, in order to
provide the fast convergence of the algorithm, the ray operator should be modified by adding
some additional terms so that it approximates the finest discrete wave operator, rather than
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the differential one. This addition is shown to be important in various numerical experiments,
although it has been omitted in those reported below, since the accuracy ε there is sufficiently
small. To derive the correction terms, one has to calculate the First Differential Approxi-
mation (FDA) to the discrete operator (2.4) applied to the wave function in the ray form
v(x, y) = v̂(x, y)ei(k1x+k2y):

FDA(Lhv(x, y)) = ei(k1x+k2y)((Lr + h2Lc)v̂),

with Lr v̂ = ∆v̂+2ik1v̂x +2ik2v̂y (the ray differential operator (4.3) in the (x, y) coordinate
system) and

Lcv̂ =
(k4

1 + k4
2)

12
v̂− i

3
(k3

1 v̂x+k3
2 v̂y)−1

2
(k2

1 v̂xx+k2
2 v̂yy)+

i

3
(k1v̂xxx+k2v̂yyy)+

1

12
(v̂xxxx+v̂yyyy).

Here h is the finest wave mesh-size, and (k1, k2) is the lattice frequency for which the ray
equations are written. The modified ray operator in the (x, y) coordinates is then Lr + h2Lc.

7. Wave Cycle. The outer part of the algorithm is a regular FAS V wave cycle, host-
ing two ray cycles at a certain stage. To describe it, the wave grids (levels) are numbered
1, 2, . . . ,M , where 1 is the coarsest grid, with uniform mesh-size h1 (usually in the range
5k−1 � h1

� 10k−1), and each subsequent grid has the uniform mesh-size hm = hm−1/2.
Grid M is the target level, where the target equations (2.2) are given, with h = hM . The
grids are all aligned (coarser grid lines are obtained by taking every other line of the next
finer level). The domain covered by grid Ωm is {(x, y) : |x| ≤ am, |y| ≤ am}, where
aM = d/2, and am = am+1 +Kmhm, i.e., each coarser grid m is widened by Km mesh-
seizes in each direction. (In our model algorithm we put Km = 4 if m ≥ Mr, and Km = 0
otherwise).

On each wave level m, FAS equations are given by (2.2), with u = um, h = hm and
with a right-hand-side fm given by

fm
i,j =







fi,j if m = M,
rm
i,j + (Lmum)i,j if m <M, and rm

i,j can be defined,
(Lmum)i,j if m <M, and rm

i,j cannot be defined,

where rm = Im
m+1(f

m+1 − Lm+1ũm+1), which can be defined only at points interior to
Ωm+1; Im

m+1 is an adjoint interpolation operator from the finer level m+ 1 to level m; ũm+1

is the latest solution approximation on level m+ 1, Lm and Lm+1 are the wave operators of
type (2.2) on levels m and m + 1, respectively, and um is some fixed approximation to the
solution on level m, whose choice has been discussed in Sec. 5.

The V cycle has two subsequent parts, or “ legs” . In the first leg the algorithm proceeds
sequentially from the finest wave level (m = M) to the coarsest one (m = 1). On each
level m, several relaxation sweeps are performed, then (if m > 1) the residuals and the
approximate solution are transferred to the next coarser grid to define its right-hand side
(fm−1).

In the second leg of the V cycle the algorithm proceeds sequentially from the coarsest
level (m = 1) to the finest (m = M). On each level m several relaxation sweeps are
performed, then in the particular case thatm = M0 two ray cycles (see Sec. 8) are performed,
and then the correction to the solution is interpolated to the interior points of the next finer
grid, i.e.,

um+1 = ũm+1 + Im+1
m (um − um).(7.1)
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Here Im+1
m is an interpolation operator and ũm+1 is the former latest approximation to the

solution on levelm+1 (formed just before the visit to levelm and used in calculating rm, as
part of defining fm). On the fine levels (m ≥Mr) the values on the boundary are interpolated
directly as

um+1 = Im+1
m (um).(7.2)

On coarse wave grids (m < Mr), the boundary conditions are injected from the finer
grids in the fine-to-coarse leg of the wave cycle, and no boundary corrections are introduced
by these levels in the coarse-to-fine leg of the cycle (i.e., um+1 = ũm+1 on the boundary).

Let us carefully follow the behavior of different error components through this multigrid
cycle on the wave grids (excluding the ray cycles). For the majority of components, on the
grids with kh � 1, the relaxation properties for (2.2) are similar to those for definite elliptic
operators, which means an efficient reduction of high-frequency components. The smoothing
factors (i.e., the convergence factors per sweep for the high-frequency components on each
scale) are presented in Table 1. One can see that on the levels with kh � 1 and kh � 4, the
smoothing factors of the Gauss-Seidel relaxation are quite high, and only a few relaxation
sweeps on each level suffice to reduce high-frequency components by an order of magnitude.
However, the fast convergence is not always desirable, since it might be damaging when
obtained for erroneous components, i.e., those which have large relative errors on the relaxed
grids.

kh 0.125 0.5 1.0 1.25 1.5 2.0 3.0 4.0 6.0 8.0
µ1 0.50 0.52 0.65 0.80 div div 0.66 0.20 0.07 0.04
µ2 0.80 0.82 0.92 0.98 1.02 1.04 0.93 0.40 0.13 0.07

Table 1. Here µ1 and µ2 are the smoothing factors for Gauss-Seidel and Kaczmarz relaxations, re-
spectively, in lexicographic ordering on different grids. The precise meaning of the “ divergence” that
appears for kh ≈ 2 is given in Table 3.

A Fourier component ei(ω1x+ω2y) is erroneously approximated on the grid h if its relative
error Eh(ω1, ω2) satisfies

Eh(ω1, ω2) > 1.(7.3)

For equations (2.2) erroneous components happen to be close to the principal circle, i.e., their
frequencies satisfy

√

ω1
2 + ω2

2 = k(1 + δ), |δ| � 1.

The symbol of (2.1) for ei(ω1x+ω2y) is given by −ω2 +k2, while the symbol of the difference
operator (2.2) is k2 + 2h−2(cos(ω1h) + cos(ω2h) − 2). Hence, the relative error for such a
component is

Eh(ω1, ω2) =

∣

∣

∣

∣

2h−2(cos(ω1h) + cos(ω2h) − 2) + ω2

−ω2 + k2

∣

∣

∣

∣

.

For any frequency component (ω1, ω2) which satisfies (7.3) holds

k(1 − δ−) ≤
√

ω1
2 + ω2

2 ≤ k(1 + δ+)(7.4)

with δ− and δ+ presented in Table 2.
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kh 0.25 0.5 1.0 1.25 1.5 2.0 3.0 4.0
δ+ .003 .011 .05 .08 .13 any any any
δ− .003 .01 .04 .06 .07 .11 .16 .21

Table 2. Limits of poorly approximated components. On the grids with kh ≥ 5 all components have
a small relative error – characteristic components are too oscillatory to be visible there. Relaxation
on such grids is not damaging for those components. By “ any” , we mean that all components with
√

ω1
2 + ω2

2
> k which are visible on the grid have a bad approximation there.

In Table 3 the amplification factors of Gauss-Seidel and Kaczmarz relaxation for com-
ponents in the range (7.4) are shown. It is clear from the Table that on grids with kh ≤ 0.5,
the influence of the Gauss-Seidel relaxation on the erroneous components is negligible, and
therefore it can be applied without significant damage; by Table 1, 3–4 sweeps would suffice
to reduce high-frequency components on these grids.

kh 0.25 0.5 1.0 1.25 1.5 2.0 3.0 4.0
µ0 1.04 1.14 2.00 div div div 1.00 1.00
µ1 0.99 0.99 0.96 0.90 0.71 div 0.00 0.00
µ2 1.00 0.99 0.99 0.97 0.90 0.20 0.05 0.01

Table 3. Here µ0 is the maximal divergence factor over all components per Gauss-Seidel relaxation
sweep; µ1 are µ2 are the strongest (i.e., the smallest) convergence factors in the range (7.4) for a Gauss-
Seidel and a Kaczmarz relaxation sweep, respectively. For kh ≈ 2, the Gauss-Seidel relaxation has
a bad divergence, since the “ diagonal” coefficient of (2.2) becomes very small, compared to the other
coefficients.

Actually, on a sufficiently fine grids (with kh � 0.125), the fast red-black Gauss-Seidel,
with the smoothing factor .25, can be applied. However, its use on the coarser levels is not
advisable, since its divergence qualities are even stronger than the ones of the lexicographic
Gauss-Seidel (µ0 in Table 2).

When h is close to 1/k, the Gauss-Seidel divergence becomes too strong for some
smooth components. Hence, we choose to use the slower but always converging Kaczmarz
relaxation on such grids. Relaxation on all levels with h � 1/k would then provide an effi-
cient reduction of all error components ei(ω1x+ω2y) in the range

√

ω1
2 + ω2

2 ≥ πk

α?
, 1 � α? � 2.(7.5)

On levels with 1/k < h < 5/k, both Gauss-Seidel and Kaczmarz relaxation schemes
strongly change components (7.4), introducing their erroneous approximations. Therefore,
any relaxation on these grids should be avoided.

On a level with mesh-size h ≥ 5/k, no characteristic components are visible, and the
convergence factor for the Gauss-Seidel relaxation there is very good (small) for all error
components which are represented there, i.e., the ones with

√

ω1
2 + ω2

2 ≤ πk

β?
, 5 � β? � 10.(7.6)

Indeed, such a level can be chosen as the coarsest wave level, since one Gauss-Seidel re-
laxation sweep on it sufficiently converges all visible components, including those smooth
components which are also visible on much coarser levels.

In the next Table we specify the number and the type of relaxation sweeps actually ap-
plied on the wave levels in the experiments reported below. As one can see, many Kaczmarz
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sweeps are applied on the level with kh = 1 in order to reduce the width of the characteristic
ring. An alternative here is to employ one additional ray level, finer than the finest used by
our current algorithm, and, by this, approximate a wider range of characteristic components.
We found it simpler to use the wave approach. The number of sweeps is bounded, i.e., it does
not depend on the size of the domain. Also, this level is much coarser than the finest wave
grid, so the cost of even 30 sweeps is small.

kh 1/16 1/8 1/4 1/2 1 2 4 8
N 2 2 4 4 30 0 0 2

Type G-S(r-b) G-S(r-b) G-S(l) G-S(l) K(l) none none G-S(l)

Table 4. Here h is the wave mesh-size, N is the number of relaxation sweeps applied on grid h, and
“ Type” stands for the type of relaxation: “ G-S” meaning Gauss-Seidel and “ K” – Kaczmarz relaxations;
“ l” and “ r-b” in parenthesis stands for the relaxation ordering: lexicographic or red-black, respectively.

In the numerical experiments reported below we have used cubic interpolation operators.
Applying instead linear interpolation leads to a mild drop in the convergence rates, but still
provides a good multigrid efficiency. However, it is advisable to use the higher-order (cubic)
interpolation at least on relatively coarse grids where it is inexpensive.

From (7.5) and (7.6) we see that the characteristic components ei(ω1x+ω2y) which cannot
efficiently be reduced on the wave grids lie roughly in the range

πk

β?
≤

√

ω2
1 + ω2

2 ≤ πk

α?
.(7.7)

These are the components that should be reduced by the ray cycles, discussed next.

8. Ray Cycles. The residuals for the ray cycles are calculated not directly on the “ wave-
to-ray switching” level Mr, (khMr

≈ (1, 1)) but on a sufficiently fine wave grid (level M0

with khM0
� (1, 1)), so that they still yield accurate approximation to the target (finest) wave

equation. That level (M0) should be fine enough to yield with the discretization (2.2) a good
point-wise approximation to the characteristic error components. In practice the residuals
of that wave level are transferred, when they are needed, through intermediate levels (by
applying full-weighting operators) to the wave level Mr, where the ray separation starts (see
Sec. 4).

The ray cycle can be regarded as a modified V cycle. As a usual V cycle it consists of two
legs and employs several grids (levels) 1, 2, . . .N , where N is the coarsest and 1 is the finest
level. On the finest ray level L1 ray problems are represented: Each ray problem l is defined
in the appropriate rotated coordinates (ξ, η) (ξ being in propagation direction of e1l ) on a grid
with mesh-size h1 = (h1

ξ, h
1
η), with 2.5k−1 ≤ h1

ξ ≤ 5k−1 and 1.25k−1 ≤ h1
η ≤ 2.5k−1.

There is no need to choose the finest ray grid to be finer than that, since on this scale all
characteristic components which concerns in the ray cycles still have an accurate resolution.

The coarsening of the ray grids is performed according to the smoothness of the ray
functions, needed to be represent on these grids. Each coarser grid n then has mesh-sizes
hn

ξ = 2hn−1
ξ and

hn
η =

{

2hn−1
η if n is even,

hn−1
η if n is odd,

and the number of ray problems represented there is equal to

Ln =

{

2Ln−1 if n is even,
Ln−1 if n is odd.
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In the first leg of the ray cycle (i.e., when the algorithm proceeds sequentially from finer
to coarser grids) several relaxation sweeps (two Kaczmarz sweeps in our model algorithm)
are done on each ray level, except for the coarsest one.

Following relaxation, a switch is made to a coarser level, and the following transfers
are made. If n is even, meaning that the number of ray functions remains the same on the
coarser grid, the residual transfer is done as in a regular V-cycle with coarsening only in the
propagation direction (no separation is applied). Otherwise, the next coarser level employs
twice as many ray functions; half of them correspond to the same principal lattice components
that already appeared on the coarser lattice (corresponding to the finer ray level), and another
half are represented only on the finer lattice (coarser ray level). If n − 1 and n are the finer
and the coarser levels, correspondingly, then the coarse-grid residuals r̂n are evaluated by the
following two formulae:

r̂n
2l+1 = Wn

n−1R
n−1
l ,(8.1)

r̂n
2l = Wn

n−1[e
n−1
l I2l

2l−1(R
n−1
l ) + en−1

l+1 I
2l
2l+1(R

n−1
l+1 )]/en

2l,(8.2)

where Wn
n−1 is a successive combination of simple weighting separation operators, con-

structed as described in Sec. 4. and in the Appendix A, that acts from the grid on level n− 1
to the grid on level n; Rn−1

j are the ray residuals, calculated on the ray level n− 1; and I2l
2l±1

are interpolation operators (cubic, in our experiments) which transfer the residuals from the
grid in coordinates (ξn

l±1, η
n
l±1) to the grid with the same mesh-sizes (hn−1

ξ , hn−1
η ) but in the

coordinates which coincide with (ξn
2l, η

n
2l). Finally, the FAS right-hand-side is calculated as

in (5.1).
On the coarsest ray level all ray problems represented there are solved almost directly,

by one sweep of line relaxation (see Sec. 4) which includes imposing the RBC as described
in Sec. 5.

In the second leg of the ray cycle (which means proceeding from coarser to finer levels),
the correction v̂n

l ,

v̂n
l = (ûn

l − û
n

l ),(8.3)

calculated on a coarse ray grid n (ûn
l being the current approximation and û

n

l – the initial
one), is interpolated to the next finer grid to improve the interior values of one or two finer
ray functions. Namely, if n is odd

ûn−1
l = ˜̂u

n−1

l + In−1
n v̂n

l ,(8.4)

and, if n is even

ûn−1
l = ˜̂u

n−1

l + In−1
n v̂n

2l + [en
2l−1I

n−1
n (v̂n

2l−1) + en
2l+1I

n−1
n (v̂n

2l+1)]/(2e
n−1
l )(8.5)

where 2l ± 1 is taken modulo Ln; In−1
n is an interpolation operator to Ωn−1

l from Ωn
2l or

from Ωn
2l−1 or from Ωn

2l+1 as needed; and ˜̂u
n−1

l is the former approximate solution on Ωn−1
l

(the latest approximation there, from which the residuals Rn−1
l were calculated in forming

(8.1)–(8.2)). On the boundaries of the fine domains not the correction (8.3), but rather the
coarse-grid solutions ûn

l themselves, using procedures similar to (8.4)–(8.5), directly replace
the former boundary values.
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For n = 1, the corrections to the ray functions serve to improve the interior values of the
wave function um,

um = ũm +
Ln

∑

l=1

Im
l,n(v̂n

l )en
l ,(8.6)

while on the boundaries of Ωm the values of um are given by

um =
Ln

∑

l=1

Im
l,n(ûn

l )en
l ,(8.7)

where m = Mr and Im
l,n is an interpolation (cubic, in our experiments) operator from the ray

grid Ωn
l (defined in the proper rotated coordinate system) to the wave grid Ωm (defined in the

(x, y) coordinate system) and ũm is the approximation on the wave level Mr just before the
ray cycle (i.e., the approximation from which the finest ray residuals r̂1l are calculated). Then
the algorithm proceeds (with several relaxation sweeps on each wave level) to the wave level
m = M0 as described in (7.1)–(7.2).

No relaxation can be performed in the second leg of the ray cycle, since the ray coarse-
grid correction is distributed between the fine-grid ray functions not according to the weights
of residuals obtained from them, but with equal weights. Hence, after the coarse-grid correc-
tion the right-hand-side and the approximate solutions on the finer grids are not compatible.

Each wave cycle employs two ray cycles. The residuals for the first ray cycle are calcu-
lated when the second leg of the wave cycle reaches the wave level M0; then these residuals
are transferred to the level Mr, etc. After the first ray cycle has accomplished its work, the
algorithm returns back to the wave representation, proceeding from the wave level Mr to the
finer wave levels, as described in Sec. 7, and reaches the wave level M0, where the wave
residuals for the second ray cycle are calculated and transferred back to the levelMr.

In our algorithm, on the finest ray level (with n = 1 and Ln = 8) we use two sets of
lattice points: Regular

k
1,r
l = k

(

cos((l − 1)
π

4
), sin((l − 1)

π

4
)

)

,

and staggered

k
1,s
l = k

(

cos((l − 1)
π

4
− π

8
), sin((l − 1)

π

4
− π

8
)

)

,

where in each case l = 1, . . . 8.
At lower ray levels (n > 1), if there are some, however, only regular sets (with θ0 = 0 in

(2.3)) are used in both cycles.
Let us now estimate what are the values of kd for which the algorithm still can employ

only one ray level. The values of L and R in (6.4) we are interested in are L = 8 and
R =

√
16, meaning R2 = 16 as a convergence factor for two ray cycles. (16 is the smooth-

ing factor of two red-black Gauss-Seidel relaxation sweeps, performed on the finest wave
level. We, indeed, would like to see the same factor for all error components, including the
characteristic ones treated by the ray cycles.) The following estimates can be obtained:

kd � 1280,(8.8)

if two types of the lattices (regular and staggered) are employed, and

kd � 80,(8.9)

if only one lattice type is used in the algorithm.
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9. Numerical Results. The model problem chosen for tests of the wave-ray multigrid
algorithm is

∆u(x, y) + k2u(x, y) = f(x, y), (x, y) ∈ <2,(9.1)

where f is randomly defined if
√

x2 + y2 < R0, or otherwise it is set to zero .
The computational work is measured in work units – the unit being the number of arith-

metic operations required in the relaxation of the equations (2.2) on the finest wave grid. One
cycle of the algorithm can be shown to cost about 7 work units (about 4 of them on the finest
grid), invested in relaxation (2 sweeps on the finest level), residual calculation, separation,
and interpolation.

We have tested the algorithm described above for different parameters of the model prob-
lem and of the algorithm itself.

Since we are interested in showing an efficient solver for the highly indefinite problems,
in our experiments we always choose the wave number k and the computational domain
diameter d so that

kd� 1.(9.2)

The results of computations for different values of d with fixed k = 1 and R0 = 5 are
presented in Table 5. The algorithm employs one ray level with 8 lattice points, alternating
using the regular lattice and the staggered one (see Sec. 8).

kd C2 C3 C4 C5 C6 C7 C8 C9
10 1.8e-02 5.4e-04 2.0e-05 9.2e-07 4.8e-08 2.6e-09 1.5e-10 8.7e-12
20 7.0e-03 2.1e-04 8.7e-06 4.4e-07 2.4e-08 1.3e-09 7.5e-11 4.4e-12
40 3.7e-03 1.2e-04 4.7e-06 2.3e-07 1.2e-08 6.9e-10 4.0e-11 2.3e-12
80 2.1e-03 8.5e-05 3.7e-06 1.6e-07 7.6e-09 3.8e-10 2.1e-11 1.2e-12
160 1.2e-03 8.2e-05 5.5e-06 3.2e-07 1.7e-08 9.1e-10 5.0e-11 3.1e-12

Table 5. This Table shows the L2 norm of the residual function, calculated on the finest wave grid
before each cycle. The results are calculated for (9.1) with k = 1 and R0 = 5 for different sizes of
the computational domain d. C# stands for the number of the cycle before which the residual norm is
calculated. The finest wave level (M = 8) has a mesh-size h8 = 0.0625, the residuals for the ray cycle
are calculated on level M0 = 6, whose mesh-size is h6 = 0.25; the separation process starts on level
Mr = 4 with mesh-size h4 = 1.0. The number and the type of relaxation sweeps on the wave levels is
specified in Table 4.

Clearly, the algorithm exhibits excellent convergence even for large values of kd, and
this is indeed achieved by a relatively cheap procedure.

In Table 6 we present the results for the algorithm which employs one ray level and uses
only a regular lattice for both ray cycles, and the results for the algorithm that employs two
ray levels at each ray cycle (with two types of lattices being used on the first ray level, but not
on the second) and compare them with the results from the previous Table.

kd = 10 kd = 20 kd = 40 kd = 80 kd = 160
Rm 18.0 17.8 17.7 19.3 18.0
Rr 17.7 11.9 6.7 5.7 3.1
Rt 17.8 18.6 13.3 11.5 11.0

Table 6. Rm is the asymptotic convergence factor per cycle for the L2 norm of the residual function for
(9.1)performed by the algorithms that employs one ray level and uses both regular and staggered lattice
(L = 8 and β = 2 in (6.4)); Rr is the asymptotic convergence factor performed by the algorithms that
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employs only a regular lattice (L = 8 and β = 1); Rt is the asymptotic convergence factor performed
by the “ two-ray levels” algorithm (L = 16 and β = 1).

The algorithm which uses only one lattice type (Rr) slows down when the value of kd
is roughly close to the estimate (8.8), and the slowdown in Rt can similarly be explained by
(6.4). We expect Rm to slow down when kd exceeds the estimate (8.9).

In the previous Tables we presented the results for a fixed value of k. Table 7 shows how
changes in k influence the performance when for all values of k we run the wave-ray cycle
with the same parameters as chosen above for k = 1.

k = 0.66 k = 0.7 k = 0.8 k = 1.0 k = 1.2 k = 1.3 k = 1.33
R 17.5 18.7 18.7 17.7 18.9 14.0 11.9

Table 7. Here R is the asymptotic convergence factor per cycle for the L2 norm of the residual function
for (9.1) performed by the algorithms that employs one ray level and uses both regular and staggered
lattice for different values of the wave number k. Parameters of the algorithm are as in Table 5, d = 40.

We see that the algorithm shows a good convergence anywhere in the range .66 � k �
1.33. The convergence factor decreases for k outside this range. This can easily be corrected
just by choosing different algorithmic parameters, so that they again satisfy in terms of kh
the relations which hold in the above model algorithm for k ∈ [.66, 1.33]. For example, for
k ∈ [1.33, 2.66] all the wave-to-ray transfer mesh-sizes (those of M0, Mr and Ωn) should be
chosen twice finer than for k ∈ [0.66, 1.33], and for k ∈ [.33, .66] – twice coarser, etc. We
emphasize that with a proper scaling this algorithm works equally well for any value of k.

10. Remarks and Future Work. In the work presented here, we have developed a
multigrid wave-ray algorithm for solving two-dimensional standing wave equations. Our
solvers exhibit high efficiency, permit a natural introduction of radiation boundary conditions,
eliminate constraints on the size of the domains considered and the mesh-size of the grids,
and use fast relaxation schemes on the finest, i.e., the most expensive, levels.

The present article has focused on the fast convergence of the multigrid cycles, not on the
accuracy of the obtained solution. A series of experiments has shown that O(h2) accuracy is
indeed achieved, provided each of the coarse-level (wave and ray) domains is large enough –
its diameter increasing as the finest mesh-size h decreases. The rate of the needed increase
is mild, however, keeping the total number of grid points on all levels still O(h−2). Detailed
derivation of the required domain sizes, together with numerical results of accuracy and of
corresponding FMG algorithms, will be given elsewhere.

The method developed here needs to be and can be extended in a number of ways. The
extension to three dimensions is relatively straightforward, although the circular lattices of
the present work will have to be replaced by spherical ones, requiring a tessellation of the
unit sphere.

Also relatively simple is the introduction of boundary conditions for the wave equations,
such as Dirichlet or Neumann or mixed, along some given curves (or surfaces), in addition to
the exterior RBC. This will imply certain relations between the various ray functions of a ray
level along such boundaries, corresponding to the reflection relations in geometrical optics.

The extension to the case of variable coefficient k = k(x, y) is more complicated. It has
been studied in [6] for the one-dimensional case, but the higher dimensional algorithms are
substantially different, as amply shown by the present article. In case k(x, y) varies slowly
(meaning that its changes over a distance of one wavelength are small compared to itself),
there should be no difficulty in applying the separation and other local procedures. On each
ray level of the algorithm, each of the L grids will correspond not to a fixed lattice point, but
to a fixed solution of the eikonal equation, the grid direction ξ following the continuously car-
rying propagation direction. In case of abrupt changes in k(x, y), relations between different
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rays, corresponding to refl ection and refraction will necessarily enter.
A different case is that of a small-scale disturbance, i.e., a small region, comparable in

diameter to the wavelength, over which either k(x, y) or the direction of the normal to the
boundary or to a curve of discontinuity in k significantly changes. Such a region, together
with a several-wavelength neighborhood around it, should be well resolved by a grid, on
which the wave equation is discretized. Due to its small size, the fast multigrid solver does
not need on that region by itself a ray-level acceleration, hence the precise ray discretization
there is immaterial. In the neighborhood, however, the ray discretization is crucial: it would
supply on one hand the rays entering into the region, and on the other obtain from it the
exiting rays. This can be achieved provided the FAS cycle includes, at least on exit regions,
a separation process not only for the residuals but also for the solution, i.e., the û

n

l are built
there not as in Sec. 6 above, but by separating ûn+1

l (or by separating the wave solution uMr ,
in case n = 1). Thus, in such a situation, these are the wave levels that would mediate the
relation between incoming and outgoing rays.

This procedure can be regarded as a numerical extension of the WKB method, providing
a general tool for calculating diffraction effects only around arbitrary obstacles and other
disturbances. Typically, most of the problem domain will be treated by geometrical optics,
i.e., very coarse ray levels, with finer discretization reaching into wave levels being introduced
around regions of small-scale disturbances, where geometrical optics by itself would break
down.

11. Appendix A. Here we present a more detailed description of the separation process
used in our model algorithm to approximate the ray residual functions r̂1l , l = 1, . . . , 8, on
the finest ray level 1 with mesh-size (4/k0, 2/k0), where k0 = 2j, and j ∈ Z is chosen so
that k = k/k0 ∈ [0.66, 1.33].

The separation starts with the wave function r, defined on the wave level Mr with mesh-
size (1/k0, 1/k0) as follows

r = IMr

Mr+1[. . . [I
M0−1
M0

RM0 ] . . .],

where Ij−1
j , j = M0, . . . ,Mr + 1 are full-weighting operators; RM0 = fM0 − LM0uM0

is the wave residual function; uM0 is the current solution approximation; fM0 is the FAS
right-hand-side and LM0 is the operator (2.2) on the wave level m = M0. This function is
than interpolated to the rotated coordinates (ξ, η) and multiplied by e−ikξ , giving as a result
the function r0(ξ, η).

The first separation operator W0 is applied to r0(ξ, η). W0 is a tensor product of two
perpendicular “ diagonal” one-dimensional weighting operators with the frequency parameter
(see Sec. 4) taken equal to 2. The resulting function r1(ξ, η), defined on the grid with mesh-
size (hξ, hη) = (2/k0, 2/k0), is given by

r1(ξ, η) = min(1, k) × [W0(r0(ξ, η)].

The next separation operator W1, applied to r1(ξ, η) is a tensor product of a weighting
operator in the ξ direction defined by the frequency parameter max(1, k), and a weighting
operator in the η direction defined by the frequency parameter .85 max(1, k).

The resulting function r2(ξ, η) is defined on the grid with mesh-size (4/k0, 2/k0) and is
given by

r2(ξ, η) = W1(r1(ξ, η)).

Finally, a weighting operator in the η direction defined by the frequency parameter .75 max(1, k
2
)

is applied to r2, yielding the target function r̂(ξ, η) on the same grid with (hξ, hη) = (4/k0, 2/k0).
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12. Appendix B. The numerical results shown in Table 5 where obtained by applying
the algorithm briefl y described below in the form of a fl owchart. We hope that this fl owchart
will help the reader to go through some computational details. The algorithm employs eight
wave and one ray (with eight ray functions) levels.
Wave–Ray Cycle

First Leg of Wave Cycle: from finest level M = 8 (h8 = 0.0625)
to coarsest level 1 (h1 = 8)
Second Leg of Wave Cycle: from level 1 to levelM0 = 6 (h6 = 0.25)
(No changes of boundary values)
On level m = M0 calculate wave residuals rm = fm − Lmum

Transfer rm by full-weighting procedure to level Mr = 4 (h4 = 1.0):
for (m = M0 − 1;m ≥Mr;m = m− 1) rm = FullWeighting(rm+1)

Employ Ray Cycle with Regular Lattice Set with rMr as input
and corrected solution approximation uMr as output.
Second Leg of Wave Cycle: from levelMr to level M0

(On boundaries: um = Im
m−1u

m−1,m = M0 + 1, . . .Mr)
On level m = M0 calculate wave residuals rm = fm − Lm

Transfer rm by full-weighting procedure to level Mr = 4
for (m = M0 − 1;m ≥Mr;m = m− 1) rm = FullWeighting(rm+1)

Employ Ray Cycle with Staggered Lattice Set with rMr as input
and corrected solution approximation uMr as output.
Second Leg of Wave Cycle: from levelMr to level M
(On boundaries: um = Im

m−1u
m−1,m = Mr + 1, . . .M )

End of Wave Ray Cycle
Ray Cycle

for (l = 1; l ≤ 8; l = l + 1) do
Interpolate input residual r defined in (x,y) coordinates on grid
with mesh (1, 1) to grid in (ξl, ηl) coordinates with mesh (1, 1) and
” divide” it by l-th lattice Fourier component el: r0 = (I

(ξl,ηl)
(x,y) r)/el

Residual separation:
From grid with mesh (1, 1) to grid with mesh (2,2) r1 = W0(r0)
From grid with mesh (2, 2) to grid with mesh (4,2) r2 = W1(r1)
From grid with mesh (4, 2) to grid with mesh (4,2) r̂l = W2(r2)

On level with mesh-size (4, 2):
Use previous values of ûl as initial approximation ûl

Calculate FAS right-hand-side f̂l = r̂l + L̂ûl

Introduce RBC and make one line relaxation, resulting ûl

Calculate correction ûl − ûl and interpolate it to grid in (x, y) coor-
dinates with mesh (1, 1), resulting δl
Correct interior values of wave approximate solution u: u = u+ elδl

end for
(Boundary values of u: u =

∑

ûle
l)

End Ray Cycle
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