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WAVE-RAY MULTIGRID METHOD FOR STANDING WAVE EQUATIONS*

A. BRANDTT AND I. LIVSHITST

Abstract. Multigrid methods are known for their high efficiency in the solution of definite elliptic problems.
However, difficulties that appear in highly indefinite problems, such as standing wave equations, cause a total loss of
efficiency in the standard multigrid solver. The aim of this paper is to isolate these difficulties, analyze them, suggest
how to deal with them, and then test the suggestions with numerical experiments. The modified multigrid methods
introduced here exhibit the same high convergence rates as usually obtained for definite elliptic problems, for nearly
the same cost. They also yield a very efficient treatment of the radiation boundary conditions.
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1. Introduction. What are the properties of highly indefinite problems that make their
solution by standard multigrid methods inefficient?

First, there is the well-known limitation on the coarsest-grid mesh-size, which should be
sufficiently fine, in fact much finer than the wavelength of the oscillatory solution, to avoid
large phase errors (cf. Sec. 6 below).

To solve these coarsest grid equations one has to apply the slowly converging Kaczmarz
relaxation (or some similar procedure): the faster Gauss-Seidel relaxation causes smooth
components of the error to diverge. As a result, the solution will cost O(N?3) operations (in
two-dimensional problems), where NV is the number of coarse grid points.

Another basic difficulty is posed by the nonlocal character of the radiation boundary
conditions (RBC) that usually accompany highly indefinite equations, making their discrete
expression extremely costly.

The basic approach which has guided the present work was already stated in Sec. 3.2 of
[2] and in [7]. It is based on the fact that the problematic error components (the ones which
cannot be reduced by the standard multigrid process applied to the Helmholtz equation) can
be factorized by representing it as the product of a certain high-frequency Fourier component
and a smooth envelope function (a ray function). The idea is then to reduce this type of error
by approximating these smooth envelope functions on the coarse grids.

However, a substantial number of important algorithmic aspects still had to be clarified
or invented, especially with regard to the levels of transition between wave and ray represen-
tation (such as the use of rotated coordinates for the ray representation, increasing a number
of ray functions on the finest ray grid, optimal scaling, optimal weighting, etc.).

We started our work with the model one-dimensional Helmholtz equation, with different
types of coefficients: constant, smooth and discontinuous. For this problem we developed an
efficient multigrid solver [6]. In the present paper we describe the next step of our research:
A solver for the two-dimensional Helmholtz equations with constant coefficients. The solver
is developed in the Full Approximation Scheme (FAS) multigrid version, and for full under-
standing the reader is well advised to acquire some familiarity with this version (see, e.g., [1]
or [3]).

The presented approach can clearly be extended to higher-dimensional problems. The
extension to variable coefficients is briefly discussed in Sec. 10. The approach developed
here for obtaining a fast multigrid solver can also be used in a new type of setting where only
geometrical optics (ray tracing) needs to be used throughout a very large problem domain,
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whereas the full, costly wave equations (as well as suitable intermediate levels, introduced
herein) can be restricted to special small subdomains where the pure geometrical optics rep-
resentation breaks down (see Sec. 10).

2. Characteristic Components. For simplicity, our whole discussion is restricted to a
model problem — the scalar two-dimensional standing wave equation (Helmholtz equation)

(21) Au(xvy) + k2u(l‘, y) = f(xvy)a (l‘, y) € %27

with constant coefficient &, where f(x,y) = 0 outside some compact set Q; C R2.
The purpose is to construct an efficient multigrid solver for discretized standing wave
equations, e.g., with the second-order discretization

h h h h
Uiy — 2 Uy U

i—1, i,5—1
(2.2) o 2 + 2
where u; ; ~ u(ih, jh) and f; ; = f(ih, jh), with the radiation boundary conditions. The
problem is considered in a computational domain €2, whose exact size will be discussed later,
but it clearly should contain €.

We focus here on the highly indefiite problem, meaning that the wavelength 27” of
the solutions to the homogeneous equations is much smaller than the diameter d of €2, i.e.,
dk > 1. Otherwise the problem can already be solved by simpler modifiations to the
standard multigrid solver (see [5]).

To develop an effient solver, we need to satisfy the basic multigrid rule: Each Fourier
error component needs an appropriate grid on which it is treated effciently. This does not
happen straightforwardly.

Let us fist note that any Fourier component of the form e*(F12+k2v) - with k2 + k3 =
k2, satisfies the homogeneous (f = 0) Helmholtz equation (2.1). These components will
be called here the principal components, and their frequencies k = (k1, k2) will be called
principal frequencies. In the plane of frequencies, the circle of principal frequencies will be
called the principal circle. To have an efficient discretization for principal components, and
also for components with frequencies close to the principal circle (we call such components
characteristic), we discretized the principal circle, e.g., by a uniform lattice of L lattice
frequencies

s ,j+1
2,] %+ + kQ’LLgL] — fi,ja

(23) k'= (K}, ky) = (kcos[0(l — 1) + o], ksin[0(l — 1) +6p]), 1=1,...,L,

where 6 = 2% and 0 < 6y < 6 (see Sec. 8).
Let us consider a solution of the homogeneous equation (2.1) in the following form

2
u(x, y) — / Uteik(x cos(t)+y sin(t))dt
0

or, equivalently,

L
(2.4) ulz,y) = dn(w,y)eErehy),
=1

where the functions 4;(x, y) are not uniquely defined but always can be chosen so that they
are a combination of Fourier components with frequencies smaller or comparable to k6, 6 =
/L. Note, that if we consider (2.4) with a larger L, 6 becomes smaller, and the coeffient
functions 4; (z, y) in the expansion (2.4) become smoother.
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With the discretization (2.2) or any other discretization of (2.1), thereisno grid on which
characteristic components can be treated efficiently. On the fine grids, where they are accu-
rately approximated by the discrete equations, they are invisible to any local relaxation since
their errors can have very small residuals. Indeed, the size of such componentsis not deter-
mined locally, on the scale of the fine mesh-size, but on a much larger scale. On the other
hand, on coarser grids such components cannot be approximated, because the grid does not
resolve their oscillations. (In fact, to approximate such components by (2.2) the mesh-size
h needs to be much smaller than the wavelength 2?”; to avoid large phase error accumulated
over the domain diameter d hk < O((dk)~'/?) must be satisfied.)

Thus, there is a need for an alternative approach for reducing characteristic error com-
ponents. Ours is based on the fact that the error v(z, y) that cannot be reduced by a usua
multigrid cycle can be represented, similarly to (2.4), by

L
. - 1
v(z,y) =Y di(w, y)errthay),
=1

where, by choosing sufficiently large L, the 9;(x, y) are smooth enough to be approximated
on coarse levels.

Turning to optical terminology, we call the functions 4, (x, y) and ©;(x, y) the ray func-
tions, and the equations satisfied by them the ray equations. The grids on which the wave
equations and the ray equations are treated are called the wave grids and the ray grids, re-
spectively.

To reduce the error (2.4), in addition to the usual multigrid cycles on wave grids, we use
ray cycles: They include recursive derivation of ray equations on increasingly coarser ray
grids, having increasingly finer lattices (larger L). The equations on each grid are based on
theresiduals of the previous ( next finer) grid, except that boundary conditionsare defined and
interpolated from the next coarser grid. Theresulting ray equationsare relaxed on each level;
On the coarsest ray level they are solved and the radiation boundary conditions are imposed,
facilitated by the nearly pure ray representation (very smooth ¢;, with large L) obtained on
sufficiently coarse levels.

3. Ray Levels. Grids and Lattices. Any function on the n-th level of the ray cycle
(n=1,...,N) hastherepresentation

L
(31) =3 ap (a,y)e ey,
=1

wherethe (k!, k}) are given by (2.3) with L = L™.

For each principal component e(k1#+%2v)  we define a rotated Cartesian coordinate sys-
tem (£, n), such that the direction ¢ is parallel to the vector (&1, k2). Inthese coordinates, this
principal component is of the form e**¢, i.e., ¢ is its propagation direction. The ray function
iy (, y) will be discretized on acorrespondingly rotated grid, with mesh-size 2 in the prop-
agation direction and mesh-size h; in the perpendicular direction. The levels are enumerated
sothatn = N isthelevel with the coarsest grid (largest h™ = (hg, h;) and finest lattice, i.e.,
largest L™).

An advantage of working with the rotated grids is that identical and relatively smple
procedures can be used for different ray functions.

Another, more basic advantageis the possibility of using the most economical ray grids.
The actual mesh and | attice sizes are determined by requiring that at the highest level (n = 1)
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we have hy = 2C/k and hyy = C/k and L™ = 8, where typically 1.25 < C' < 2.5. This
implies that h = C(L™)?/32k and hjy = CL™ /8k.
For n > 1, the size of the lattice and the mesh-sizes are calculated as

In_ 2L 1 if n iseven,
T Lt if o isodd,

n __ n—1
h = 2hp 7",

pn - 2np—1 if o iseven,
T hpTt i n isodd,

or, in terms of L™,

hn C(L™)?/64k if n iseven,
€T\ o(@M?/326 if n isodd,

oL
=
"7 Rk

When the number of lattice points is increased by factor two, the maximal coarsening of
the mesh-sizes is chosen to satisfy h, % = O(hglk) (i.e, he becomes four times and h,, —
two times coarser before the next lattice refnement), hence the two main terms of the ray
equation (see (7) below) will have the same mesh coupling, making the equation “h-elliptic”
(see [3]). This choice of coarsening corresponds to the fact that ray solutions 4 that we
need are much smoother in the propagation direction than perpendicularly, in a way which is
exactly exploited by having hfl ~ h¢/k. Also, and most important, these mesh-sizes enable

a representation of a given ring of frequencies (specifically: a ring of width O(hgl) around
the principal circle) using a minimal number of ray components (minimal L™), i.e., using a
maximal distance between lattice points. This type of coarsening is also important for an
effective and accurate separation of the ray components from each other (see Sec. 4).

The rectangular domain covered by the grid on which @} is defined, as well as the grid it-

self, will be denoted Q'; it is formed from a basic rectangle Q" = {(z,y) : ||z| < d}/2, |y| <

d3/2} by rotating it i—’;l radians. At the highest level, the sizes d} and d3 are chosen so that

Q; all contain the wave computational domain on level M,., which will be designated as the
“wave-to-ray switching level”; its exact choice will be discussed in Sec. 4. At each lower
(n > 1) level the d7 and d5 are defined so that each €2} completely includes the associated
higher-level rectangles (Qf/gl if [ is even and both 9?1111)/2 and 96111)/2 if [ is odd, where
[ £ 1 is taken modulo L™~1), with at least four additional mesh-sizes in each direction.

4. Ray Equationsand Separation. In this section our description will be given in terms
of a Correction Scheme (CS) multigrid version which will however change in Sec. 5 below.
This means that at each lower ray level n, the represented ray functions are designed in turn
to approximate the correction needed at the next higher level n — 1, while the functions
computed on the highest ray level 1 are designed to approximate the correction needed for
the solution on the wave level m = M, of the “wave multigrid cycle”.

The error component that needs to be reduced on a ray grid has the form

(4.1) v(,y) = bz, y)e ety
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where 9(z, y) is smooth. A right-hand-side, that corresponds to each such error component,
can similarly be represented as

(4.2) r(a,y) = #(w,y)e' 1otk

and it, as we will see, actually approximates corresponding residuals on the next finer level.
Substitution of (4.1) and (4.2) into Eq. (2.1) (with v being the solution and r the right-
hand-side) gives us an equation for the ray function o(z, y).

Li(2,y) = V22 (2,Y) + Oyy(2,y) + 2ik10, (2, y) + 2ik20y (2, y) = 7(z, y).
In the rotated coordinates it simplifies to
(4.3) Li(&,m) = dee(€,m) + Dyn(&,m) + 2ikde (€, m) = #(E,m).

The operator L will be approximated by the following second-order fiite-difference stencil:

_1_ _1_
2h,,2 2h,2
p 1 1 2k _1 1 2ik 1 \x 1
(44) L"= 2he? ( hn?  he 2h52) ( g 1 he zh,g) 2he? |
1 1
2h,,2 2h,,2

which is centered at the mid-point (¢, n); for orientation, « marks the coeffient at the grid-
point (£ + he/2,7). This discretization has several advantages: First, the symbol of the
operator defined by (4.4) proves to be close to the symbol of the finest-grid discrete wave
operator for the desired characteristic components, i.e, the ray operators (4.4) provide an ex-
cellent approximation to (2.2) within a minimal number of lattice points, meaning a minimal
number of ray functions. Another important property of (4.4), which makes this discretiza-
tion attractive, is that its symbol is bounded away from zero (i.e., it is stable) for all other
components.

The ray equation (4.3) is almost frst-order in £ since the term v¢¢ is small compared to
k¢ for any function visible on the grid. Hence, the ray equations (4.4) can almost be solved
by one sweep of a suitable line relaxation, costing only a number of operations proportional
to the number of grid points. Thus, unlike regular multigrid cycles, in the ray cycles (in two
dimensions) there is no need to visit the coarsest possible levels in order to save computa-
tional work — the cost of solving ray equations on any ray grid is comparable to the cost
of one relaxation sweep there. The coarsest ray level is thus mainly determined by other
considerations, discussed later.

One purpose of the ray cycles is to approximate the smooth ray functions that correspond
to those residuals left unreduced after the wave cycle. This approximation can be done if each
ray grid obtains its own appropriate part of the residuals, i.e., a residual function of the form
(4.2), where 7(z,y) is sufftiently smooth to be well approximated on that grid. Hence,
we need a procedure that for such a wave residual function r(x,y) in a characteristic ring
calculates smooth (on scale h™) functions 77 (x, y) so that

o
A~ an l
r@,y) = SO @ e (), ef (n,y) = e,
=1

where the (K}, k%) are defined as in (2.3), with L = L™. We call such a procedure separation,
and we frst describe it here in general terms.
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A basic tool for the separation is a simple one-dimensional three-point weighting (con-
volution) operator W = (wyg, w1, wp). Consider a one-dimensional function g(«) on agrid
with amesh-size h having the form

(45) g(a) — al(a)e—ip(x + CLQ(OC) + 013(04)6111)(17

wherethe a;(«) are smooth, compared to e*, functionsand 7/2 < ph < 7. The weight-
ing coefficients wg and wy are chosen so that the result of applying the convolution weighting
operator to g

(Wg)(a) = wog(e — h) + wig(er) + wog(a + h)
is an approximation to the function ax(«); Specifically,

Wg=g, if g=const,

Wg=0, if g(a)=etre,

Itiseasy tofind wy and w; that satisfy these conditions.

A two-dimensional weighting operator can be constructed as atensor product of two one-
dimensional operators: It approximatesthe functionswhich are smooth in both directionsand
nearly annihilates some high-frequency components.

More precisely, consider afunction g(&, n) which can be represented as

(4.6) g€ m) = D" g el Fherram,
l

defined in the (¢, ) coordinate system, wherethe p! = (p}, pb) are some given frequencies,
sufficiently remote from each other, and g;(£, n) are smooth functions. We assumethat g is
defined on a grid €2y with mesh-sizeh = (h¢, h,), and our purpose is to approximate §; on
some grid ©2; with a coarser mesh-size in the (gl, 7;) coordinate system. We also suppose
that a sequence of gridsinthe (&;, ;) coordinatesis given

D — Qs — ... > Qy,

where the vector mesh-size of 2, is approximately h and therelation 2;_; — ; meansthat
€2 coincideswith ©,_; or that it is obtained from 2;_; by doubling the mesh-sizein at least
one direction. An approximation to g; isthen evaluated as follows:

(4.7) e W (W23 (o (W2 g me ™ WheH7m])) L)),
whereI(E’ ) isan interpolation operator from grid €2 to grid €2, and each WJ Qo —
2; is atwo-dimensional weighting operator, i.e., a tensor product of two oned|men5|onal
weighting operators. Each of the latter can be applied in either the &, or 7;, or one of the two
diagonal directions (diagonal means employing either the |eft-lower and the right-upper, or
the left-upper and the right-lower diagonally neighboring grid-points).

What are the actual weighting directionswe chosein our algorithm? Assume that on the
current fine grid 2,1, afunction g to which aweighting is applied can be represented as

g(avﬂ) = 95(05, 5) + eipagh(a, 5);
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where « is either &, n; or one of the diagonal directions; [ is perpendicular to «; g, isa
smooth function of « on the fine-grid scale and should be represented on the next coarser
grid, while e??* g;, (o, 3) is a high-frequency function of o and should not be transferred to
the next coarser grid (because it is either too high-frequency there and aliases with smooth
components, or it “belongs’ to another neighboring ray function). If al of the aboveistrue,
the weighting needs to be applied in the a direction

To construct the CS right-hand-side 7} on the finest ray grid, the residual function on a
wave grid with mesh-size O(k~ ) servesaSg, thewave level used for this purposeis denoted
M,.. (See details of calculating 7 in the Appendix A.)

To approximate a right- hand side r* on coarser (n > 1) ray levels for the (-th problem,
g istaken from the next finer (n — 1) ray level: Specifically,

g(&m) = Ry, if 1 iseven

and
9(&m) = |e(_ 1)/2R?f1)/2+e(l+1)/2Rnl:rl)/2 /e, if I isodd,

where R;.’*l isthe residual function calculated on the (n — 1) level for the j-th ray problem.
(See further detailsin Sec. 8.)

5. FASand RBC. Thediscussion so far has been in terms of the CS multigrid version.
Namely, each level has represented a correction to afiner level. However, the need to intro-
duce the radiation boundary conditions (RBC) on the coarsest ray grids, and the need to use
larger domainsfor coarser levels, imply the use of the Full Approximation Scheme (FAS). As
in previous works (see, e.g., [1] or [3]) the difference between the CS and the FAS is that
instead of the correction v™(x,y) (the function which is eventually interpolated to a finer
(higher) level and correctsits current approximation), the function for which the coarse-grid
equations are directly written is u™(z,y) = v"(x,y) + " (x,y), whereu™(z,y) repre-
sents some known fixed approximation to the current solution, so that «™(z, y) is actually
theintended full solution.

On awave grid, asin previous works, u™ is taken to be I/, ; (u™*') in regions where
the latter can be defined; here 17, , is some fine-to-coarse transfer (injection or averaging)
and ™! isthe current solution on the next finer level. In other regions (outside the domain
where w11 is defined) @™ is taken to be the latest approximation ™ obtained during the
last “visit” to level m. In either case, thisu™ is indeed fixed throughout the current “visit”
to level m. (By avisit to level m we mean all the processing on level m and on lower levels
(coarser grids) which takes place between a switching from level m + 1 to level m and the
first following switching back from level m to level m + 1. The purpose of such avisitisthe
calculation of the correction v™.)

Onaray | Ievel n, however, it is more appropriate to take the initial approximation to the
ray function ;' (£, ) to be everywhere the value of 4" 1 (&, m) at the previous visit to this very
level. This ensures that the boundary conditions (WhICh are brought here from lower levels)
remain satisfied, and it saves us from the need to separate the solution approximation. Thus,
instead of the CS ray correction function ;' (¢, 7), the solution function 4} (£, n) actualy
calculated and stored on €2 isthe sum

A (&) = 07 (&) + (& m).
Therefore, instead of an equation of the type (4.3), the FAS equations, actually employed in
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the calculations, are

cnom [P LPE wherever 77 can be defined
(51) Liar = { Lra, elsewhere,
where L coincides with the L of (4.3) upon taking ¢ and 7 to be the Cartesian coordinates
of QF; i.e., £ is the propagation direction of e'. As described above ' is defined, by a
local separation procedure, from the next-finer-level residuals. Note that due to using FAS,
an equation for 4;* is well defined also in regions of the coarse grid not covered by the fine
grid (that is, where 77" cannot be defined from the fine-grid residuals).

Having calculated a solution ) to Eq. (5.1) (see the cycle description below), it is of
course the difference @;" — %, which actually representsthe correction o}* and which is there-
fore interpolated to the next finer level and added to the appropriate ray function(s) on level
(n — 1); except that at boundariesthe full values of @ are directly interpolated and replace
the boundary values of the finer ray function(s). See algorithmic detailsin Sec. 7 below.

On fine enough wave grids (m > M..), too, the solution near the boundary isinterpolated
directly from increasingly coarser grids, eventually from theray grids. Indeed, near a bound-
ary distant from €2 the wave solution behaves like a combination of principal components
which are smooth on the scales of the fine wave levels.

On each of the grids Q¥ at the lowest ray level, the RBC are imposed: Each entering
ray is represented on the grid (or divided between the two grids) with the closest propagation
direction, on which its boundary values are indeed very smooth. Note that the components
represented on 2V may actually have propagation direction deviatingby upto 6 = O(x /L")
from the corresponding ¢ direction (the propagation direction of e]V). Hence, if

QY ={(&mn) ¢ <dY,|n| <d)'}

and

Qp c{(&m) - €] <dy,In| < dy},

for some d; and for dY¥, dY, defined asiin Sec. 3., and if dY > d; + d¥’ tan 6, then all the
exiting-only rays (rays which do not enter the domain but are created in €2 ;) can actually exit
only through the “exit boundary” {(&,7n) : |¢| < d1,n = d2}. Hence on al other boundaries
of O we can impose as boundary conditions the incoming rays (or zero, if no incoming
rays are assumed). No boundary conditions are needed at the exit boundary of 2}V, since the
discrete equations (4.4) and the order in which we relax them (from entrance to exit) ensure
that information propagation in the negative ¢ direction is effectively prohibited.

6. PhaseErrors. Inthe previous sections we mentioned that the finest wave mesh-size
should satisfy a certain condition so that the discrete solution that can be produced by the
solver is an accurate approximation to the differential solution.

Therelative error for the wave discretization (2.2) for acomponent e?*1#+%2v with k7 + k2 =
k2 isgiven by

kth?/y
E"(ky, ko) &
(k. k2) 2rk/d’

where 24 < v < 48. Therefore, in order to have relative errors smaller than e throughout the
computational domain, it is required that

(6.1) dk3h?/(2my) < e.
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For fast convergence, the discrete solution in the ray representation needs to have a small
phase error as well, so that it can efficiently approximate the characteristic error left by the
wave grids.

In this context the choice of the lattice frequencies proves to be an important issue. Ob-
viously, the ray operators provide much better approximation to those characteristic compo-
nents which are close to the lattice components, and they are much less accurate for those
farther away. If the same principal frequencies are aways picked as the lattice ones, then the
same frequencies always have the worst approximation. An easy way to improvethe situation
isthusto vary the set of lattice points. One possibility isto use two sets: regular

(6.2 k" = k(cos((l —1)8,sin((l — 1)9)),
and staggered
(6.3) k" = k(cos((l —1/2)0),sin((I — 1/2)9)),

whereineachcasel =1,... L™ and 6 = 27 /L".
Therelative error for the ray discretization (4.4) for acomponent ¢#(?<¢+077) s thus given by

h} h2 h2
b0, 0.0~ 150, + 5500k + 5 020;
(8. 0n) ~ 2k /d ’

with the choice of the ray parametersgivenin Sec. 8, where d is the size of the computational
domain. Analysis of the ray phase error shows then that in order to have ray relative errorsto
be smaller than €, the number LY of lattice points on the coarsest ray grid N, should satisfy
the following condition:

kd
(64) 5(LN)2ﬁ4 < &
where 3 is equal to either 1 or 2 depending on whether only regular or both regular and
staggered lattices are employed at that level.
A heuristic explanation of the choice of 5 follows: The maximal relative error appears when
(0¢ +k, 0,) isaprincipal component which ismaximally distant from thelattice pointswhere
the ray operator indeed provides an excellent approximation to the wave finest grid operator.
The values of (0, 6,)) can be thus estimated as

O ~ k0%/2, 0, ~ ko),

where § = 7 /L". If not one but two different sets of lattice points are employed, then the
worst approximation that could be provided by using two ray cycleswill show up not for the
same “distant” component (since the most “distant” component of thefirst ray cycle becomes
alattice one of the next ray cycle) but rather for a “middle” component with § = /2L~
which has an “average” approximation in both types of the ray cycles.

If both (6.1) and (6.4) are satisfied with R = 1/¢ then the ray approximation is good
enough to provide an average convergencerate R per ray cycle for al characteristic compo-
nents.

If, however, the finest wave mesh-size does not satisfy (6.1) with e = 1/R, in order to
provide the fast convergence of the algorithm, the ray operator should be modified by adding
some additional terms so that it approximates the finest discrete wave operator, rather than
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the differential one. Thisaddition is shown to beimportant in various numerical experiments,
although it has been omitted in those reported below, since the accuracy e thereis sufficiently
small. To derive the correction terms, one has to calculate the First Differential Approxi-
mation (F'DA) to the discrete operator (2.4) applied to the wave function in the ray form
(@, y) = d(x,y)elFrethay);

FDA(LMv(x,y)) = ei(klx"'kw)(([/r + h2L4)9),

with L"0 = A0+ 21k 0, + 2ika0, (theray differential operator (4.3) inthe (z, y) coordinate
system) and

(KR
o= LT ha), t
v 12 3

a a1 o . i, . . 1, .
(kfvsc‘f'kgvy)_5(k%%x"‘kgvyy)"‘g(k?l”:c:c:c“‘kﬂyyy)"'ﬁ(U:c:c:c:c“‘vyyyy)-
Here & is the finest wave mesh-size, and (k1, k2) is the lattice frequency for which the ray
equations are written. The modified ray operator inthe (x, y) coordinatesisthen L™ + h2L¢.

7. Wave Cycle. The outer part of the algorithm is aregular FAS V wave cycle, host-
ing two ray cycles at a certain stage. To describe it, the wave grids (levels) are numbered
1,2,..., M, where 1 is the coarsest grid, with uniform mesh-size h; (usualy in the range
5k~1 < hy < 10k~ 1), and each subsequent grid has the uniform mesh-size h,,, = hy,—1/2.
Grid M is the target level, where the target equations (2.2) are given, with h = hj;. The
grids are al aligned (coarser grid lines are obtained by taking every other line of the next
finer level). The domain covered by grid Q,,, is {(x,y) : || < am,|y] < am}, Where
apy = d/2,and am, = am41 + Kmhm, 1.6, each coarser grid m is widened by K, mesh-
seizesin each direction. (In our model agorithmweput K,,, = 4if m > M,,and K,,, =0
otherwise).

On each wave level m, FAS equations are given by (2.2), with v = v™, h = h,, and
with aright-hand-side f™ given by

i if m=M,
= ey A (L) if m<M, and 7], canbedefined,

&
(L™a™); if m<M, and r cannotbe defined,

4]
where r™ = Im  (fm*t — Lm+gmt), which can be defined only at points interior to
Quy1; 17,1 isan adjoint interpolation operator from the finer level m + 1 to level m; a™+!
isthe latest solution approximation on level m + 1, L™ and L™*! are the wave operators of
type (2.2) on levels m and m + 1, respectively, and @™ is some fixed approximation to the
solution on level m, whose choice has been discussed in Sec. 5.

The V cycle has two subsequent parts, or “legs’. In the first leg the algorithm proceeds
sequentially from the finest wave level (m = M) to the coarsest one (m = 1). On each
level m, several relaxation sweeps are performed, then (if m > 1) the residuas and the
approximate solution are transferred to the next coarser grid to define its right-hand side
(fm™h.

In the second leg of the V cycle the algorithm proceeds sequentially from the coarsest
level (m = 1) to the finest (m = M). On each level m several relaxation sweeps are
performed, then in the particular casethat m = M, two ray cycles (see Sec. 8) are performed,
and then the correction to the solution is interpolated to the interior points of the next finer
grid, i.e.,

(7.2) ™t = gmt (™ - gm).
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Here I'*+1 is an interpolation operator and @™ is the former latest approximation to the
solution on level m + 1 (formed just beforethe visit to level m and used in calculating ™, as
part of defining /™). Onthefinelevels(m > M,.) thevalueson the boundary areinterpolated
directly as

(7.2) ™t = [ (™),

On coarse wave grids (m < M,.), the boundary conditions are injected from the finer
gridsin the fine-to-coarse leg of the wave cycle, and no boundary corrections are introduced
by these levelsin the coarse-to-fine leg of the cycle (i.e., ™! = @™*! on the boundary).

Let us carefully follow the behavior of different error components through this multigrid
cycle on the wave grids (excluding the ray cycles). For the mgjority of components, on the
gridswith kh < 1, the relaxation propertiesfor (2.2) are similar to those for definite elliptic
operators, which means an efficient reduction of high-frequency components. The smoothing
factors (i.e., the convergence factors per sweep for the high-frequency components on each
scale) are presented in Table 1. One can see that on the levelswith kh < 1 and kb 2 4, the
smoothing factors of the Gauss-Seidel relaxation are quite high, and only a few relaxation
sweeps on each level suffice to reduce high-frequency components by an order of magnitude.
However, the fast convergence is not always desirable, since it might be damaging when
obtained for erroneous components, i.e., those which have large relative errors on the relaxed
grids.

kh | 0125 | 0.5 | 1.0 | 1.25] 1.5 | 2.0 | 3.0 | 40 | 6.0 | 8.0
w1 | 050 | 052 | 0.65| 0.80 | div | div | 0.66 | 0.20 | 0.07 | 0.04
ue | 080 | 0.82 1092|098 | 102 | 1.04 | 0.93 | 040 | 0.13 | 0.07

Table 1. Here ;1 and po are the smoothing factors for Gauss-Seidel and Kaczmarz relaxations, re-
spectively, in lexicographic ordering on different grids. The precise meaning of the “divergence” that
appearsfor kh ~ 2 isgivenin Table 3.

A Fourier component e*(w1#+«2¥) s erroneously approximated on the grid A if its relative
error E" (wy, w-) satisfies

(73) Eh’(wl,wQ) > 1.

For equations (2.2) erroneous components happen to be close to the principal circle, i.e., their

frequencies satisfy
Vw2 +w?=k(1+46), |§<1.

The symbol of (2.1) for e(«1=+«2v) jsgiven by —w? + k2, while the symbol of the difference
operator (2.2) is k% + 2h~2(cos(w1h) + cos(wzh) — 2). Hence, the relative error for such a
component is

2h=2(cos(w1h) + cos(wah) — 2) + w?
—w? + k2 :

E" (w1, ws) = }

For any frequency component (w1, ws) which satisfies (7.3) holds

(7.4) (1 —6_) < yJon? +w? < k(1+64)

with §_ and ¢, presented in Table 2.
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kh 1025 | 05 | 1.0 125 | 1.5 2.0 | 3.0 | 4.0
6+ | .003 |.011 | .05 | .08 | .13 | any | any | any
o_|.003| .01 |.04]| 06 |.07] .11 | .16 | .21

Table 2. Limits of poorly approximated components. On the grids with kh > 5 all components have
a small relative error — characteristic components are too oscillatory to be visible there. Relaxation
on such grids is not damaging for those components. By “any”, we mean that all components with
y/w12 + w2 > k which are visible on the grid have a bad approximation there.

In Table 3 the amplification factors of Gauss-Seidel and Kaczmarz relaxation for com-
ponents in the range (7.4) are shown. It is clear from the Table that on grids with kh < 0.5,
the influence of the Gauss-Seidel relaxation on the erroneous components is negligible, and
therefore it can be applied without significant damage; by Table 1, 3—-4 sweeps would suffice
to reduce high-frequency components on these grids.

kh | 025 | 05 | 1.0 | 1.25 | 1.5 | 20 | 3.0 | 4.0
o | 1.04 | 1.14 | 2.00 | div | div | div | 1.00 | 1.00
w1 | 0.99 099 | 0.96 | 0.90 | 0.71 | div | 0.00 | 0.00
ue | 1.00 | 0.99 | 0.99 | 0.97 | 0.90 | 0.20 | 0.05 | 0.01

Table 3. Here po is the maximal divergence factor over all components per Gauss-Seidel relaxation
sweep; puq are po are the strongest (i.e., the smallest) convergence factors in the range (7.4) for a Gauss-
Seidel and a Kaczmarz relaxation sweep, respectively. For kh = 2, the Gauss-Seidel relaxation has
a bad divergence, since the “diagonal” coefficient of (2.2) becomes very small, compared to the other
coeffrients.

Actually, on a sufftiently fine grids (with kh < 0.125), the fast red-black Gauss-Seidel,
with the smoothing factor .25, can be applied. However, its use on the coarser levels is not
advisable, since its divergence qualities are even stronger than the ones of the lexicographic
Gauss-Seidel (u in Table 2).

When h is close to 1/k, the Gauss-Seidel divergence becomes too strong for some
smooth components. Hence, we choose to use the slower but always converging Kaczmarz
relaxation on such grids. Relaxation on all levels with . < 1/k would then provide an effi
cient reduction of all error components e#(«12+«2v) jn the range

k
(7.5) Vorz+w2>Z 1<a. <2
«

*

On levels with 1/k < h < 5/k, both Gauss-Seidel and Kaczmarz relaxation schemes
strongly change components (7.4), introducing their erroneous approximations. Therefore,
any relaxation on these grids should be avoided.

On a level with mesh-size h > 5/k, no characteristic components are visible, and the
convergence factor for the Gauss-Seidel relaxation there is very good (small) for all error
components which are represented there, i.e., the ones with

k
(7.6) Ve +wi < g—, 5< B, < 10.

Indeed, such a level can be chosen as the coarsest wave level, since one Gauss-Seidel re-
laxation sweep on it sufficiently converges all visible components, including those smooth
components which are also visible on much coarser levels.

In the next Table we specify the number and the type of relaxation sweeps actually ap-
plied on the wave levels in the experiments reported below. As one can see, many Kaczmarz
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sweeps are applied on the level with kh = 1 in order to reduce the width of the characteristic
ring. An alternative here isto employ one additional ray level, finer than the finest used by
our current algorithm, and, by this, approximate a wider range of characteristic components.
We found it simpler to use the wave approach. The number of sweepsisbounded, i.e., it does
not depend on the size of the domain. Also, this level is much coarser than the finest wave
grid, so the cost of even 30 sweepsissmall.

kh 1/16 1/8 1/4 1/2 1 2 4 8
N 2 2 4 4 30 0 0 2
Type | G-S(r-b) | G-S(r-b) | G-(I) | G-(I) | K(l) | none | none | G-S(I)

Table 4. Here h isthe wave mesh-size, N is the number of relaxation sweeps applied on grid h, and
“Type"' stands for thetype of relaxation: “G-S’ meaning Gauss-Seidel and “K” — Kaczmarz relaxations;
“I” and “r-b” in parenthesis stands for the relaxation ordering: lexicographic or red-black, respectively.

In the numerical experimentsreported bel ow we have used cubic interpolation operators.
Applying instead linear interpolation leads to a mild drop in the convergence rates, but still
provides a good multigrid efficiency. However, it is advisable to use the higher-order (cubic)
interpolation at least on relatively coarse grids where it isinexpensive.

From (7.5) and (7.6) we see that the characteristic components ¢*(«w1#+«2%) which cannot
efficiently be reduced on the wave gridslie roughly in the range

mk Tk
7. — < \JwR4wi<—.
(7.7) ﬁ*—‘/ 1 1S

These are the components that should be reduced by the ray cycles, discussed next.

8. Ray Cycles. Theresidualsfor theray cyclesare calculated not directly on the “wave-
to-ray switching” level M,., (khy,,. ~ (1,1)) but on a sufficiently fine wave grid (level M
with khy, < (1, 1)), sothat they still yield accurate approximation to the target (finest) wave
equation. That level (M) should be fine enough to yield with the discretization (2.2) a good
point-wise approximation to the characteristic error components. In practice the residuals
of that wave level are transferred, when they are needed, through intermediate levels (by
applying full-weighting operators) to the wave level M,., where the ray separation starts (see
Sec. 4).

Theray cyclecan beregarded asamodified V cycle. Asausua V cycleit consists of two
legs and employs several grids (levels) 1,2, ... N, where N isthe coarsest and 1 isthe finest
level. Onthefinest ray level L' ray problems are represented: Each ray problem [ is defined
in the appropriate rotated coordinates (¢, n) (¢ being in propagation direction of e}) onagrid
with mesh-sizeh; = (hg, hy), with 2.5k~ < b} <5k~'and1.25k~" < hy < 2.5k

Thereis no need to choose the finest ray grid to be finer than that, since on this scale all
characteristic components which concernsin the ray cycles still have an accurate resolution.

The coarsening of the ray grids is performed according to the smoothness of the ray
functions, needed to be represent on these grids. Each coarser grid n then has mesh-sizes
hg =2h¢ " and

W 2hp~1 if n iseven,
T kgt it no isodd,

and the number of ray problemsrepresented there is equal to

In— 2L 1 if n iseven,
T\ LY if n isodd.
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Inthefirst leg of theray cycle (i.e., when the algorithm proceeds sequentially from finer
to coarser grids) several relaxation sweeps (two Kaczmarz sweeps in our model agorithm)
are done on each ray level, except for the coarsest one.

Following relaxation, a switch is made to a coarser level, and the following transfers
are made. If n is even, meaning that the number of ray functions remains the same on the
coarser grid, the residual transfer is done as in aregular VV-cycle with coarsening only in the
propagation direction (no separation is applied). Otherwise, the next coarser level employs
twice asmany ray functions; half of them correspond to the same principal lattice components
that already appeared on the coarser lattice (corresponding to the finer ray level), and another
half are represented only on the finer lattice (coarser ray level). If n — 1 and n are the finer
and the coarser levels, correspondingly, then the coarse-grid residuals 7" are evaluated by the
following two formulae:

(8.1 Pop1 = no Ry
(8.2) Py =W e 3 (R + e I3 (RG] e,

where W,'_; is a successive combination of simple weighting separation operators, con-
structed as described in Sec. 4. and in the Appendix A, that acts fromthegridon level n — 1
tothegrid on level n; R}~ ' aretheray residuals, calculated on theray level n — 1; and I3/,
are interpolation operators (cubic, in our experiments) which transfer the residuals from the
grid in coordinates (£],; , nj.,) to the grid with the same mesh-sizes (R21, h;;*l) but in the
coordinates which coincide with (£2;,75,). Finally, the FAS right-hand-side is calculated as
in(5.1).

On the coarsest ray level all ray problems represented there are solved almost directly,
by one sweep of line relaxation (see Sec. 4) which includes imposing the RBC as described
in Sec. 5.

In the second leg of the ray cycle (which means proceeding from coarser to finer levels),
the correction o7,

(8.3) o= (A -1,

calculated on a coarse ray grid » (i;* being the current approximation and 5? —the initial
one), is interpolated to the next finer grid to improve the interior values of one or two finer
ray functions. Namely, if n isodd

(8.4) art=d It

and, if n iseven

~n—1
(85) apt=dy A+ ITROR 4 e IOy + e I (05)] /(2677

where 2/ + 1 is taken modulo L™; I~ is an interpolation operator to Q{“l from Q3 or

from Qg , or from Q3. | asneeded; and &, is the former approximate solution on 7"
(the latest approximation there, from which the residuals R{“l were calculated in forming
(8.1)—(8.2)). On the boundaries of the fine domains not the correction (8.3), but rather the
coarse-grid solutions ¢} themselves, using procedures similar to (8.4)—(8.5), directly replace
the former boundary values.
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For n = 1, the correctionsto the ray functions serve to improve the interior values of the
wave function v,

n

(8.6) u™ =" Y I (0 e
=1

while on the boundaries of (2,,, the values of ©™ are given by

;.
(8.7) w™ = "I (ap)ef,
=1

wherem = M, and I}, isan interpolation (cubic, in our experiments) operator from the ray
grid Q7 (defined in the proper rotated coordinate system) to the wave grid €2,,, (defined in the
(z,y) coordinate system) and @™ is the approximation on the wave level M,. just before the
ray cycle (i.e., the approximation from which the finest ray residuals#; are calculated). Then
the algorithm proceeds (with several relaxation sweeps on each wave level) to the wave level
m = My asdescribed in (7.1)—7.2).

No relaxation can be performed in the second leg of the ray cycle, since the ray coarse-
grid correction is distributed between the fine-grid ray functions not according to the weights
of residuals obtained from them, but with equal weights. Hence, after the coarse-grid correc-
tion the right-hand-side and the approximate sol utions on the finer grids are not compatible.

Each wave cycle employstwo ray cycles. The residualsfor the first ray cycle are calcu-
lated when the second leg of the wave cycle reaches the wave level M; then these residuals
are transferred to the level M., etc. After the first ray cycle has accomplished its work, the
algorithm returns back to the wave representation, proceeding from the wave level M,. to the
finer wave levels, as described in Sec. 7, and reaches the wave level M, where the wave
residuals for the second ray cycle are calculated and transferred back to the level M,..

In our agorithm, on the finest ray level (with n = 1 and L™ = 8) we use two sets of
lattice points: Regular

it =k eos( = ) ]sin( - D))

4
™
)
whereineachcasel =1,...8.

At lower ray levels (n > 1), if there are some, however, only regular sets (with 6y = 0 in
(2.3)) are used in both cycles.

Let us now estimate what are the values of kd for which the algorithm still can employ
only one ray level. The values of L and R in (6.4) we are interested in are . = 8 and
R = /16, meaning R?> = 16 as a convergence factor for two ray cycles. (16 is the smooth-
ing factor of two red-black Gauss-Seidel relaxation sweeps, performed on the finest wave
level. We, indeed, would like to see the same factor for all error components, including the
characteristic ones treated by the ray cycles.) The following estimates can be obtained:

(8.9) kd < 1280,

and staggered

),sin((l 1)

N

T
8

S

k,* = k<cos((z —-1)

if two types of the lattices (regular and staggered) are employed, and
(8.9) kd < 80,
if only onelattice typeisused in the algorithm.
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9. Numerical Results. The model problem chosen for tests of the wave-ray multigrid
algorithmis

(9.1) Au(w,y) + ku(z,y) = f(z,y), (v,y) € R,

where f israndomly defined if \/22 + y2 < Ry, or otherwiseit isset to zero .

The computational work is measured in work units — the unit being the number of arith-
metic operationsrequired in the relaxation of the equations (2.2) on the finest wave grid. One
cycle of the algorithm can be shown to cost about 7 work units (about 4 of them on the finest
grid), invested in relaxation (2 sweeps on the finest level), residual calculation, separation,
and interpolation.

We have tested the algorithm described above for different parameters of the model prob-
lem and of the algorithm itself.

Since we are interested in showing an efficient solver for the highly indefinite problems,
in our experiments we always choose the wave number &k and the computational domain
diameter d so that

(9.2) kd > 1.

The results of computations for different values of d with fixed k = 1 and Ry = 5 are
presented in Table 5. The algorithm employs one ray level with 8 lattice points, alternating
using the regular lattice and the staggered one (see Sec. 8).

kd c2 C3 C4 C5 C6 c7 C8 C9

10 | 1.8e-02 | 5.4e-04 | 2.0e-05 | 9.2e-07 | 48e-08 | 2.6e-09 | 1.5e-10 | 8.7e-12
20 | 7.0e-03 | 2.1e-04 | 87e-06 | 4.4e-07 | 2.4e-08 | 1.3e-09 | 7.5e-11 | 4.4e-12
40 | 3.7e-03 | 1.2e-04 | 47e-06 | 2.3e-07 | 1.2e-08 | 6.9e-10 | 4.0e-11 | 2.3e-12
80 | 2.1e-03 | 85e-05 | 3.7e-06 | 1.6e-07 | 7.6e-09 | 3.8e-10 | 2.1e-11 | 1.2e-12
160 | 1.2e-03 | 8.2e-05 | 55e-06 | 3.2e-07 | 1.7e-08 | 9.1e-10 | 5.0e-11 | 3.1e-12

Table 5. This Table shows the L, norm of the residual function, calculated on the finest wave grid
before each cycle. The results are calculated for (9.1) with & = 1 and Ry = 5 for different sizes of
the computational domain d. C# stands for the number of the cycle before which the residual normis
calculated. Thefinest wave level (M = 8) hasamesh-size hs = 0.0625, theresiduals for theray cycle
are calculated on level My = 6, whose mesh-sizeis hg = 0.25; the separation process starts on level
M, = 4 with mesh-size hs = 1.0. The number and the type of relaxation sweeps on the wave levelsis
specified in Table 4.

Clearly, the algorithm exhibits excellent convergence even for large values of kd, and
thisisindeed achieved by arelatively cheap procedure.

In Table 6 we present the results for the algorithm which employs oneray level and uses
only a regular lattice for both ray cycles, and the results for the algorithm that employs two
ray levelsat each ray cycle (with two types of |attices being used on thefirst ray level, but not
on the second) and compare them with the results from the previous Table.

kd=10 | kd=20 | kd=40 | kd =80 | kd = 160
Ry, 18.0 17.8 17.7 19.3 18.0
R, 17.7 119 6.7 57 31
Ry 17.8 18.6 13.3 115 11.0

Table6. R, istheasymptotic convergence factor per cyclefor the L, norm of the residual function for
(9.1)performed by the algorithms that employs one ray level and uses both regular and staggered | attice
(L =8and 8 = 2in(6.4)); R. isthe asymptotic convergence factor performed by the algorithms that
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employs only a regular lattice (L. = 8 and 8 = 1); R; is the asymptotic convergence factor performed
by the “two-ray levels” algorithm (L = 16 and 8 = 1).

The algorithm which uses only one lattice type (R,) slows down when the value of kd
is roughly close to the estimate (8.8), and the slowdown in R; can similarly be explained by
(6.4). We expect R,,, to slow down when kd exceeds the estimate (8.9).

In the previous Tables we presented the results for a fixed value of k. Table 7 shows how
changes in k influence the performance when for all values of &£ we run the wave-ray cycle
with the same parameters as chosen above for & = 1.

k=066 | k=07 |k=08|k=10| k=12 | k=13 | k=133
R 17.5 18.7 18.7 17.7 18.9 14.0 11.9

Table 7. Here R is the asymptotic convergence factor per cycle for the Lo norm of the residual function
for (9.1) performed by the algorithms that employs one ray level and uses both regular and staggered
lattice for different values of the wave number k. Parameters of the algorithm are as in Table 5, d = 40.
We see that the algorithm shows a good convergence anywhere in the range .66 < k& <
1.33. The convergence factor decreases for & outside this range. This can easily be corrected
just by choosing different algorithmic parameters, so that they again satisfy in terms of kh
the relations which hold in the above model algorithm for k& € [.66, 1.33]. For example, for
k € [1.33,2.66] all the wave-to-ray transfer mesh-sizes (those of M,, M, and Q,,) should be
chosen twice fier than for & € [0.66, 1.33], and for k € [.33,.66] — twice coarser, etc. We
emphasize that with a proper scaling this algorithm works equally well for any value of k.

10. Remarks and Future Work. In the work presented here, we have developed a
multigrid wave-ray algorithm for solving two-dimensional standing wave equations. Our
solvers exhibit high effciency, permit a natural introduction of radiation boundary conditions,
eliminate constraints on the size of the domains considered and the mesh-size of the grids,
and use fast relaxation schemes on the fhest, i.e., the most expensive, levels.

The present article has focused on the fast convergence of the multigrid cycles, not on the
accuracy of the obtained solution. A series of experiments has shown that O(h?) accuracy is
indeed achieved, provided each of the coarse-level (wave and ray) domains is large enough —
its diameter increasing as the finest mesh-size h decreases. The rate of the needed increase
is mild, however, keeping the total number of grid points on all levels still O(h~2). Detailed
derivation of the required domain sizes, together with numerical results of accuracy and of
corresponding FMG algorithms, will be given elsewhere.

The method developed here needs to be and can be extended in a number of ways. The
extension to three dimensions is relatively straightforward, although the circular lattices of
the present work will have to be replaced by spherical ones, requiring a tessellation of the
unit sphere.

Also relatively simple is the introduction of boundary conditions for the wave equations,
such as Dirichlet or Neumann or mixed, along some given curves (or surfaces), in addition to
the exterior RBC. This will imply certain relations between the various ray functions of a ray
level along such boundaries, corresponding to the reflection relations in geometrical optics.

The extension to the case of variable coefficient k = k(x, y) is more complicated. It has
been studied in [6] for the one-dimensional case, but the higher dimensional algorithms are
substantially different, as amply shown by the present article. In case k(z,y) varies slowly
(meaning that its changes over a distance of one wavelength are small compared to itself),
there should be no diffculty in applying the separation and other local procedures. On each
ray level of the algorithm, each of the L grids will correspond not to a fixed lattice point, but
to a fixed solution of the eikonal equation, the grid direction £ following the continuously car-
rying propagation direction. In case of abrupt changes in k(z, y), relations between different
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rays, corresponding to reflection and refraction will necessarily enter.

A different case is that of a small-scale disturbance, i.e., a small region, comparablein
diameter to the wavelength, over which either k(z, y) or the direction of the normal to the
boundary or to a curve of discontinuity in & significantly changes. Such a region, together
with a several-wavelength neighborhood around it, should be well resolved by a grid, on
which the wave equation is discretized. Due to its small size, the fast multigrid solver does
not need on that region by itself aray-level acceleration, hence the precise ray discretization
thereisimmaterial. In the neighborhood, however, the ray discretization is crucial: it would
supply on one hand the rays entering into the region, and on the other obtain from it the
exiting rays. This can be achieved provided the FAS cycle includes, at least on exit regions,
a separation process not only for the residuals but also for the solution, i.e., the 57 are built
there not asin Sec. 6 above, but by separating a;‘“ (or by separating the wave solution v,
incasen = 1). Thus, in such a situation, these are the wave levels that would mediate the
relation between incoming and outgoing rays.

This procedure can be regarded as a numerical extension of the WKB method, providing
a general tool for calculating diffraction effects only around arbitrary obstacles and other
disturbances. Typically, most of the problem domain will be treated by geometrical optics,
i.e., very coarseray levels, with finer discretization reaching into wavelevelsbeing introduced
around regions of small-scale disturbances, where geometrical optics by itself would break
down.

11. Appendix A. Herewe present a more detailed description of the separation process
used in our model algorithm to approximate the ray residual functions#{, ! = 1,...,8, on
the finest ray level 1 with mesh-size (4/kg,2/ko), where kg = 27, and j € Z is chosen so
that k = k/ko € [0.66,1.33].

The separation starts with the wave function r, defined on the wave level M. with mesh-
size (1/ko, 1/ko) asfollows

r=Iyr o[ e R,

where 77, j = Mo, ..., M, + 1 are full-weighting operators; RMo = fMo — Moy Mo
is the wave residual function; «*o is the current solution approximation; o is the FAS
right-hand-side and Lo is the operator (2.2) on the wave level m = M. This function is
than interpolated to the rotated coordinates (¢, ) and multiplied by e~%*¢, giving as a result
the function ro (€, 7).

The first separation operator W}, is applied to ro(£,n). Wy is atensor product of two
perpendicular “diagonal” one-dimensional weighting operatorswith the frequency parameter
(see Sec. 4) taken equal to 2. The resulting function 1 (£, n), defined on the grid with mesh-
size (he, hy) = (2/ko, 2/ ko), iS given by

7’1(5771) = mln(laE) X [WO(TO(fan)]

The next separation operator W1, applied to 1 (£, ) is atensor product of a weighting
operator in the ¢ direction defined by the frequency parameter max(1, k), and a weighting
operator in the ) direction defined by the frequency parameter .85 max(1, k).

The resulting function r2 (¢, n) is defined on the grid with mesh-size (4/ko, 2/ ko) and is
given by

r2(&,m) = Wi(ri(&m)).

Finally, aweighting operator in the ; direction defined by the frequency parameter .75 max(1, EQ)
isappliedtory, yielding thetarget function #(§, n) onthesame gridwith (he, hy,) = (4/ko, 2/ ko).
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12. Appendix B. The numerical results shown in Table 5 where obtained by applying
the algorithm briefly described below in the form of aflowchart. We hope that this flowchart
will help the reader to go through some computational details. The algorithm employs eight
wave and oneray (with eight ray functions) levels.

Wave-Ray Cycle

First Leg of Wave Cycle: from finest level M = 8 (hg = 0.0625)

to coarsest level 1 (hy = 8)

Second Leg of Wave Cycle: from level 1to level My = 6 (hg = 0.25)

(No changes of boundary values)

Onlevel m = M, caculate waveresidualsr™ = f™ — L™uy™

Transfer ™ by full-weighting procedureto level M,. = 4 (hy = 1.0):

for (m = My — 1;m > M,;m = m — 1) r™ = FullWeighting(r™*1)

Employ Ray Cycle with Regular Lattice Set with »*~ asinput

and corrected solution approximation v~ as output.

Second Leg of Wave Cycle: from level M, to level M,

(On boundaries: u™ = I _;u™ ' m = My +1,...M,)

Onlevel m = M, calculate waveresidualsr™ = f™ — L™

Transfer ™ by full-weighting procedureto level M,. = 4

for (m = My — 1;m > M,;m = m — 1) r™ = FullWeighting(r™*1)

Employ Ray Cycle with Staggered L attice Set with '+ asinput

and corrected solution approximation v as output.

Second Leg of Wave Cycle: from level M, to level M

(On boundaries: u™ = I _ju™ Y, m = M, +1,... M)

End of Wave Ray Cycle
Ray Cycle

for(l=1;1<8l=1+1)do

Interpolate input residual r defined in (x,y) coordinates on grid

with mesh (1,1) togridin (&, ;) coordinateswith mesh (1, 1) and

"divide” it by I-th lattice Fourier component e;: 19 = ( (g'g)")r)/el

Residual separation:

From grid with mesh (1, 1) to grid with mesh (2,2) r1 = Wo(ro)
From grid with mesh (2, 2) to grid with mesh (4,2) ro = W1 (r1)
From grid with mesh (4, 2) to grid with mesh (4,2) 7, = Wa(r2)

On level with mesh-size (4, 2):
Use previous values of 4, asinitial approximation i ul
Calculate FASright-hand-side fl =7+ Ly
Introduce RBC and make one line relaxation, resulting i,
Calculate correction 4, — 4; and interpolateit to grid in (z, y) coor-
dinates with mesh (1, 1), resulting d;
Correct interior values of wave approximate solution u: v = u + ¢;0;
end for
(Boundary values of u: u = 3" det)
End Ray Cycle
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