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Abstract

“Textbook multigrid efficiency” (TME) means solving a discrete PDE prob-
lem in a computational work which is only a small (less than 10) multiple of the
operation count in the discretized system of equations itself. As a guide to attain-
ing this optimal performance for general CFD problems, the table below lists every
foreseen kind of computational difficulty for achieving that goal, together with the
possible ways for resolving that difficulty, their current state of development, and
references.

Included in the table are staggered and nonstaggered, conservative and non-
conservative discretizations of viscous and inviscid, incompressible and compress-
ible flows at various Mach numbers, as well as a simple (algebraic) turbulence
model and comments on chemically reacting flows. The listing of associated com-
putational barriers involves: non-alignment of streamlines or sonic characteristics
with the grids; recirculating flows; stagnation points; discretization and relax-
ation on and near shocks and boundaries; far-field artificial boundary conditions;
small-scale singularities (meaning important features, such as the complete air-
plane, which are not visible on some of the coarse grids); large grid aspect ratios;
boundary layer resolution; and grid adaption.

Introduction (by James L. Thomas, NASA LaRC)

Computational fluid dynamics (CFD) is becoming a more important part of
the complete aircraft design cycle because of the availability of faster computers
with more memory and improved numerical algorithms. As an example, all of the
external cruise-surface shapes of the new Boeing 777 wide-body subsonic transport
were designed with CFD [R1]. The cruise shape of such a vehicle is designed to
minimize viscous and shock wave losses at transonic speeds and can be analyzed
with potential flow methods coupled with interacting boundary layers. Off-design
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performance associated with maximum lift, buffet, and flutter and the determina-
tion of stability and control derivatives, involving unsteady separated and vortical
flows with stronger shock waves, are determined largely by experimental methods.
Computational simulations of these flowfields require the use of Reynolds-averaged
Navier-Stokes (RANS) methods; these computations for high-Reynolds flows over
complex geometries are very expensive, the turnaround time is too long to impact
the design cycle, and the turbulence models for separated flows have a high degree
of variability. Thus in these areas experiments, rather than computations, are
preferred for reasons of cost and uncertainty

Inroads are being made into these off-design areas with RANS methods. A
major lesson learned from industrial use of RANS methods is that both the numer-
ics and the physics must be improved substantially for a new procedure to replace
an older procedure. Also, there is a synergistic interplay between the speed of
the simulation and the fidelity of the turbulence model, since a larger parameter
variation and/or model formulation can be explored on fine enough grids with
a faster simulation. For example, the TLNS3D Navier-Stokes code [R2] found
its way into use because it was the first three-dimensional Navier-Stokes code to
show true multigrid performance, in which the cost scales linearly with the num-
ber of unknowns, and it incorporated a better turbulence model than the algebraic
models then in use. Solutions with 1 million grid points could be converged in ap-
proximately 1 hr of Cray-2 time, which allowed spatial convergence studies to be
conducted to ensure that the level of truncation error is sufficiently low, and the
prediction of the angle of attack to attain a desired lift coefficient was improved
over interacted potential methods [R3]. The faster turnaround of the multigrid
procedure enabled the extension and calibration of the original two-dimensional
turbulence model to three-dimensions, thus allowing a more accurate prediction
of the transonic shock/boundary-layer interaction.

The current RANS solvers with multigrid require on the order of 1500 residual
evaluations to converge the lift and drag to one percent of their final values for
wing-body geometries near transonic cruise conditions. Complex geometry and
complex physics simulations require many more residual evaluations to converge,
if indeed convergence can even be attained. It is well-known for elliptic problems
that solutions can be attained using full multigrid (FMG) processes in far fewer, on
the order of 3–6, residual evaluations; this efficiency is known as textbook multi-
grid efficiency (TME). Thus, there is a potential gain of two orders of magnitude
in operation count reduction if TME could be attained for the RANS equation
sets. This possible two order of magnitude improvement in convergence represents
an algorithmic floor since it is unlikely that faster convergence for these nonlin-
ear equations could be attained. This algorithmic speed-up, however, coupled
with further increases in computational speed can open up avenues and accelerate
progress in many areas, including: the application of steady and time-dependent
simulations in the high-lift, off-design, and stability and control areas; the usage
of RANS solvers in the aerodynamic and multidisciplinary design areas; and the
development of improved turbulence models.
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The RANS equation sets are a system of coupled nonlinear equations which
are not, even for subsonic Mach numbers, fully elliptic, but contain hyperbolic
factors. The theory of multigrid for hyperbolic and mixed-type equations is much
less developed than that for purely elliptic equations. Resolution of complex ge-
ometries and the thin boundary layers at high Reynolds number cause the grid to
be highly irregular and stretched, leading to a slowdown in convergence. Discon-
tinuities, such as shocks and slip surfaces, introduce additional difficulties. These
difficulties are illustrated in the sketch in Fig. 1 for a typical multi-element sec-
tion of a three-dimensional wing with the flaps deployed at takeoff and landing
conditions. Overcoming these difficulties poses a formidable challenge, especially
because in order to attain optimal and robust convergence rates for the applica-
tions of interest in aircraft design, they must all be overcome.

Brandt, in 1984 [G84], summarized the state of the art for attaining multi-
grid performance for fluid dynamics. Since that time, there has been considerable
progress in the field, although optimal results have only been shown for inviscid
flows, viscous flows at low Reynolds number, and simple geometries. The method-
ology and theory that Brandt and others have developed is applicable to the RANS
equations and can lead to optimal convergence rates; however, a rational and sys-
tematic attack on the barriers which stand in the way needs to be mounted. The
purpose of this paper is to delineate clearly the barriers which exist to attaining op-
timal convergence rates for solutions to the fluid dynamic equations for complex
geometries. The following sections identify the barriers, possible solutions, and
current status of the problem. The paper is intended as a guide to attaining the
optimal convergence goal and is written for the most part in a tabular form so that
new solutions and updates to the current status can be made. When completed,
the document is intended to list every type of computational difficulty encountered
on the road to attaining TME for RANS and the solution paths taken. The in-
sights, lessons learned, and methodologies gained from aerodynamic applications
should be applicable to other areas such as acoustics, electromagnetics, hypersonic
propulsion, and aerothermodynamics.

Preliminary comments

The table below does not refer to a vast literature on multigrid methods
in CFD (see for example [AJ]), in which enormous improvements over previous
(single-grid) techniques have been achieved, but without adopting the systematic
TME approach. This approach insists on obtaining basically the same ideal ef-
ficiency to every problem, by a very systematic study of each type of difficulty,
through a carefully chosen sequence of model problems. Several fundamental tech-
niques are typically absent in the multigrid codes that have not adopted the TME
strategy. Most important, those codes fail to decompose the solution process into
separate treatments of each factor of the PDE principal determinant, and there-
fore do not identify, let alone treat, the separate obstacles associated with each
such factor. Indeed, depending on flow conditions, each of those factors may have
different ellipticity measures (some are uniformly elliptic, others are non elliptic
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at some or all of the relevant scales) and/or different set of characteristic surfaces,
requiring different combinations of relaxation and coarsening procedures.

The table deals only with steady-state flows and their direct multigrid solvers,
i.e., not through pseudo-time marching. Time-accurate solvers for genuine time-

dependent flow problems are in principle simpler to develop than their steady-
state counterparts. Using semi implicit or fully implicit discretizations, large and
adaptable time steps can be used, and parallel processing across space and time is
feasible [R88]. The resulting system of equations (i.e., the system to be solved at
each time step) is much easier than the steady-state system because it has better
ellipticity measures (due to the time term), it does not involve the difficulties
associated with recirculations, and it comes with a good first approximation (from
the previous time step). A simple multigrid “F cycle” at each time step can
solve the equations much below the discretization errors of that step [Par]. It is
thus believed that fully efficient multigrid methods for the steady-state equations
will also yield fully efficient and highly parallelizable methods for time-accurate
integrations.
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Attaining Ideal Multigrid Efficiency in CFD: Difficulties and Cures

Difficulty Possible Solutions Status

• Uniformly elliptic scalar Multigrid cycles, guided by local mode ana- TME demonstrated 1971 [B73], [B77]
equation on uniform grids lysis + FMG and rigorously proved [RLMA], [RQMA]
in general domains

• Nonlinearity (1) FAS cycles (1) Demonstrated 1975 [South], [B77].
(2) Continuation processes (to obtain good (2) Described in [G, §8.3.2]

initial approximations), integrated into
one-shot FMG algorithm

• Fluid dynamics – general See a review in [R88, §2]; at some points it
is not fully up to date, but it concisely sum-
marizes some main approaches needed for
obtaining TME



Difficulty Possible Solutions Status

• Non-scalar PDE systems (1) General rules for the order of the inter-
grid transfer operators are given in [G,
§4.3], with some more details in [RQMA,
§3.3]

(2) A general approach to the design of rela- TME demonstrated in a number of
xation is based on the operator principal cases (see many detailsbelow). TME
matrix L and on the factors of det L (see proved for uniformly elliptic systems
[G84, §§3.4, 3.7]). In this approach a dis- [RLMA], [RQMA]
tribution matrix M and a weighting (or
“preconditioning”) matrix P are construc-
ted so that PLM is triangular, containing
the factors of det L on the main diagonal
(separated from each other as much as
possible, to avoid the complication with
“product operators” discussed next). This
(if necessary – together with the technique
described next), leads to decomposing
relaxation into simple schemes for the
(scalar) factors of det L. Many specific
examples are given below

(3) For systems of PDE which are of mixed TME demonstrated for incompressible
type (elliptic-hyperbolic) another possibility and compresisble cases [T1]–[T5]
sometimes is to introduce new unknowns
in terms of which elliptic and hyperbolic
parts are separated
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Difficulty Possible Solutions Status

• Product operator : an equation Two alternative approaches: (1) TME demonstrated for L = ∆2

LU = f , where L = L2L1. (1) Introduce an explicit new unknown function [Lin], [Dym]
Assume a relaxation process for V , replacing the equation with the pair of
Lj is given, with the amplification equations L1U − V = 0 and L2V = f , through-
factor µj(θ) and the smoothing out the MG solution process (including, e.g.,
factor µj , (j = 1, 2) transferring residuals of both equations to

coarse grids and correcting both u and v by
interpolations from the corresponding coarse-
grid values). The smoothing factor for this
process is µ = max(µ1, µ2)

(2) Use V only as an auxiliary function in rela- (2) Not tried
xation. That is: starting with v = L1u, where
u is the current approximation to U , perform
ν2 sweeps on the equation L2V = f , yielding
a new value ṽ. Then perform ν1 sweeps on
the equation L1u = ṽ. The resulting amplifi-
cation factor is µ(θ) =

µ1(θ)ν1 +
[
1 − µ1(θ)ν1

]
L̂1(θ)−1

µ2(θ)ν2L̂1(θ),
where the Fourier symbols are defined by
L̂j(θ) = e

−iθ·x/h
Lje

iθ·x/h. Hence in scalar
cases µ < µ

ν1

1 + µ2
ν2
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Difficulty

• Smoothing for special CFD

systems

• Cauchy Riemann on staggered grid

L =

(
∂x ∂y

∂y −∂x

)

• Stokes on staggered grid

L =




−∆ 0 ∂x

0 −∆ ∂y

∂x ∂y 0




• Stokes, non-staggered
(1) Quasi-elliptic discretization

L =




−∆ 0 ∂
2h
x

0 −∆ ∂
2h
y

∂
2h
x ∂

2h
y 0




with averaging of the resulting
pressure

(2) h-elliptic discretization, e.g.

L =




−∆ 0 ∂
2h
x

0 −∆ ∂
2h
y

∂
2h
x ∂

2h
y −αh

2∆




Possible Solutions

M = distribution operator
P = preconditioner
(see discussion above)

Two alternatives:
(1) M = L, P = I

(2) P = L, M = I

(1) M =




1 0 −∂x

0 1 −∂y

0 0 −∆


, P = I

(2) P =




1 0 0

0 1 0

∂x ∂y −∆


, M = I

Analogous to the staggered case; e.g.,

M =




1 0 −∂
2h
x

0 1 −∂
2h
y

0 0 −∆




No modifications of the FMG
algorithm is required, even in the
quasi-elliptic case (as explained in
[G84, §18.6]). In generalization to
NS, pressure averaging is required
of coarse-level results before their
interpolation to the next finer level
(whenever the coarse-level employs
the quasi-elliptic discretization)

Status

(1) TME demonstrated [BD], [Dinar]
(2) TME validated [T6]

(1) TME demonstrated [BD], [Dinar]

(2) TME validated [T6]

(1) In a quasi-elliptic approach, TME
demonstrated [G84, §18.6], [quasi]

(2) TME demonstrated? (perhaps by
J. Linden)
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Difficulty

• Non-conservative incompre-
ssible Euler, whose principal
operator in 2D is

L =




u · ∇ 0 ∂x

0 u · ∇ ∂y

∂x ∂y 0




(similarly 3D), on staggered
grid, second (or higher)
order discretization

• Low-Reynolds Incompre-
sibble Navier-Stokes, stagge-
red or not

• High-Reynolds Incompre-
ssible Navier-Stokes, stagge-
red or not

Possible Solutions

(1) Employ cycle index γ = 2p, where p

is the order of discretization, with

M =




1 0 −∂x

0 1 −∂y

0 0 u · ∇




(2) With the same M , for each of the mo-
mentum equations employ a relaxa-
tion scheme which is fast converging

for the advection operator u · ∇ (i.e.,
converging fast not only for h–f , but
also for smooth characteristic compo-
nents; see discussion of advection below)

(3) Use canonical variable (u, v, P ) on sta-
ggered grid, where P = (u2 + v

2)/2 + p.
Upwind only P , use central discretiza-
tion for (u, v). Relaxation is marching
for P , and weighted (preconditioning)
for (u, v)

Fully analogous to Stokes solvers: just
replace ∆ in L by Q = −R

−1∆ + u · ∇

Fully analogous to Incompressible Euler
(outside boundary layers: see discussion
on such layers below): just replace u · ∇

everywhere with Q

Status

(1) TME for first-order discretization
using W cycles shown in [BD], [Dinar]

(2) TME demonstrated for 2D entering
flows with second-order discretization
[BY2] and for recirculating flows with
first-order discretization [BY3]

(3) TME in [T1–T3]

TME demonstrated 1978 [BD], [Dinar]

TME demonstrated for first-order discreti-
zation on staggered ([BD], [Dinar]) and
non-staggered grids [G84, §19.5], and for
second-order staggered discretization[BY2]
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Difficulty

• Compressible Euler , non-conservative, on staggered grid:
The subprincipal operator on (u1, u2, u3, ρ, ε, p) is

L =




ρu · ∇ 0 0 0 0 ∂1

0 ρu · ∇ 0 0 0 ∂2

0 0 ρu · ∇ 0 0 ∂3

ρ
2
∂1 ρ

2
∂2 ρ

2
∂3 ρu · ∇ 0 0

p∂1 p∂2 p∂3 0 ρu · ∇ 0

0 0 0 −∂p/∂ρ −∂p/∂ε 1




det L = ρ
5(u · ∇)3

(
(u · ∇)2 − a

2∆
)
,

a =

(
∂p

∂ρ
+

p

ρ2

∂p

∂ε

)1/2

is the sound speed,

ρ, ε, p defined at cell centers,

ui – at center of cell faces perpendicular to the i-th coor-
dinate

• 2D Compressible Euler, nonconservative and conserva-
tive, staggered grid, using canonical variables (u, v, S, H).
Structured and unstructured grids

• 2D/3D incompressible and compressible Euler: Canonical
variables in which velocities are replaced by vector poten-
tial representation. Nonstaggered structured and unstruc-
tured grid

Possible Solutions

M =




1 0 0 0 0 −ρ(u · ∇)∂1

0 1 0 0 0 −ρ(u · ∇)∂2

0 0 1 0 0 −ρ(u · ∇)∂3

0 0 0 1 0 −ρ
2∆

0 0 0 0 1 −p∆

0 0 0 0 0 ρ
2(u · ∇)2




The advection and full-potential operators
are each relaxed by one of the approaches
described for them below (in the chapter
on non-elliptic operators. The semi -
coarsening described there would then be
used as an inner multigrid cycle for
relaxing one factor of the determinant, to
be distinguished from the outer multigrid
cycle, which can use full coarsening.)

Use (u, v) at cell edges, H at middle of cell,
S at vertices. Upwind only S at momentum
equations. Relax S, H by marching. (u, v)
by a weighting relaxation. Crocco’s form is
used here to define relaxation

All variables at cell nodes. Relax hyperbo-
lic quantities using marching. Relax vector
potential using point Gauss-Seidel

Status

Not tried

TME in [T2–T5]

TME acheived
(unpublished)
for interior and
exterior flows
in 2D, interior
in 3D
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Difficulty

• Compressible Navier-Stokes, non-conservative.
The subprincipal operator on (u1, u2, u3, ρ, ε, p) is

Ls =




Qµ − λ∂11 −λ∂12 −λ∂13 0 0 ∂1

−λ∂21 Qµ − λ∂22 −λ∂23 0 0 ∂2

−λ∂31 −λ∂32 Qµ − λ∂33 0 0 ∂3

ρ
2
∂1 ρ

2
∂2 ρ

2
∂3 Q0 0 0

p∂1 p∂2 p∂3 0 Qκ 0

0 0 0 −∂p/∂ρ −∂p/∂ε 1




where Qα = −α∆ + ρu · ∇, λ = λ + µ, λ = 2
3µ,

κ = k/cv (coefficient of thermal conductivity divided
by the specific heat at constant volume),
det Ls = Q

2
µ det Lc, where Lc is the “core operator”

Lc =




Q0 0 −ρ
2∆

0 Qκ −p∆

−∂p/∂ρ −∂p/∂ε Q
µ+λ




At standard conditions of laminar air flow the
Prandtl number γµ/κ ≈ 0.72; for turbulence γµ/κ ≈ 0.9,
with γ = cp/cv = 1.4

Possible Solutions Status

(1) Where λ, µ, κ � ρh|u| relax as in Euler above Not tried
(2) Otherwise use

M =




1 0 0 0 0 −∂1

0 1 0 0 0 −∂2

0 0 1 0 0 −∂3

0 0 0 1 0 0

0 0 0 0 1 0

λ∂1 λ∂2 λ∂3 0 0 Q
µ+λ




relaxing each Qµ by one of the approaches
described for the advection-diffusion below,
and Lc by procedures discussed for it below
(in the chapter on non-elliptic operators)
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Difficulty Possible Solutions Status

• Non-conservative not staggered (1) Probably similar to the staggered (cf.
Euler and NS transition from staggered to non-stag-

gered in Stokes)
(2) In the 2D incompressible case: TME demonstrated for 2D

Premultiply L by a projection operator incompressible Euler [RSS]
P , obtaining a Poisson equation for the in the cases of channel
pressure. Solve pressure equation with (with bump) and airfoil flows
multigrid and the advection equation by
marching downstream.

• Conservative discretization of Apply a prefactor P such that PL has Mentioned in [G, §3.4], but
any of the above systems principally the above non-conservative not tested

form. See, however, the difficulty
associated with FDA factorizability

(discussed in the chapter on non-
elliptic operators), which may arise
with such PL operators
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Difficulty Possible Solutions Status

• Non-elliptic operators, or more pre- The DGS relaxation of the full flow
cisely: small ellipticity measures at some equations allows a specific individual
(e.g., large) scales. The main operators treatment for each of these cases,
of interest here are taking into account its particular set
(1) The advection operator (or, similarly, of characteristic, as detailed below

the convection-diffusion operator at
large Reynolds numbers).

(2) The near-sonic full-potential opera-
tor or more generally the core opera-
tor Lc.

(3) The supersonic full-potential operator
or Lc.

(See below a separate discussion of aniso-
tropies caused by the discretization)

• Grid aligned with the characteristics: Block (e.g., line or plane) relaxation TME demonstrated in
Pointwise relaxation has only schemes and/or semi-coarsening, many cases
semi -smoothing capability possibly in alternating directions,

guided by mode analyses [B77],
[Stages]; or ILU relaxation [K2], [S9]

• Distinguishing different regimes Running separately the relaxation
(open vs. closed characteristics) subroutine of a given non-elliptic

factor can
(1) Separately check its convergence

properties
(2) Produce a scalar σ ≈ 1 at regions

of open characteristics and σ � 1
on closed characteristics (as in
separated flow zones)
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Difficulty Possible Solutions Status

• Non-aligned grids, with open Three possible approaches, all guided by half-space

characteristics (e.g., entering flow): two-level FMG mode analysis, using for simplicity
The main difficulty is the shorter the First Differential Approximation (FDA) to the
distance (along the characteristics) discrete operator [NESP], [G, §7.5]:
for which a coarser grid still appro- (1) Downstream-ordered relaxation marching [R88, (1) TME demonstrated in
ximates some smooth solution compo- §2.3]: Suitable only for the advection factor; [BY2], and in Ruge’s
nents (characteristic components sometimes still requires W cycles, and not very recent calculations,
with intermediate cross-characteris- good for massively parallel processing. In the both for the advection
tic smoothness) [NESP], [BY1] case of an O(hp) discretization which is not operator by itself and as

purely upstreamed, relaxation should involve a part of the incompre-
predictor-corrector downstream marching. If ssible Euler system
the predictor order is q, the corrector should be
applied at least p/q times.

(2) Similarly, with downstream-ordered ILU rela-
xation: Suitable for the advection operator (in
2D and 3D) and for the near-sonic full-potential
operator in 2D (not in 3D)

(3) Semi-coarsening with controlled artificial (3) TME has been shown
dissipation at coarse levels (to match the for the sonic full-poten-
target-grid numerical dissipation): Suitable tial operator [D1], [D2]
for all operators in 2D and 3D, and for massive [D3]
parallel processing

(4) Cycle index = 2p/m, where p is the order of dis- (4) For p = 1, TME has
cretization and m is the order of the differential been shown on various
factor. (Suitable actually only for the advection occasions. For p = 2,
operator, for which m = 1; especially attractive for should be tried
p = 2 in 3D; not requiring ordered relaxation, but
still disadvantageous for massively parallel proce-
ssing because of the high cycle index)
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Difficulty Possible Solutions Status

• The mixed convection-diffusion opera- Treatment as elliptic operator on levels where Not precisely tried
tor with order p approximation, having ν >∼ (2p · 4 − 5)αh

p and as the non-elliptic
natural viscosity ν and artificial visco- advection operator otherwise
sity αh

p

• Closed characteristics (recirculating Using the above-mentioned scalar σ, form a TME cycles by methods
flows). Here uniformity of viscosity σ-dependent convergence test, to tell between (1) and (2) were shown
(including numerical viscosity) is slowness of open and closed characteristics in [BY3] and [YVB]
important for accuracy, while the (and possibly ignore the latter). Also based respectively. Method (3),
viscosity size is less important on σ, at recirculation regions use uniform which should be best for
(except at resolved boundary layers, (explicit) O(h) numerical viscosity, with con- massive parallelization,
discussed below). In fact, a uniform tinuation from large to small viscosity integra- has not been implemented
O(h) artificial viscosity can yield ted into the FMG algorithm. The cycles can
higher order approximations. Full employ one of the following 3 options.
convergence may also be less impor- (1) DCW method (using Defect Corrections
tant here (since in reality, too, steady within W cycles), with suitable over-
state may take exceedingly long to weighting of residuals [BY3]. Suitable only
establish) for O(h) discretizations.

(2) Effectively downstream relaxation ordering
(using alternate-direction sweeps) and
doubling of transferred residuals (for O(h)
discretization) [YVB].

(3) Semicoarsening, generally similar to [D1]

• Full-potential operator (u · ∇)2 − a
2∆, Any classical algorithm is suitable, but the TME well established

M0 = |u|/a <∼ .7 (uniformly elliptic) algorithm of the next case is also adequate
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Difficulty Possible Solutions Status

• Full potential .7 <∼ M0 <∼ 1.4 Relaxation marching downstream (for TME shown for the
transition to the supersonic case below) case M = 1 [D1].
together with semicoarsening in the Other cases have not
characteristic (cross-stream) direction yet been implemented

• Full potential 1.4 <∼ M0 Marching in the stream direction, possibly Not yet tried?
(uniformly hyperbolic, with the with a predictor-corrector procedure.
stream as the time-like direction, For full massive parallelization, however,
and with O(1) “Courant number”.) wave methods (extending standing wave

methods [Ira]) should be used
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Difficulty

• The “core operator”

Lc =




Q0 0 −ρ
2∆

0 Qκ −p∆

−∂p/∂ρ −∂p/∂ε Q
µ+λ




should be relaxed as part of relaxing
the compressible NS system, in the
case that ρ|u|h . max(λ, µ, κ).
In the case of alignment between the
grid and the flow, with meshsize h1

and h2 in the stream and cross-
stream directions, respectively, and
h2 ≤ h1 (e.g., in boundary layers),
the case where Lc need be relaxed is
when ρ|u|h2

2 . h1 max(λ, µ, κ).

In aerodynamics, λ, µ and κ are
comparable, so the case of interest is
|u|h2

2 ≤ νh1, where ν = µ/ρ

Possible Solutions Status

Best relaxation scheme depends on the flow parameters.
For example:
(1) If κ � ρ|u|h, then Qκ ≈ Q0 (in principal terms) and one Not tried

can use DGS with

M =




1 0 ρ
2∆

0 1 p∆

0 0 Q0




resulting in the need to relax the first two equations
each on an advection operator (see methods above), and
the third equation on the operator Q0Qµ+λ

− ρ
2
a
2∆.

In the case of interest the principal part of the latter
is
[
(µ + λ)Q0 + ρ

2
a
2
]
∆, so it can be relaxed

by the general method for relaxing a product opertor
(see L = L2L1 above).

(2) In the aerodynamics and aligned case of interest, the term Not tried
Q

µ+λ
in Lc is not principal. Therefore relaxation can easily

be conducted with the weighting (preconditioning) matrix

P =




1 0 0
−p ρ

2 0
0 0 1




and the distribution matrix

M =




0 1 0
0 −pρ/pε 1
1 0 0




yielding PLM whose principal part is its main diagonal, on
which separately appear the Laplace operator ∆, the
convection-diffusion operator Qκ where κ = pρρ

2
/(2ppε)

= 1.25κ (for air), and a free function

– 13 –



Difficulty Possible Solutions Status

• FDA factorizability question: The decom- (1) Examining several examples of con- (1) Further examination is needed
position of a system relaxation into its servative discretization of transonic
scalar factors depends on the equality of flows, the FDA terms in various
the different occurrences of the advection- occurrences of Q

µ+λ
turn out suffi-

diffusion operator Q (or Q
µ+λ

) appearing ciently close to each other (e.g.,

in PL, the prefactoring by P of a conser- only 4% discrepancy) to allow full
vative discretization L. However, for smooth- efficiency of the proposed relaxa-
characteristic convergence in relaxing a non- tion schemes.
elliptic discrete operator, important is not (2) Conservative schemes may be desig- (2) Some “genuinely multidimen-
only the differential operator it approximates, ned so that the various FDAs of sional upwind” schemes turn
but also its First Differential Approximation Q

µ+λ
are identical, or at least so out to yield factorizable

(FDA) terms in non-characteristic directions; that the scheme is still factori- schemes, e.g., in the subsonic
e.g., the cross-stream numerical viscosity zable. case in the control-volume
of Q. This may not be the same in the diffe- structured-grid context [DS2].
rent occurrences of Q, putting the factorization Further studies are in progress
into question (3) A general practical approach is a (3) Not tried

defect-correction relaxation: the
residuals are calculated by the given
PL system and fed into a DGS
relaxation scheme whose driving
factors may have different discreti-
zations (as long as their numerical
viscosities are not larger than those
in the PL system)
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Difficulty Possible Solutions Status

• High order discretization (away from (1) “Double discretization” schemes: Introduced 1978 [BD]. Success-
shocks) Use high-order only in calculating fully implemented in various

residuals transferred to the coarse elliptic cases (see description
grid, not in relaxation (unless the and refs in [G, §10.2]). Methods
high order scheme is preferable also for non-elliptic have not been
for h–f modes). tested beyond second order.

(2) However, in relaxing non-elliptic

factors (e.g., downstream relaxation Comment : High order approxi-
marching for convection operator) mations on unstructured grids
the high order must be used (e.g., by are very expensive
a predictor-corrector downstream
relaxation)
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Difficulty

• Albegraic turbulence models

employ the (compressible or incompressible)
Navier-Stokes equations, adding to the
laminar viscosity µ` (and similarly to λ` and
κ`) a turbulent viscosity µt (similarly λt, κt),
which is defined in terms of geometric
functions (such as the distance to the wall),
flow-dependent boundary-layer-wide (BLW)
parameters (such as the boundary layer
thickness, the maximum and minimum total
velocity across the layer, and the flow wall
friction) and in terms of the local total vorticity
ω = | curl u|. For example, the two-layer
Baldwin-Lomax model [BL], is defined in two
regions as follows:
(1) Outer layer . Here µt is defined only in

terms of distance from the boundary and
BLW parameters.

(2) Inner layer . Closer to the wall, µt = ρ`
2
ω,

where ` depends on the distance to the wall
and on BLW parameters. In the 2D incom-
pressible case, and neglecting the laminar
viscosity, the resulting principal operator,
on the vector of unknowns (ω, u, v, p), is

L =




−ω (uy − vx)∂y −(uy − vx)∂x 0
−A Qµ 0 ∂x

−B 0 Qµ ∂y

0 ∂x ∂y 0




where A = ρ`
2[2ux∂x + (uy + vx)∂y],

B = ρ`
2[2vy∂y + (uy + vx)∂x],

so that detL = ∆
{

ω∂s − 2ρ`
2(uy − vx)

×
[
vx∂xx − uy∂yy + (vy − ux)∂xy

]}

Possible Solutions

In the outer layer the principal operator, hence
also relaxation, are exactly as for the laminar
case, with µ = µt + µ`. The BLW parameters are
held unchanged during relaxation at scales finer
than the boundary-layer width. Only at a suitable
coarser level, where the cross-layer meshsize approa-
ches the layer width, the dependence of the BLW
parameters on the flow is relaxed together with
the flow equations themselves, by applying box
relaxation near the boundary (cf. the section on
boundary relaxation).

In the inner layer , suppose for example that the
coordinate along the wall is x, and
uy � max

{
|ux|, |vx|, |vy|

}
. Then the principal

operator takes the form

L =




−µ µ∂y −µ∂x 0
−µ∂y Qµ 0 ∂x

−µ∂x 0 Qµ ∂y

0 ∂x ∂y 0




A suitable distribution operator then is

M =




1 ∂y −∂x 0
0 1 0 −∂x

0 0 1 −∂y

0 µ∂x −µ∂y Qµ




yielding LM with principal terms only on the
main diagonal, where there appear the operators
∆ (for the continuity equation ghost function)
and u · ∇ − 2µ∂yy (for each of the momentum
equations). The latter is nonelliptic, and its
characteristics would often be aligned with the
grid (cf. the section on nonelliptic operators)

Status

TME should first
be demonstrated
for a simple
turbulence model,
such as the one
described here
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Difficulty Possible Solutions Status

• Chemically reacting flows At any grid point where any source term is principal TME should first
feature three types of difficulty (meaning: its production rate of species i per unit be demonstrated
(1) A set of N continuity equations, volume is large compared with max

(
h
−2

Di, h
−1

ρi|u|
)
, for a simple model

where N , the number of chemi- where Di is the local diffusion coefficient of species i) case; e.g. a 2D
cal species, may be quite large. it should be included in the principal matrix operator incompressible

(2) The nonlinear source terms in L. As a result, at each gridpiont the weighted-distri- inviscid flow
these equations may be very stiff. butive relaxation step (local inversion of the principal with two reacting

(3) Some densities at some (few) terms of PLM) may involve the inversion of a matrix species
points may become negative upon of size upto N × N . This would correspond to the
the coarse-to-fine FAS interpola- (relaxation part of the) point-implicit method [BM].
tion Fortunately, this will usually happen only on some

coarser multigrid levels and/or at some restricted
zones, thus consuming only relatively small work.

Nonlinearity is treated by an FAS in which, instead of
the fine-to-coarse transfers of densities ρ1, . . . , ρN

and
the coarse-to-fine interpolation of the changes δρ1, . . . ,

δρ
N

, transferred are the functions f1(ρ1), . . . , fN
(ρ

N
)

and interpolated are δf1(ρ1), . . . , δfN
(ρ

N
), where fi(ρi)

are properly chosen functions; e.g. fi(ρi) = log ρi, so

that after interpolation ρi = exp
(
fi(ρ

OLD

i ) + δfi(ρi)
)

> 0.
Furthermore, the continuity-equation residual restriction
should be conservative (strictly full weighting)
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Difficulty Possible Solutions Status

• Shocks

• Shock displacement question: A (small) An accurate shock displacement is obtained Full efficiency shown [DS]
displacement Should result from global if the fine-to-coarse residual transfer is con-
solution changes that occur on coarse servative (e.g., “full weighting”) and the
levels of the cycle. How can one obtain coarse-to-fine correction interpolation is fol-
an accurate displacement, when those lowed by local relaxation passes near the shock
levels are too coarse to resolve it?

• Relaxation near strong shocks Add extra relaxation passes, using general Not tried
robust schemes (e.g., box Kacmarz), until
all local residuals drop to their level away
from chocks

• Poor h-ellipticity of high-resolution Construction of new, genuinely multidimen- Developed in the context
schemes sional upwind schemes of unstructured triangular

grids [DS1]
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Difficulty Possible Solutions Status

• Boundary related difficulties

• Discretization near boundaries For best multigrid efficiency, use Carte- Ruge & Brandt devised a near-
sian coordinates throughout the domain, general-boundary discretization for
with boundary-fitted local grid patches, incompressible Euler on staggered
regarded as finer multigrid local levels Cartesian grid
[B77], [G]. Only crude (e.g., first order)
discretization is then needed near the
boundaries on the Cartesian grids

• Relaxation at and near boundaries: A general-type robust relaxation scheme, For uniformly elliptic equations it
Difficulties: e.g., box Kacmarz , throughout several- has been proved [RLMA], [RQMA]
(1) There is no smoothing analysis meshsize-wide zone near the boundary. and demonstrated computationally

in case the boundaries are not Box size in each direction should be (for cases of reentrant corners [Bai])
aligned with the grid. several meshsizes and the boxes should that the interior efficiency as predic-

(2) The fine-to-coarse residual weigh- have substantial overlap. One can afford ted by mode analysis (implying TME)
ting near boundaries is generally several passes of such a relaxation per can always be obtained. TME demon-
very imprecise, hence the resi- each full interior sweep since the zone strated (by Ruge & Brandt) for incom-
duals should be reduced there width is O(h1−ε), with 0 ≤ ε < 1. In pressible Euler on staggered cartesian
more than in the interior. particular, add near-boundary relaxation grids

(3) Larger residuals are created near passes after the FMG interpolation
boundaties upon coarse-to-fine (allowing the latter to be of lower order
interpolations (of solution or near the boundary). The local relaxation
corrections) passes should continue at least until all

local residuals have dropped well below
their global average magnitude
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Difficulty Possible Solutions Status

• Boundary layers (in the case Resolved by boundary-fitted local grid (Seepat- Description in [R88, §2.4]; not imple-
that they need be resolved). (ches, with local semi refinements: finer levels, in mented. The local refinement techni-
also grid adaptation below.) narrower layers near the boundary, have smaller ques for Poisson equation, with TME,

cross-layer meshsizes, allowing the physical cross- are demonstrated in [Bai]
stream viscosity to dominate over the numeri-
cal one. Additional terms in the governing equa-
tions (NS instead of Euler, or turbulent modelling
etc.) may be used in these patches. Downstream
marching relaxation and cross-stream semi
coarsening should feature in the multigrid cycles.
A “λ-FMG” kind of algorithm [G, §9.6], should
be employed, so that coarse FMG stages already
include local semi-refinements at the boundary,
thus effectively incorporating into the FMG
stages a process of continuation in Re

• Far-field artificial boundary Increasingly coarser grids covering increasingly Details of the algorithm have been
conditions: requiring in some larger domains. The size of each domain is worked out, and TME (or its equi-
cases non-local absorbing based on accuracy-to-work optimization valent accuracy-to-work relation) has
boundary conditions (ABC) criteria (similar to those in [B77, §8], [G, §9.5]), recently been demonstrated for the 2D
for some wave factor implying also a natural criterion for the largest Poisson equation in the unbounded

needed domain. On interior boundaries (boun- plane (cf. [ETNA, §4]). Techniques
daries of a grid residing in the interior of the for non-elliptic or indefinite cases
next coarser grid) the solution is interpolated have not been systematically studied
from the coarser grid. On such boundaries, if
ABC is at all needed, only high-frequency
components need be absorbed, for which the
ABC are local , and can be enforced as part of
the relaxation process (of the corresponding
wave factor)
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Difficulty Possible Solutions Status

• Small-scale singularities invisible Local relaxation passes around the singularities TME shown in elliptic cases [Rec]
on the next coarser grid, such as after return from the next coarser grid, together
small “islands” or “holes” in the with either one of the following three devices:
domain (e.g., an airplane smaller (a) Enlarging the singularity on the coarser grid.
than the meshsize of some coarser
grid) or small BC features (e.g., (b) Modifying the interior coarse-grid equation
small regions of Neumann BC in near the singularity.
otherwise Dirichlet BC) (c) If the coarse grid equations are not modified,

then the convergence is slow, but slow to
converge are just few very special compo-
nents. Hence slowness can be eliminated by
recombining iterants (see below)
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Difficulty Possible Solutions Status

• Grid-induced slow convergence One can avoid many of the following maladies
by using suitable multi-grid structures (descri-
bed below under “grid adaptation”)

• Large aspect ratios Either one of the following: TME has been shown in
(1) Block (part-line or part-plane) relaxation, a variety of elliptic cases

analyzed by mode analysis [B77].
(2) Semi coarsening [Arl], [Stages, §3.2] (often

natural, since the large aspect ratio is crea-
ted in the first place by semi refinements)
with relaxation “semi smoothing” analysis
[Stages, §2.1], [G, §3.3].

(3) Combinations of block relaxation in some
directions and semi coarsening in others

• Expanding grids Relaxation marching in the direction of increa-
sing meshsize; or distributive relaxation [Njm,
§6]

• Grid adaptation Use local patches of multigrid levels in creating Introduced in [B77] and
any desired local refinement, aspect ratio, [G], but tried only for
boundary fitting or even flow fitting (see [R88, §2.7]). Poisson equation near
Base refinement criteria on the fine-to-coarse singularities [Bai]
multigrid correction (τ). Adaptation can be
integrated into the λ-FMG algorithm together with
proper (e.g., Reynolds-number) continuations
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Difficulty Possible Solutions Status

• Stagnation point causing an Coarse-grid numerical viscosity depending TME shown in an example [BY3]
instability in the coarse-grid on the average (e.g., “full-weighting”) of
corrections the fine-grid numerical viscosity (not on

its injected value) [BY3, §4.5]

• A small number of slowly- A general method to expel few slow com-
converging components may ponents is by recombining iterants, or
arise in many situations, espe- equivalently, using the multigrid cycle as
cially when the “Possible Solu- a preconditioner for Krylov subspace acce-

tions” described in many of the leration [WO]. To inexpensively expel a
sections above are not fully imp- larger number of slow components (without
lemented. That “small number” executing many mg cycles and storing
would often slowly but unboun- many fine-grid iterants), iterants may also
dedly incrase with decreasing be recombined at various coarse levels of
meshsize the multigrid cycle [Rec], [WO]

– 23 –



References

[AJ] Jameson, A., Solution of the Euler equations for two dimensional transonic flow by a multigrid method, Appl. Math.

Comp. 13 (1983) 327–356.

[AMGT] Brandt, A., Algebraic multigrid theory: The symmetric case, in Preliminary Proc. Int. Multigrid Conf., Copper Moun-
tain, Colorado, April 6–8, 1983; Appl. Math. Comp. 19 (1986) 23–56.

[Arl] Arlinger, B., Multigrid technique applied to lifting transonic flow using full potential equation, SAAB-SCANIA Rep.
L-0-1 B439, 1978.

[Bai] Bai, D. and Brandt, A., Local mesh refinement multilevel techniques, SIAM J. Sci. Stat. Comp. 8 (1987) 109–134.

[BD] Brandt, A. and Dinar, N., Multi-grid solutions to elliptic flow problems, in Numerical Methods for Partial Differential

Equations (Parter, S., ed.), Academic Press, New York, 1979, pp. 53–147.

[BL] Baldwin, B. and Lomax, H., Thin-layer approximation and algebraic model for separated turbulent flows, AIAA Paper
78–257, Jan. 1978.

[BM] Bussing, T.R.A. and Murman, E.M., Finite-volume method for the calculation of compressible chemically reacting flows,
AIAA J. 26 (1988) 1070–1078.

[BY1] Brandt, A. and Yavneh, I., Inadequacy of first-order upwind difference scheme for some recirculating flows, J. Comp.

Phys. 93 (1991) 128–143.

[BY2] Brandt, A. and Yavneh, I., On multigrid solution of high-Reynolds incompressible entering flows, J. Comp. Phys. 101

(1992) 151–164.

[BY3] Brandt, A. and Yavneh, I., Accelerated multigrid convergence and high-Reynolds recirculating flows, SIAM J. Sci. Comp.

14 (1993) 607–626.

[B73] Brandt, A., Multi-level adaptive technique (MLAT) for fast numercal solutions to boundary value problems, in Proc.

3 rd Int. Conf. on Numerical Methods in Fluid Mechanics (Cabannes, H. and Temam, R., eds.), Lecture Notes in
Physics 18, Springer-Verlag, 1973, pp. 82–89.

[B77] Brandt, A., Multi-level adaptive solutions to boundary value problems, Math. Comp. 31 (1977) 333–390.

[D1] Brandt, A. and Diskin, B., Multigrid solvers for the non-aligned sonic flow: the constant coefficient case. To appear in
Computer and Fluids.

[D2] Brandt, A. and Diskin, B., Multigrid for non-aligned sonic flows.

[D3] Brandt, A. and Diskin, B., Efficient multigrid solvers for the linearized transonic full-potential operator.

– 24 –



[Dinar] Dinar, N., Fast Methods for the Numerical Solutions of Boundary Value Problems, Ph.D. Thesis, Weizmann Institute
of Science, Rehovot, 1979.

[DS] Sidilkover, D., Higher order accurate method for recovering shock location, portion of Ph.D. Thesis, Weizmann Institute
of Science, Rehovot, 1989.

[DS1] Sidilkover, D., A genuinely multidimensional upwind scheme and efficient multigrid solver for the compressible Euler
equations, ICASE Report 97–84, 1994.

[DS2] Sidilkover, D., Some approaches towards constructing optimally efficient multigrid solvers for the inviscid flow
equations, ICASE Report 97–39. Submitted to Comptuer and Fluids.

[ETNA] Brandt, A., The Gauss Center Research in Scientific Computation, Electronic Trans. Num. An. 6 (1997).

[Dym] Brandt, A. and Dym, J., Effective boundary treatment for the biharmonic Dirichlet problem, in Proc. 7th Copper

Mountain Conference on Multigrid Methods (N.D. Melson et al., eds.) NASA Conference Publication 3339, 1996,
pp. 97–108.

[G] Either [G82] or [G84].

[G82] Brandt, A., Guide to multigrid development, in Multigrid Methods (Hackbusch, W. and Trottenberg, U., eds.),
Springer-Verlag, 1982, pp. 220–312.

[G84] Brandt, A., Multigrid Techniques: 1984 Guide, with Applications to Fluid Dynamics, 1984, 191 pages, ISBN-3-88457-
081-1; GMD-Studien Nr. 85; Available from GMD-AIW, Postfach 1316, D-53731, St. Augustin 1, Germany, 1984.

[Ira] Livshits, I., Multigrid Solvers for Wave Equations, Ph.D. Thesis, Bar-Ilan University, 1995.

[K2] Kettler, R., Analysis and comparison of relaxation schemes in robust multigrid and preconditioned conjugte gradient
methods, in Multigrid Methods (Hackbusch, W. and Trottenberg, U., eds.), Lecture Notes in Math. 960, Springer-
Verlag, 1982.

[Lin] Linden, J., A multigrid method for solving the biharmonic equation on rectangular domains, Arbeitpapiere der GMD,
St. Augustin, 1985.

[NESP] Brandt, A., Multi-grid solvers for non-elliptic and singular-perturbation steady-state problems, Weizmann Institute
of Science, Rehovot, December 1981.

[Njm] Brandt, A., Multi-level adaptive techniques (MLAT) for singular perturbation problems, in Numerical Analysis of

Singular Perturbation Problems (Hemker, P.W. and Miller, J.J.H., eds.), Academic Press, New York, 1979, 53–142.

– 25 –



[Par] Brandt, A. and Greenwald, J., Parabolic multigrid revisited, in Multigrid Methods, III (Hackbusch, W. and Trottenberg,
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[Rec] Brandt, A. and Mikulinsky, V., Recombining iterants in multigrid algorithms and problems with small islands, SIAM J.

Sci. Comp. 16 (1995) 20–28.

[RLMA] Brandt, A., Rigorous local mode analysis of multigrid, in Preliminary Proc. 4 th Copper Mountain Conf. on Multigrid

Methods, Copper Mountain, Colorado, April 1989.

[RQMA] Brandt, A., Rigorous quantitative analysis of multigrid: I. Constant coefficients two level cycle with L2 norm, SIAM J.

Num. Anal. 31 (1994) 1695–1730.

[RS] Ruge, U. and Stueben, K., Algebraic multigrid, in Multigrid Methods (McCormick, S.F., ed.), SIAM, 1987.

[RSS] Roberts, T.W., Sidilkover, D. and Swanson, R.C., Textbook multigrid efficiency for the steady Euler equations, AIAA
Paper 97–1949, in 13th Computational Fluid Dynamics Conf., June 1997.

[R1] Rubbert, P.E., CFD and the changing world of airplane design, AIAA Wright Brothers Lecture, Anaheim, CA, 1994.

[R2] Vatsa, V.N. and Wedan, B.W., Development of a flexible and efficient multigrid code for 3-D Navier-Stokes equations
and its application to a grid-refinement study, Computers and Fluids 18(4) (1990) 391–403.

[R3] Garner, P., Meredith, P. and Stoner, R., Areas of future CFD development as illustrated by transport aircraft applica-
tions, AIAA Paper 91–1528, 1991.

[R88] Brandt, A., The Weizmann Institute Research in Multilevel Computation: 1988 Report, in Proc. 4 th Copper Mountain

Conf. on Multigrid Methods (Mandel, J. et al, eds.), SIAM, 1989, pp. 13–53.

[South] South, J.C. and Brandt, A., Application of a multi-level grid method to transonic flow calculations, in Transonic

Flow Problems in Turbo Machinery (Adam, T.C. and Platzer, M.F., eds.), Hemisphere, Washington, 1977, pp. 180–207.

[Stages] Brandt, A., Stages in developing multigrid solutions, in Proc. 2 nd Int. Congr. on Numerical Methods for Engineers

(Absi, E., Glowinski, R., Lascaux, P. and Veysseyre, H., eds.), Dunod, Paris, 1980, pp. 23–43.

[S9] Sonneveld, P., Wesseling, P. and de Zeeuw, P.M., Multigrid and conjugate gradient methods as convergence
acceleration techniques, in Multigrid Methods for Integral and Differential Equations (Paddon, D.J. and Holstein, H.,
eds.), Clarendon Press, 1985.

[T1] Ta’asan, S., Canonical forms of multidimensional steady state inviscid flows, ICASE Report 93–34, 1993.

– 26 –



[T2] Ta’asan, S., Optimal multigrid method for inviscid flows, Proc. European Multigrid Conf., EMG93, Amsterdam, July
1993.

[T3] Ta’asan, S., Canonical-variables multigrid method for steady-state Euler equations, Proc. 14th Int. Conf. on Numerical

Methods for Fluid Dynamics, Bangalore, India, 1994.

[T4] Ta’asan, S., Essentially optimal multigrid method for steady state Euler equations, 33rd Aerospace Sciences Meeting

and Exhibit , AIAA Report 95–0209, Reno, NV, January 1995.

[T5] Ta’asan, S., Essentially optimal multigrid method for steady state Euler equations, 33rd Aerospace Sciences Meeting

and Exhibit , AIAA Report 95–0209, Reno, NV, January 1995.

[T6] Ta’asan, S., Lectures on numerical solution of PDE (unpublished).

[WO] Washio, T. and Oosterlee, C.W., Krylov subspace acceleration for nonlinear multigrid schemes, Elec. Trans. Num. Anal.

(1998).

[YVB] Yavneh, I., Venner, C.H. and Brandt, A., Fast multigrid solution of the advection problem with closed characteristics,
J. Comp. Phys., submitted.

– 27 –


