
FAST CALCULATION OF MULTIPLE LINE INTEGRALS∗

A. BRANDT† AND J. DYM‡

SIAM J. SCI. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 20, No. 4, pp. 1417–1429

Abstract. A line integral is defined as the integral of two-dimensional data along a (one-
dimensional, straight) line of given length and orientation. Line integrals are used in various forms
of edge and line detectors in images and in the computation of the Radon transform. We present a
recursive algorithm which enables approximation of discretized line integrals at all lengths, orienta-
tions, and locations to within a prescribed error bound in at most O(n logn log logn) operations,
where n is the number of data points. Furthermore, for most applications (in particular, where even
small amounts of noise are present in the data) all of these integrals can be computed to the desired
accuracy in about 24n logn operations.

Key words. Radon transform, numerical integration

AMS subject classifications. 65D30, 65D05

PII. S1064827595285718

1. Introduction. Given two-dimensional data g(x, y), define a line integral to be
the (one-dimensional) integral of the data along a line of given length and orientation.
Numerous applications require computation of line integrals of various lengths at many
locations and in many directions. In this paper, we present a recursive algorithm
which enables computation of line integrals at all lengths, orientations, and locations
to within a given error bound in at most O(n log n log log n) operations, where n is
the number of data points. Only the base level of the algorithm actually accesses
the data to compute a set of short discretized integrals. The recursion step of the
algorithm utilizes already computed integrals to compute a new set of integrals at
double the length. This can be done with a constant number of operations per integral.
The main point of this article is to show that, using this quite straightforward idea,
approximations of the integrals can be computed to any desired accuracy.

Among the applications are edge and ridge detectors in image processing, which
compute differences between neighboring integrals to determine the presence of steep
slopes (edges) or peaks (ridges). A multilevel detector requires computation of these
differences at various lengths and orientations throughout the image. An example
of such a detector, using a precursor of the algorithm presented here, can be found
in [2]. Recent research on multilevel computation of completion fields [5] (used to
extract smooth curves in an image given raw output from a detector) used line integral
computations as presented here to generate input. A similar algorithm was presented
in [3, 4], where it was used to evaluate the Hough transform.

Another application is fast computation of the Radon transform. Inversion of
the Radon transform, required for X-ray tomography and synthetic aperture radar
(SAR) image reconstruction, among other applications, has been done using a data
structure similar in nature to the one presented here [1]. The transform can also be

∗Received by the editors May 4, 1995; accepted for publication (in revised form) September 13,
1997; published electronically March 23, 1999. This research was supported by Israel Ministry of
Science grant 4135193 and by the Carl F. Gauss Minerva Center for Scientific Computations.

http://www.siam.org/journals/sisc/20-4/28571.html
†Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science,

Rehovot 76100, Israel (achi@wisdom.weizmann.ac.il).
‡Department of Mathematics, University of Southern California, Los Angeles, CA. Current ad-

dress: Unigraphics Solutions Inc., 10824 Hope St., Cypress, CA, 90630 (jdym@cams.usc.edu).

1417

1418 A. BRANDT AND J. DYM

inverted, in principle, by directly inverting the construction algorithm presented in
this paper. This is the subject of current research.

In the next section we examine the relationship between the minimal resolution
(angular and spatial) and the integration length, concluding that the total necessary
number of computed integrals at any integration length is independent of the length.
The following section describes an algorithm for approximating the integrals, building
long integrals out of already-computed short ones using interpolation to evaluate inte-
grals at new locations and orientations. It is also shown that doubling the resolution
at which the integrals are computed improves the accuracy of the approximation by
2p (p is the order of interpolation), while increasing the work by a factor of 4. In
the final section, the algorithm is tested on a variety of targets, both establishing the
correctness of the algorithm and providing an indication as to the necessary accuracy.
In particular, when noise is added to the image, even in minute amounts, the ap-
proximation algorithm can be applied at minimal resolution without significant loss
of accuracy. The total operation count will then be about 24n log n.

2. Integral resolution. Let continuous data g(x, y) be given in a two-dimen-
sional domain. Denote by F (x, L, θ) the normalized line integral of length L, centered
at x = (x, y) at orientation θ; i.e.,

F (x, L, θ) =
1

L

∫ L
2

−L2
g(x+ γ cos θ, y + γ sin θ)dγ.(1)

A typical task is to compute this integral at “all” locations and orientations, either
for one (long) length or for a number of lengths. The quotation marks around “all”
indicate that, although locations and orientations can take on a continuous range of
values, minimal smoothness assumptions on g(x, y) make it necessary to compute only
a finite number. Such assumptions are always implied, e.g., by the data being given
in some spatially discretized form, say, on a grid. The integral at interim orientation
values can be computed to an arbitrary degree of accuracy by interpolation. The
desired accuracy of the interpolation in between computed points will determine the
minimal angular and spatial resolutions.

Aside from its dependence on the desired accuracy, the necessary resolution is also
related to the integration length L. Assume that, given an evaluation at (x, L, θ), we
want to estimate the integral at a nearby angle θ + ξ. Using (1), an approximation
can be obtained by

F (x, L, θ + ξ) =
1

L

∫ L
2

−L2
g(x+ γ cos(θ + ξ), y + γ sin(θ + ξ))dγ

≈ F (x, L, θ)

+
ξ

L

∫ L
2

−L2
γ [− sin θgx(x+ γ cos θ, y + γ sin θ)

+ cos θgy(x+ γ cos θ, y + γ sin θ)] dγ

= F (x, L, θ) +R

with

|R| ≤ ξL

4
max |∇g|.

FAST CALCULATION OF MULTIPLE LINE INTEGRALS 1419

This equation can also be viewed as evaluating the error incurred by using F (x, L, θ)
as an approximation for F (x, L, θ + ξ). Since the dominant error term is a multiple
of Lξ, the conclusion is that, for a given accuracy, the minimal angular resolution
is proportional to the integration length. In particular, if the integration length is
doubled, the number of angles computed per site must also be doubled.

Next, assume that given the integral at (x, L, θ) we want to estimate the value
at a nearby point x̂ = x + ε(cos θ, sin θ), a neighboring point along the direction of
integration. Then

F (x̂, L, θ) = F (x, L, θ)− 1

L

∫ −L2 +ε

−L2
g(x+ γ cos θ, y + γ sin θ)dγ

+
1

L

∫ L
2 +ε

L
2

g(x+ γ cos θ, y + γ sin θ)dγ

= F (x, L, θ) +R

with

|R| ≤ 2ε

L
max |g|.

Thus, the error incurred by using F (x, L, θ) for F (x̂, L, θ) is proportional to ε
L , indi-

cating that the minimal spatial resolution in the direction of integration is inversely
proportional to the integration length. In particular, when doubling the integration
length, the number of evaluation points may be halved.

The spatial resolution perpendicular to the direction of integration will not depend
on the integration length. It will be determined by the bandwidth of the data. (Later
we will show that, in order to compute the integrals quickly and accurately, the
perpendicular spatial resolution must be linked to the angular resolution at the base
level.)

The direct consequence of the necessary angular and spatial resolutions is that the
total number of integrals at each length L is independent of L. The actual number
will be dictated by the desired accuracy. In what follows we will find the rate at
which the accuracy (following deterioration by several interpolation steps, as will be
described) rises with the resolution.

Finally, one might ask how densely the parameter L itself need be evaluated.
Well,

F (x, L+ ε, θ) ≈ F (x, L, θ) + εFL(x, L, θ).(2)

The derivative of F with respect to the length parameter is

FL = −F
L

+
1

L

[
g

(
x +

L

2
(cos θ, sin θ)

)
+ g

(
x− L

2
(cos θ, sin θ)

)]
.

Thus, the last term in (2) is proportional to ε
L , so the sampling distance for L is

directly proportional to L itself, meaning that L may be incremented by a constant
factor per level.

3. Integral construction. In all practical digital applications, what is com-
puted is some discrete approximization of the line integrals. One possible discretiza-
tion is presented, followed by a description of a recursive algorithm for approximating

1420 A. BRANDT AND J. DYM

Fig. 1. Integral discretization. At each of the points marked along the integration line, the
value is approximated by interpolation from the given (black) datapoints.

the discretized integrals. In the base level a set of integrals at an initial (short) length
is computed directly from the data. The recursion takes a set of integrals at a given
length and uses them to compute a set of integrals at double the length, doubling the
angular resolution and halving the spatial resolution in the direction of integration.

Discrete approximation. Figure 1 depicts one possible discretization (there
are many others) of F (x, L, θ) for |θ| ≤ π

4 . The data value at points where the
integration line intersects a vertical grid line will be computed by interpolation from
the data points on that line.1 The integral will then be computed using the trapezoid
rule, under which the integral over each subinterval is approximated by the average
of its endpoints multiplied by its length. For example, the normalized integral for
Figure 1 will be given by the sum of the three interior points plus the average of the
endpoints, divided by four. For π

4 ≤ |θ| ≤ π
2 , the same discretization applies, except

that the data is interpolated at points where the integration line intersects horizontal
grid lines.

Algorithm: Base level. The base level of the computation is the only one
to actually access the data. Using the above discretization (or any other), a set
of integrals is computed at initial spatial and angular resolutions for some initial
integration length, all the values of which have yet to be determined. In fact, there
are two independent spatial resolutions, one along the direction of integration, the
other perpendicular to it. The second will be seen (in this algorithm’s case) to be
linked to the angular resolution.

Two examples of initial parameter settings appear in Figure 2. In each, the initial
integration length is two (measured in L∞ norm; this way all integration lines start,
end, and are centered on grid lines). In the first diagram, eight integrals are computed
per point. Shown are the integrals “starting from” a single point. (The integration
directions will be limited to −π2 < θ ≤ π

2 , thus integrals “start” at the left.) At this
resolution, every integral starts and ends at a grid point (computing at equal intervals
in tan θ (or cot θ if |θ| > π

4); this is convenient for the length doubling stage).
The second diagram in Figure 2 shows doubled resolution. Now, sixteen directions

are computed from each gridpoint.2 Note that, in order to make the coverage uniform,

1Interpolation is mentioned in three different contexts in this paper. The first was implicit
when discussing the necessary resolutions for the integral. There, each computed point will usually
represent the integral value for its immediate neighborhood, which is equivalent to first-order inter-
polation. The second mention is here, and the third will be to interpolate already computed integrals
to estimate the value of an integral in a new direction. The relation between the second and third
interpolations will be discussed later.

2They can be efficiently computed by initializing the integrals at “single resolution” (eight per
point) on a grid with half the meshsize, then using the length-doubling algorithm (next section).
Finer initializations can be handled similarly.

FAST CALCULATION OF MULTIPLE LINE INTEGRALS 1421

(a) (b)

Fig. 2. Initial resolutions. (a) Eight integrals starting from a point. (b) Doubled resolution,
sixteen integrals starting from a point. At midway points, either all directions with |θ| ≤ π

4
or those

with |θ| ≥ π
4

are computed, nine in either case.

(a) (b)

Fig. 3. Building integrals of length four (dotted lines) from integrals of length two (solid lines).
(a) For a pre-existing direction, by taking the average of two length-two integrals in that direction.
(b) For a new direction, by averaging the four nearest integrals.

all directions with −π4 ≤ θ ≤ π
4 will be computed starting also from midway points on

the vertical grid lines, while directions with |θ| ≥ π
4 will be computed starting from

midway horizontal gridline points. Thus, the number of computed integrals will grow
by a factor of approximately four with each doubling of the initial resolution.

Length doubling. The integrals of length 2L are constructed using those of
length L. As shown earlier, the angular resolution should double when the length
does. Thus, only half of the directions for length 2L exist at length L. They can
be computed by taking the average of two length L integrals with one coinciding
endpoint (see Figure 3(a)).

The other length-2L directions have not been computed at length L. However,
if the angular resolution is fine enough, a very good approximation can be obtained
by interpolating nearby directions. In Figure 3(b) the average of four length-two
integrals is used to create a length-four integral. This can be viewed as linearly
interpolating the two nearest directions to approximate the new direction at length
two, then creating a length-four operator as in Figure 3(a). This is not the only way to

1422 A. BRANDT AND J. DYM

do it—higher orders of interpolation can be used. In this case, more length-L integrals
will participate in the approximation of each new length-2L direction. The angular
and spatial resolution on the one hand, and the order of interpolation on the other,
determine the accuracy of the approximation. Note that the length-four integrals in
Figure 3 are exactly the discrete integrals of Figure 1 if linear interpolation is used in
the latter. This, however, is not true for longer integration lengths.

Accuracy analysis. Denote by H the meshsize on which the data is given and
by h the perpendicular integration meshsize (see Figure 4). Note that the latter
is constant at each level of the algorithm, depending only on the initial sampling
resolution. If the order of interpolation is p, the exact (discretized, cf. Figure 1)
integral is F̃ , and the approximated one is F , then the error caused by a single
interpolation step can be estimated using

F = F̃ + (δh)pF̃ (p)

with δ < 1
2 . The pth derivative of F̃ is along the direction of interpolation,3 at some

intermediate point. The key observation is that since the data is given at intervals
of H and assumed to vary smoothly between datapoints, the numerical estimate for

F̃ (p) will be proportional to F̃
(cH)p . The relative error incurred by using F for F̃ is

thus bounded by

|Erel| <
(
δh

cH

)p
.(3)

Thus, halving the integral meshsize h should result in reduction of the error by a
factor of 2p. There is a catch, however. When discretizing F̃ , interpolation was
used to evaluate points on the integration line from the given data points (Figure 1).
The above formula bounding the error holds rigorously only if the data interpolation
has p continuous derivatives (piecewise polynomial interpolation of any order has no
continuous derivatives; cubic splines have two). In numerical experimentation we
find that this requirement can be relaxed somewhat and fewer continuous derivatives
(p− 2) are needed for the formula to hold approximately.

The error estimate also allows computation of an upper bound for the necessary
work to calculate all the integrals. Assuming an identical error at each of l levels, the
final result will be

3For a given integration length L, F = F (x, y, θ) is a three-variable function. The derivatives
in the direction of the interpolation are along lines in the x − θ or y − θ planes. A more rigorous
definition is unnecessary, as the main issue is the order of the error.

FAST CALCULATION OF MULTIPLE LINE INTEGRALS 1423

H

h

Fig. 4. Meshsizes for accuracy computation. H is the data meshsize (and the emphasized
points are datapoints). h is the integration meshsize, and all the points are integration meshpoints
(points at which integrals start and end). Note that the integration mesh is denser than the data
mesh in one direction only (this diagram relates to integrals with direction nearer horizontal; for
near-vertical integrals the integration mesh will be dense on horizontal lines).

F ≈ F̃
(

1 +

(
δh

cH

)p)l
.

If the desired relative accuracy is q, then an acceptable approximation will be obtained
if (

1 +

(
δh

cH

)p)l
≈ 1 + q,

that is,

l

(
δh

cH

)p
≈ q.

The desired value of q will be discussed later. Now, typically, the maximal length
of the integrals is nearly equal to the size of the image. Therefore, l ≈ log n and h
should satisfy

H

h
∝ (log n)

1
p .(4)

Thus, for practical values, h is very weakly dependent on n. In practice it appears
that the error grows slower than exponentially per level, so the upper bound is not
tight (and the dependence of h on n even weaker).

The work (operation count) is quadratic in H
h , since the number of integrals

computed is quadrupled with each resolution doubling (double the angles at double
the points). When h = H, the entire set of integrals can be computed in O(pn log n)
operations, O(pn) operations per level times O(log n) levels. Combining with (4), the
total work for the entire computation is bounded by

W = O
(
pn(log n)(1+ 2

p)
)
.

This figure will be minimized by setting p = 2 ln logn, arriving at a final upper bound
on the work count of

W = O(n log n log log n).

1424 A. BRANDT AND J. DYM

Desired accuracy. In the above discussion it was shown that, with the proper
investment of computational effort, it is possible to attain practically unlimited accu-
racy. A more difficult question to answer is how much accuracy is actually needed.
To properly address this question, we must carefully determine what exactly is being
calculated and what it is we want to calculate.

When defining the line integral in (1), the underlying function g was assumed
to be continuous, defined over the entire domain. The discrete integral depicted in
Figure 1, however, uses a discretized data function, defined only at the grid points.
The discretization can be done in a variety of ways, for example, sampling (not usually
the case in practical applications) or local averaging of g around the datapoints. The
interpolation used to define the discrete integral extends the definition of the discrete
function to the entire domain. The extended function will be denoted by g̃. It is this,
not g, that is integrated by the discrete integral!

The approximating algorithm can efficiently calculate the integrals of g̃ to prac-
tically arbitrary accuracy. However, since the desired calculation is actually of the
integrals of g, the approximation error, ||F − F̃ ||, need not be much smaller than the
discretization error, ||F̃ − Fg||, Fg denoting the “true” integrals of g. Restating, the
accuracy of the approximations should not greatly exceed that of the discretization.

Variations. Different applications may require slight variations of the algorithm
as described. A simple example is the case where it is desired to compute integrals
over the entire image (as in a Radon transform). If the image is of size 2k, this can
be most efficiently done if the integral centers (and starting and ending points) are
moved to be midway between the pixels, rather than on gridlines. All this does is
change the integration rule of Figure 1 from trapezoid to midpoint.

Computing a Radon transform with our algorithm results in different transversal
spacings between integrals at different angles. For example, if integrals at θ = 0 are
evaluated with distance h between integrals, the distance for θ = π

4 will be h√
2
. Also,

at sublevels, the distance between integrals in the same direction along the integration
line is likewise angle dependent. An alternate framework can be designed (similar to
that of [1]) in which the integrals are uniformly spaced both in the transversal and
parallel directions. In this case, integrals in each direction will be evaluated on a
grid oriented in that particular direction. In Figure 5, this type of grid is illustrated,
using two directions and three integrals along each line. Multilevel construction of
longer integrals proceeds as before, interpolating adjacent directions to form new
ones. However, the interpolation coefficients will no longer be the same for every new
integral—rather, for each, the nearest shorter integrals will have to be determined
and interpolation coefficients computed accordingly.

An alternate way to overcome the nonuniform spacing problem (in the Radon
transform case, where equispacing is really necessary only at the final stage of the
algorithm) is to interpolate the integrals obtained by the algorithm to an equispaced
grid.

4. Numerical experiments. The approximation algorithm can be validated by
testing it on a variety of synthetic images, namely, smooth data (simulating the back-
ground), data consisting of a line (nearly in the direction of integration—simulating
the target), and noise (simulating noise). There are two interesting aspects of the
test:

1. Demonstrating that the approximating algorithm indeed converges to the
discrete integral at the rates predicted by (3).

FAST CALCULATION OF MULTIPLE LINE INTEGRALS 1425

Fig. 5. Equispaced grid (two directions shown).

Table 1
Average (worst case) relative approximation error for smooth data. The discretized images are

sinusoids of the form g̃(i, j) = 1+sin i/w for various w. The third column shows the average relative
discretization error.

w L Disc. err. H
h

= 1 H
h

= 2 H
h

= 4

8 .092% .13% (.16%) .030% (.039%) .0074% (.010%)
4 32 .025% .16% (.30%) .038% (.073%) .0093% (.018%)

128 .008% .11% (.35%) .028% (.094%) .0070% (.025%)
8 .38% .64% (.85%) .16% (.21%) .039% (.050%)

2 32 .11% .66% (1.5%) .16% (.38%) .043% (.075%)
128 .026% .42% (1.6%) .11% (.45%) .029% (.12%)
8 .54% 1.0% (1.8%) .38% (.59%) .11% (.17%)

1 32 .12% 1.0% (2.9%) .34% (.97%) .09% (.30%)
128 .034% .58% (3.3%) .21% (1.1%) .062% (.35%)

2. Determining the minimal necessary resolution (maximal h) for which the
approximation error is lower than the discretization error.

Smooth data. For smooth data, the function can be discretized by sampling.
The underlying function g was chosen as g(x, y) = 1 + sin y/w for various values of
w. Thus, at the datapoints, g̃(i, j) = 1 + sin i/w (the y axis aligned with the row
index i). At the center of the image, the integral is computed for all directions with
0 ≤ θ ≤ π

4 in three different ways:

1. The true integral, It. This is calculated numerically, using the underlying
function values g(x, y) = 1 + sin y/w along the integration line.

2. The discrete integral, Id. Here, g̃ is integrated (directly from the image),
using interpolation along the vertical gridlines and trapezoid integration, as
in Figure 1.

3. The approximated integral Ia, using the algorithm described above.

As has been pointed out, (3) is rigorously valid only if the interpolated data
function g̃ has p continuous derivatives. Thus, if linear interpolation is to be used for
the approximating algorithm, cubic splines should be used to interpolate the data.
(Later it will be shown that p−2 continuous derivatives are “almost” enough, resulting
in near-optimal convergence.)

Table 1 shows the relative approximation error | Ia−IdId
| (average over all directions

and worst case) for three values of w with comparison to the average discretization

1426 A. BRANDT AND J. DYM

Table 2
Average (worst case) approximation error as a function of interpolation. In these examples,

the data was a sinusoid of the form g̃(i, j) = 1 + sin i/2. Different interpolations were used for
the integral discretization (linear and cubic piecewise polynomial and cubic splines) and the length
doubling process (linear and cubic). The comparison is for integrals of length 128.

Disc. int. Doubling H
h

= 1 H
h

= 2 H
h

= 4
and error int.

linear linear .24% (.86%) .070% (.27%) .025% (.14%)
.28% cubic .24% (1.0%) .062% (.25%) .018% (.13%)
cubic linear .41% (1.6%) .11% (.45%) .028% (.12%)
.031% cubic .0082% (.025%) .0021% (.0092%) .0007% (.0052%)
spline linear .42% (1.6%) .11% (.45%) .029% (.12%)
.026% cubic .013% (.048%) .0009% (.0035%) .0001% (.0003%)

error, | It−IdIt
|. Cubic splines are used to discretize, linear interpolation to approximate.

The quadratic decrease of the error with H
h is readily apparent (for w = 1, only for h

smaller than H
2). For this particular case, the discretization error is very low, so that

h may be at most H
2 , sometimes less, for the approximation error to reach the level

of the discretization error. However, this is a rather special case, where it was known
that there were no high frequencies or noise in the data, enabling discretization by
sampling without fear of degradation due to aliasing phenomena. For more generally
used discretizations, and especially for noisy images, extra resolution (h < H) will
not usually be necessary (see examples below).

The discretization and approximation can be done with a variety of interpolation
operators. Table 2 shows a number of these, applied to one of the data sinusoids of
the previous table (w = 2). The best discretization is obtained using splines, with
piecewise cubic interpolation nearly as good. Linear interpolation when discretizing
gives a significantly worse result. As for the approximating algorithm’s interpolater,
the rate of decrease in the error is identical (nearly four for each halving of h) unless
splines are used—then the cubic interpolater begins to show some of its fourth-order
nature with error reduction of more than ten per h-halving (full fourth-order behavior
is to be expected only if quintic splines are used for discretization). The low error for
cubic discretization coupled with cubic approximation may be due to the smoothness
of the underlying function. In the other examples shown below this low error does
not occur.

The results seem to indicate that p − 2 continuous derivatives suffice to nearly
achieve the maximal approximation convergence rate.

Lines. One of the applications of the multiple integral calculation is detection
of narrow one-dimensional features (e.g., lines, edges) in a noisy image. Thus it is of
importance to check that the approximating method performs well for this type of
data.

The lines used as targets are defined (prior to discretization) by a rectangle with
some width and length at chosen center and orientation. The strength of the line is
an additional parameter. When discretizing, each image point represents an H ×H
square with assigned value equal to the fraction of the square covered by the line
rectangle. In other words, the data is discretized by averaging the underlying image
over the area of one pixel.

For 128 orientations equally spaced between 0 and π
4 , a line was drawn, centered

at the middle of the image, with width
√

2H and “infinitely” long (longer than the

FAST CALCULATION OF MULTIPLE LINE INTEGRALS 1427

Table 3
Average (worst case) approximation error as a function of interpolation. Errors are the average

of the nearest integral for 128 lines centered at the middle of the image in various orientations. The
comparison is for integrals of length 128.

Disc. int. Doubling H
h

= 1 H
h

= 2 H
h

= 4
and error int.

linear linear 11% (19%) 2.8% (5.2%) .72% (1.8%)
17% cubic 3.6% (9.7%) 1.8% (3.7%) .53% (1.2%)
cubic linear 16% (25%) 4.2% (6.7%) 1.1% (1.9%)
9% cubic 3.6% (6.8%) .50% (1.4%) .19% (.50%)

spline linear 19% (29%) 5.3% (8.2%) 1.4% (2.0%)
4% cubic 5.9% (10%) .63% (1.0%) .044% (.077%)

longest integration length). For each line, the integral in the direction nearest the
line is computed, from the underlying image, from the discretized data, and by the
approximating method. The results (dependent on the discretization interpolation
and the approximation) are shown in Table 3.

The results are similar in nature to those obtained for smooth targets, although
the actual numbers are somewhat worse, as was to be expected. Again, discretization
using splines is best, piecewise cubic interpolation somewhat worse, and piecewise lin-
ear interpolation substantially poorer. And again, cubic length doubling shows some
of its fourth-order character only when spline interpolation is used in the discretiza-
tion, showing improvement by a factor of about 10 with each meshsize halving. For
all other cases tested the improvement is by about 4 per halving.

The choice of base interpolation has no effect on the complexity of the total al-
gorithm (as this interpolation is used only in the lowest level, and even computing
splines is only O(n)), but, at least for these synthetic targets, it may affect the out-
come. (If there is noise in the data, as is usually the case, this is less true, as will
soon become evident.) For the better discretizations, straightforward use of linear
interpolation (for doubling) with h = H may not provide an adequate approximation.
However, using cubic interpolation (doubling the work) may be sufficient. The desired
accuracy may also be attained by halving the meshsize once (this is a fourfold increase
in the work). Doing both (high-order doubling interpolation and smaller meshsizes)
shouldn’t be necessary except in very extreme cases.

Noise. The addition of noise to the target alters the conclusions one might have
prematurely drawn from the previous experiments. Noise prevents the discrete in-
tegral from reaching the true (noise-free) integral’s value. The degradation due to
noise can thus be regarded, in this context, as another form of discretization error.
The presence of noise, even in very small amounts, blurs the distinction between the
different discretization methods.

Table 4 shows some results for an extremely simple target—a flat one (all points
assigned value 1.0). Gaussian noise (at varying variances) has been added to each
image point. The discretization error is the relative difference between the discrete
integral and the noise-free true integral. The approximation error is, as usual, the
relative difference between the directly computed discrete integral and the integral
computed using the doubling algorithm. The discretization error is entirely due to
the noise and it is practically independent of the discretization method. As is to be
expected, the effect of the noise decreases with increasing integration lengths. For the
lengths in Table 4, using linear interpolation for the doubling (with h = H) brings
the approximation error well under the discretization error level.

1428 A. BRANDT AND J. DYM

Table 4
Average discretization and approximation error with noise. H/h = 1 and doubling interpolation

is linear throughout. Gaussian noise with different standard deviations σ was added to a flat target
(all elements 1.0). The discretization error measures the difference between the discrete integral and
the noise-free true integral.

Disc. int. Int. length σ = .03 σ = .1 σ = .3
Disc. App. Disc. App. Disc. App.

8 .70% .18% 4.3% .35% 15 % 1.1%
linear 32 .42% .09% 1.3% .32% 4.0% .99%

128 .24% .06% .68% .21% 2.1% .64%
8 .70% .17% 4.5% .39% 16 % 1.3%

cubic 32 .45% .11% 1.4% .35% 4.3% 1.1%
128 .25% .08% .73% .25% 2.2% .74%
8 .68% .19% 4.7% 1.1% 16 % 1.8%

spline 32 .46% .13% 1.5% .99% 4.6% 1.3%
128 .27% .09% .78% .64% 2.4% .91%

Table 5
Same as above, for a sinusoid (w = 2). All results are for integration length 128.

Disc. int. σ = .03 σ = .05 σ = .1
Disc. App. Disc. App. Disc. App.

linear .38% .25% .50% .26% .84% .31%
cubic .25% .41% .41% .42% .83% .46%
spline .26% .42% .43% .43% .87% .50%

The same holds true if noise is added to a nontrivial target. Table 5 shows results
when noise is added to the sinusoid target used in Table 2. Only at the lowest level of
noise (σ = .03) is the use of high-order discretization methods in any way justifiable.
For most applications, linear interpolation for doubling at H/h = 1 will give a close
enough approximation. Higher orders or more integration points can substantially
reduce error only for very low noise levels. (Using them will reduce approximation
error, but not total error.)

5. Summary. An algorithm has been presented, efficiently approximating the
discrete line integral in a two-dimensional image at all locations, orientations, and
lengths. The algorithm utilizes already-computed integrals to create new ones of
double the length. The accuracy of the approximation is a function of the initial
density of the base-level integrals and the order of interpolation used in the length
doubling. For most applications, the algorithm gives sufficient accuracy using linear
interpolation with the integrals computed on the same mesh that the data is given
on. Computing all the integrals in this manner requires about 24n log n floating point
operations, each either an addition or a constant multiplication. In some extreme
cases, higher-order interpolation and/or denser initialization of the integrals may be
required. In any case the total work need not be more than O(n log n log log n).

FAST CALCULATION OF MULTIPLE LINE INTEGRALS 1429

REFERENCES

[1] A. Brandt, J. Mann, M. Brodski, and M. Galun, A fast and accurate inversion of the Radon
transform, SIAM J. Appl. Math., to appear.

[2] J. Dym, Multilevel Methods for Early Vision, Ph.D. thesis, Weizmann Institute of Science,
Rehovot, Israel, 1994.

[3] W. A. Götz, Ein Schnelle Diskrete Radon Transformation Basierend auf reckursiv definiertern
Digitalen Geraden, Ph.D. thesis, University of Innsbruck, Innsbruck, Austria, 1993.

[4] W. A. Götz and H. G. Druckmüller, A fast digital Radon transform—An efficient means for
evaluating the Hough transform, Pattern Recognition, 28 (1996), pp. 711–718.

[5] E. Sharon, A. Brandt, and R. Basri, Completion energies and scale, Proceedings of IEEE
CVPR, 1997, Puerto Rico, pp. 884–890.

