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Abstract. An efficient multigrid approach for solving a discretized elliptic equation whose
boundary values are determined in part by integral relations is developed, analyzed, and tested. The
algorithm is motivated by a problem that is solved during integration of the 3D quasigeostrophic
(QG) equations, which model large-scale rotating stratified flows, where the integral constraints
represent mass conservation.
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1. Introduction. Elliptic partial differential equations (PDEs) are typically
posed as boundary-value problems, where the differential equation has to be satisfied
inside the domain of solution, while given conditions are imposed on the boundary:
usually the value of the solution or its normal derivative or some combination thereof.
In some applications, however, some of the boundary conditions are replaced by in-
tegral constraints. Such constraints might be related to certain conserved physical
properties, such as mass or energy, or they might be artificially imposed relations
that lead to a better conditioned problem (see [1, section 5.6] and references therein.)

Multigrid methods are amongst the most effective solvers of discretized elliptic
boundary-value problems. Typically, the amount of computational work required to
solve such problems to the level of accuracy allowed by the discretization is just a
few work units, where a work unit is the amount of computational work required for
discretizing the problem on the target grid (e.g., calculating the residuals at every fine-
grid point). Brandt [1] suggests that similar efficiency can be obtained for problems
involving integral constraints with just a few length-scales (typically domain-size),
such as one or a few moments of the solution field. The proposed approach is to
enforce such constraints only on very coarse grids, while not treating them at all on
the fine grids. But in the present work we are concerned with integral constraints that
affect many, or even all, scales of the solution.

We consider a second-order elliptic PDE of the form

Lu = ∇ · (a(x, y, z)∇u) + (g(x, y, z)uz)z = f(x, y, z), (x, y, z) ∈ Ω,(1)

where u is unknown, g and a are uniformly positive (hence, L is elliptic), f is given,
∇ = (∂x, ∂y), and the subscripts denote partial derivatives. We consider cylindrical
domains of the form Ω = Ωhoriz×(0, D), where Ωhoriz is some simply connected, open
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domain in the (x, y) plane. The concept of our method, however, is not restricted
to such simple geometries. At the “top” and “bottom” boundaries, homogeneous
Neumann conditions are imposed:

uz(x, y, 0) = uz(x, y,D) = 0, (x, y) ∈ Ωhoriz.(2)

The lateral boundary conditions are given by

u(x, y, z) = U(z), (x, y, z) ∈ ∂Ωhoriz × [0, D],(3)

where U(z) is an unknown function, which is determined implicitly by the following
integral constraint:

〈u〉(z) def
= |Ωhoriz|−1

∫ ∫
Ωhoriz

u(x, y, z) dx dy = F (z),(4)

where F (z) is given. Here, | · | denotes area. Equation (4) implies that 〈u〉—the hori-
zontal average of u—is imposed for all z ∈ [0, D].

This completes the formulation of the problem. Our motivation comes from re-
duced models of large-scale rotating stratified flows, such as the quasigeostrophic (QG)
equations [7]. The function g (which only varies with z in QG) then represents the
inverse of the stratification parameter, and the variation of the integral relations (4)
over time determines the mass that is gained or lost at every height-level. Normally,
F (z) ≡ 0.

In section 2 we analyze the system (1)–(4) and show that the problem is well-
posed under some simplifying assumptions. In section 3 we pose a simplified problem
in 2D (for the purpose of analysis) and a finite-difference discretization. In section 4
we present a “naive” algorithm, whose convergence is provable but slow. In section
5 we present a fast algorithm, based on multigrid methods, followed by numerical
tests which appear in section 6. In section 7 we modify the basic algorithm in order
to improve its robustness, by employing line relaxation and partial coarsening, and
demonstrate the efficacy of this algorithm by numerical tests. All the numerical tests
are carried out for the 3D problem. Section 8 presents conclusions.

2. Analysis of the separable case. Assume a = a(x, y), and g = g(z). This
separability assumption holds in some of the geophysical-flow problems which mo-
tivate this work. There then exists a complete orthogonal system of eigenfunctions,
Ik(z) (in particular such that satisfy the top and bottom homogeneous Neumann
boundary conditions of (1)–(4)), and corresponding negative (real) eigenvalues, −αk,
which satisfy

d

dz

(
g(z)

d

dz
Ik(z)

)
= −αkIk(z) .(5)

Furthermore, for any continuous function u with continuous first and second deriva-
tives, which satisfies the top and bottom boundary conditions, the (unique) expansion,

u(x, y, z) =

∞∑
k=0

uk(x, y) Ik(z) ,(6)

converges absolutely and uniformly (see discussions of the Sturm–Liouville eigenvalue
problem, e.g., in [3, pp. 291–293] and also [4, pp. 107–110]). If we similarly expand U,
f, and F, we obtain from (1)–(4),

∇ · (a(x, y)∇uk)− αkuk = fk(x, y), (x, y) ∈ Ωhoriz ,(7)
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uk(x, y) = Uk, (x, y) ∈ ∂Ωhoriz ,(8)

〈uk〉 = Fk ,(9)

where fk and Fk are given, but Uk are unknown.

Let uAk denote the solution of the boundary-value problem represented by (7),
with homogeneous Dirichlet boundary conditions (i.e., Uk ≡ 0), and let uBk denote
the solution to (7) with a zero right-hand side and Uk ≡ 1. Then, by (7)–(8), uk can
be uniquely written as the following linear combination of uAk and uBk :

uk = uAk + Uku
B
k .(10)

Now Uk can be determined by taking the horizontal average of (10) and using (9),
obtaining

Uk =
−〈uAk 〉+ Fk
〈uBk 〉

.(11)

Here, the denominator, 〈uBk 〉, is known to be positive, as uBk does not change sign by
the maximum principle.

Since uAk and uBk are the unique solutions of well-posed Dirichlet boundary-value
problems, this proves that (7)–(9) also constitute a well-posed problem, whose unique
solution is given by (10)–(11). These equations also suggest a direct algorithm for the
solution of (1)–(4), which requires performing a 1D transformation in the vertical,
and then solving decoupled sets of 2D elliptic equations with Dirichlet boundary
conditions to obtain 〈uAk 〉 and 〈uBk 〉. This method is robust, and we estimate the cost
to be comparable to that of the robust method described in section 7. However, this
approach is not directly applicable when the separability assumptions are violated,
which occurs, e.g., when higher order models (such as Balance models, e.g., [6]) are
employed for large-scale flow modeling. Hence, we look for a more general approach.

3. A 2D model problem and its discretization. We simplify the analysis
and development of the multigrid solver by first considering a 2D, constant-coefficient
(a and g) problem that models (1)–(4), while concentrating on methods that will
generalize to the complete problem. With no further loss of generality we assume
a = 1. The model problem is obtained by eliminating the y coordinate:

Lu = uxx + g uzz = f(x, z), (x, z) ∈ (−W,W )× (0, D),(12)

uz(x, 0) = uz(x,D) = 0, x ∈ (−W,W );(13)

u(−W, z) = u(W, z) = U(z), z ∈ [0, D],(14)

〈u〉(z) def
=

1

2W

∫ W

−W
u(x, z) dx = F (z) .(15)
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3.1. The discrete model. We discretize (12)–(15) by standard second-order
central finite differences on a grid of horizontal meshsize hx = W/Nx and vertical
meshsize hz = D/Nz. The discrete variables, uhi,k, i = −Nx, . . . , Nx, k = 1, . . . Nz,
are located at centers of vertical edges, which is convenient for Neumann boundary
conditions at the top and bottom. Thus, uhi,k is located at (ihx, (k − 1

2 )hz). In par-

ticular, uh(−Nx, k) and uh(Nx, k) are defined on the side boundaries, but the top
and bottom boundaries lie one half of a meshize below uhi,1 and above uhi,Nz , respec-
tively. Then, “ghost” variables which satisfy the Neumann boundary conditions can
be defined at one half of a meshsize below and above the bottom and top boundaries,
respectively, as is commonly done.

The integral in (15) is discretized by the trapezoidal rule as follows:

〈uh〉k =
1

4Nx

Nx−1∑
i=−Nx

(uhi,k + uhi+1,k), k = 1, . . . , Nz.(16)

We write the discrete problem as

Lhuhi,k = fhi,k, i = −Nx + 1, . . . , Nx − 1,

k = 1, . . . , Nz,

uhi,0 = uhi,1, u
h
i,Nz+1 = uhi,Nz , i = −Nx + 1, . . . , Nx − 1,

uh−Nx,k = uhNx,k = Uhk , k = 1, . . . , Nz,(17)

with the integral constraint

〈uh〉k = Fhk , k = 1, . . . , Nz.(18)

Here, h superscripts denote discrete approximations. The functions fh and Fh, and
the constant g (which appears in Lh), are given, but Uh is unknown.

4. A “naive” algorithm. Assume that, given Uh (constituting Dirichlet side-
boundary conditions), there exists an efficient algorithm for solving the model prob-
lem, (17), e.g., standard multigrid. Given this, a simple approach to the solution of
(17), (18) is to alternately satisfy (17) and (18): the former by fixing the boundary
values and using the standard solver and the latter by subtracting the horizontal
average from the current approximation for uh at each height-level k, including the
side-boundary values, and adding Fhk . Indeed, since this is followed by a repetition of
the first step, where the interior values are recalculated, it suffices to change only the
boundary values in the second step. Thus, the two-stage iteration, which is straight-
forward enough to apply to more general problems as well, is given by the following.

algorithm 1. Choose an initial guess for the side-boundary values, Uh(0). Then
iterate for m = 0, 1, . . . , as follows, until a suitable convergence criterion is satisfied.

1. Solve

Lhuh(m) = fh,(19)

with side-boundary conditions given by Uh(m) and, of course, homogeneous
Neumann top and bottom boundary conditions.

2. Set

Uh(m+1) = Uh(m) + Fh − 〈uh(m)〉,(20)

m← m+ 1; return to Step 1.
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Convergence analysis. To analyze the convergence properties of Algorithm 1 we
first note that we can expand uh, Uh, fh, and Fh of (17) and (18) in cosine series in
z, viz.,

uhi,k =

Nz−1∑
ω=0

ûhi (ω) cos

(
ωkπ

Nz

)
, k = 1, . . . , Nz,(21)

with analogous expressions for fh, Fh, and Uh. Accordingly, we substitute these
expressions into (17) and (18), with Lh representing a standard second-order finite
difference discretization of L. Since the cosine functions are orthogonal eigenfunc-
tions (with the standard scalar product) of the discrete vertical-derivative term in
Lh, which satisfy the top and bottom boundary conditions, it suffices to consider a
single representative ω, as is usually done in Fourier smoothing analysis of multigrid
algorithms. This simplifies the analysis.

Substituting the corresponding eigenvalue for the discrete vertical-derivative term,
(17), (18) then produces

ûhi+1 − 2ûhi + ûhi−1

h2
x

−
4g sin2

(
ωπ
2Nz

)
ûhi

h2
z

= f̂h,

i = −Nx + 1, . . . , Nx − 1,

ûh−Nx = ûhNx = Ûh,(22)

with the integral constraint

〈ûh〉 = F̂h.(23)

Here, ûh, f̂h, F̂h, and Ûh depend on ω. Similarly, we can expand (19), (20), obtaining
analogous equations for ûh(m) and Ûh(m). Denote the errors in the interior solution and
in the boundary values, respectively, after step 1 of the mth iteration of Algorithm 1
by êh(m)(ω) = ûh − ûh(m) and Êh(m)(ω) = Ûh − Ûh(m). Subtracting the transformed (19)

from (22), we obtain

êhi+1 (m) − 2êhi (m) + êhi−1 (m)

h2
x

−
4g sin2

(
ωπ
2Nz

)
êhi (m)

h2
z

= 0,

i = −Nx + 1, . . . , Nx − 1,

êh−Nx (m) = êhNx (m) = Êh(m).(24)

The solution to (24) can be written as

êhi (m) = Êh(m)

cosh(αi)

cosh(αNx)
, i = −Nx, . . . , Nx,(25)

where α is determined (via substitution into (24)) by the following relation:

sinh
(α

2

)
= ±
√
C sin

(
ωπ

2Nz

)
,(26)

with

C = g
h2
x

h2
z

.(27)
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Next, we calculate the horizontally averaged êh(m) from (16), (25). In the special case

where α = 0 (and hence ω = 0, in light of the range of ω in (21)), the horizontal
average equals the boundary value of the error, Êh(m), and Algorithm 1 converges
immediately. Therefore, we assume α 6= 0 and obtain

〈êh(m)〉 =
Êh(m)

2Nx

[
1 +

1

cosh(αNx)

Nx−1∑
i=−Nx+1

cosh(αi)

]

=
Êh(m)

2Nx

[
1 +

1

cosh(αNx)

sinh(α(Nx − 1
2 ))

sinh(α2 )

]
.(28)

Hence, by (20) and (28), the convergence factor of Algorithm 1 is given by

λ
def
=

∣∣∣∣∣ Ê
h
(m+1)

Êh(m)

∣∣∣∣∣ = 1− 1

2Nx

[
1 +

1

cosh(αNx)

sinh(α(Nx − 1
2 ))

sinh(α2 )

]
.(29)

Recall that we are analyzing the convergence of each mode separately. Hence, ω is
fixed, and α, which corresponds to it, is determined uniquely by (26). From (28), (29)
we immediately obtain the following.

Observation 1. Algorithm 1 is convergent, with convergence factor λ = 0 for
the mode ω = 0, and

0 < λ < 1− 1

2Nx
,

otherwise.
Convergence of Algorithm 1 can similarly be proved with g = g(z) as well. In any

case, the rate of convergence depends on the smoothness of the error in the boundary
values. For a smooth error, ω = O(1), we obtain, by (26), α ∼ C/Nz << 1 (for typical
values of Nz), and λ is then bounded away from 1. But λ grows monotonically with
α (hence, with ω). For highly oscillatory boundary errors, α ∼ C, and (29) evidently
implies λ = 1− O( 1

Nx
), and hence O(Nx) iterations are generally required to reduce

the error by an order of magnitude. The slow convergence is expected: in an elliptic
problem the influence of highly oscillatory boundary data decays very fast away from
the boundary. Therefore, such error components contribute very little to the integral
of the solution. Thus, step 2 in Algorithm 1 cannot be efficient for such types of errors.
The convergence rate can be improved somewhat by judicious overcorrection (similar
to SOR) or more sophisticated acceleration methods, but the algorithm would still be
quite inefficient.

5. An efficient algorithm. The analysis of Algorithm 1 in section 4 has shown
that this approach is inefficient. However, it also points the way to a far better ap-
proach, since we encounter the familiar setting that is the basis of multigrid methods:
The effect of high-frequency boundary data decays very fast away from the bound-
ary, so it can be treated locally. Low-frequency phenomena must be treated globally;
however, they can be approximated on coarser grids.

Again, we consider (18) as a set of equations for the boundary values, Uh, and
we treat the integral relations by introducing changes in the boundary data, referred
to below as relaxation of the boundary values. But the boundary-data processing
algorithm is incorporated within the multigrid algorithm which solves the interior



MULTIGRID FOR PDEs WITH INTEGRAL CONSTRAINTS 1363

problem. The two-level algorithm with ν1 prerelaxation sweeps, ν2 postrelaxation
sweeps, and νb boundary-relaxation sweeps per interior sweep is now described.

algorithm 2.
1. Repeat ν1 times{

• Relax fine-grid interior problem, (17), to smooth interior error.
• Repeat νb times{

– Relax boundary equations, (18), e.g., by (30), discussed below.
– Relax (17) near boundary (all variables that are at most some dis-

tance wb meshsizes from any side boundary) to reduce interior resid-
uals caused by the boundary relaxation.

}
}

2. Transfer to the coarse grid the residuals of the interior problem and of the
integral relations. The latter are defined by

Rh = Fh − 〈ũh〉,

where ·̃ denotes current approximation.
3. Solve coarse-grid problem, including the coarse-grid residual integral-constraint

problem (see below).
4. Prolong and add coarse-grid correction to the fine-grid field, including the

boundary values.
5. Repeat step 1, substituting ν2 for ν1.

Algorithm 2 is generalized to many levels (grids) in the usual V-cycle manner, by
applying it recursively to solve the coarse-grid problem (step 3). Below, we shall also
refer to the multilevel version as Algorithm 2.

Remarks on Algorithm 2. There are several choices to make, and we also remark
on some important considerations. However, we first expound upon the main thought
behind Algorithm 2. We distinguish between errors associated with nonzero residuals
in the interior equations (corresponding to the differential equation in the continu-
ous problem) and errors associated with nonsatisfaction of the integral relations. In
both cases, “errors” refer to the difference between the current approximation and
the exact solution of the discrete system. In the usual spirit of multigrid analysis
(rigorous in special cases and heuristic otherwise), we refer to smooth and nonsmooth
error (Fourier) components. It is well known and understood that nonsmooth errors of
the interior problem (i.e., those that vary appreciably over just a few mesh-intervals)
may be reduced by local processes, such as Gauss–Seidel relaxation. However, smooth
components, by definition, cannot even be detected locally, so local processes are
inefficient for such error components. However, smooth error components can be ap-
proximated well on a coarser grid. Such is the underlying mechanism of the usual
multigrid algorithm, and we employ the same idea in treating the integral relations
in Algorithm 2. The idea is to eliminate nonsmooth components of the errors in the
integral relations (which is a 1D vector) by performing local processing at the lateral
boundaries. There are various effective ways for doing this, as long as the remain-
ing error in the integral relations can be represented accurately on the coarser grid.
Note that there is no need to eliminate the error in the integral relations on a given
grid—only to reduce its nonsmooth part—as the remaining error can be corrected on
a coarser grid. Indeed, a smooth error of amplitude Eh in the boundary data pro-
duces, by (28), a boundary residual of similar size, whose elimination requires, by
(16), an O(NxE

h) change in the boundary values to eliminate. This produces a large
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relative change in the residuals of the interior problem near the boundary. Thus, the
simple but somewhat heavy-handed approach of changing boundary values so as to
eliminate the residuals in the integral relations might not be robust, e.g., in problems
with geometrically complicated boundaries. Nevertheless, in all our numerical tests,
which are carried out in simple domains, we found that similar efficiency is obtained
if we eliminate the residuals in the boundary equations altogether in the boundary-
relaxation process, rather than just smooth them. This is the simplest approach, and
we use it in our tests below. By (16), the boundary relaxation is thus defined by

Ũhnew = Ũh + 2Nx(Fh − 〈ũh〉).(30)

Compare (30) to (20)—the second step in Algorithm 1. Here, we introduce a change
in the boundary values that is 2Nx times as large. If we were to do so in Algorithm
1, we would get very fast divergence (due to overcorrected smooth error modes in the
boundary equations). However, in Algorithm 2 we do not follow this step with a solu-
tion of the interior problem, but rather just local relaxation. This serves to eliminate
the interior errors due to high-frequency boundary errors and also to allow the coarser
grids to correct the interior errors due to smooth boundary errors. Furthermore, we
found that a smoother convergence history was obtained if, instead of transferring
the residuals of the boundary equations, we eliminated them just before going to the
coarse grid by repeating (30) (not followed by additional interior relaxation) at no
extra cost (because now the boundary residuals need not be transferred). We use this
form in the numerical examples reported below.

Following are some further details relating to Algorithm 2.
1. For ν1 and ν2 the typical values can be used, e.g., 0 ≤ ν1, ν2 ≤ 2, 2 ≤ ν1 + ν2

≤ 4.
2. Normally, we found νb = 2 with wb = 1 to suffice in order to regain the typical

convergence rate for the basic problem with Dirichlet boundary conditions.
3. We used Gauss–Seidel in red-black ordering (RBGS), also with overrelaxation

(RBSOR), for relaxing the interior problem whenever g was moderate (be-
tween 0.2 and 10 in our examples). More extreme values of g are discussed
later.

4. Recalling that the coarse grid variables are vertically staggered with respect to
the fine grid variables, we have a choice of elementary vertical prolongation
(coarse-to-fine) and restriction (fine-to-coarse) operators. In the horizontal
direction we used linear interpolation (prolongation) and its suitably scaled
adjoint full-weighting restriction operator. In the vertical we used nearest-
neighbor averaging for restriction. For prolongation we tested both the adjoint
of this operator and linear interpolation, because the so-called high-frequency
order of the nearest-neighbor operator is one (compared to three of the linear
vertical interpolation), which is marginal for this problem (see, e.g., [1, 2, 5,
11]). The operators are shown in Figure 1 in terms of the weights associated
with the contributions that the coarse-grid variables give to (get from) the
neighboring fine-grid variables.

5. Let uH denote the coarse-grid correction field. Then the coarse-grid integral-
constraint equation is

〈uH〉 = FH
def
= IHh R

h,

where IHh denotes the restriction to the coarse grid from the fine grid (with
meshsizes H and h, respectively.)
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Fig. 1. 2D stencils are shown of the fine-to-coarse restriction operator (a) and the coarse-to-
fine prolongation operators employing nearest-neighbor values (b) and linear interpolation (c) in the
vertical, both for the domain interior and for the (left-hand) boundary. For the restriction operator
arrow-sources mark fine-grid variable locations, while arrow-heads point at the coarse-grid variable
(and vice versa for the prolongation operators). The numbers indicate weights associated with the
values that the coarse-grid variable contributes to (or obtains from) the fine-grid variables.

6. The computational cost of each boundary relaxation sweep is dominated by
the cost of calculating the residuals in the integral relations, since these re-
quire O(NxNz) operations, while the remaining parts of the boundary process
cost only O(Nz) operations. Furthermore, even if several consecutive sweeps
are performed, we need only to calculate these residuals once, and then mon-
itor only the changes brought about by the relaxation at and near the bound-
aries. Thus, the added cost involved in the boundary process is negligible
provided that only a moderate number of boundary sweeps is performed.

6. Numerical tests in three dimensions. We test Algorithm 2 for the 3D
problem. In all our tests the domain of the solution is a cube and the mesh is uniform
on the finest grid. Hence, C = g in (27). We compare the convergence factor obtained
for the 3D model problem, which is the generalization of (17), (18) to three dimensions,
to that of the 3D basic problem, which is the 3D generalization of just (17) with Uh

given (i.e., Dirichlet side-boundary conditions). In solving the basic problem we also
applied two additional relaxation sweeps at points adjacent to the lateral boundaries
after each internal relaxation sweep. This only improved the convergence rates by at
most a few percent in all the cases tested, but it allowed a “fair” comparison. (There is
a very slight loss of performance if the extra relaxation is not performed, presumably
due to the weak singularity where the lateral Dirichlet boundaries meet the top and
bottom Neumann boundaries.)
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Table 1
Comparison of asymptotic convergence factors per cycle between the 3D basic problem (with

Dirichlet side-boundary conditions) and the 3D model problem (with integral constraints). The grid
is uniform in a cube, and C = 1. Smoothing is done by RBGS relaxation.

Vertical 3D Basic 3D Model
ν1 ν2 Prolongation Problem Problem

1 1 Nearest 0.558 0.480
2 0 Nearest 0.415 0.367
2 1 Nearest 0.166 0.153
2 2 Nearest 0.098 0.091

1 1 Linear 0.218 0.212
2 0 Linear 0.239 0.227
2 1 Linear 0.131 0.131
2 2 Linear 0.102 0.102

We are interested in worst-case asymptotic convergence rates. Hence, in order
to avoid roundoff errors, we set fh = Fh = 0 (so that the exact solution is zero
and the errors are therefore never very small compared to the solution), and begin
with a random guess for Uh. For testing purposes we also performed calculations with
random fh and FH and found essentially the same performance until double-precision
roundoff errors were encountered. We then run 25 cycles, ignoring the first 10 and
defining the asymptotic convergence factor (per cycle) as the geometric average of the
residual-reduction factor of the last 15 cycles. Several values of pre- and postrelaxation
sweeps, ν1 and ν2, respectively, are tested.

Isotropic problem. We begin with the isotropic problem, C = 1, where C is defined
in (27). The generalization of the discretization and the algorithm to three dimensions
is completely straightforward. We use six levels, coarsening down to two by two by
two mesh-intervals. In three dimensions the best relaxation is RBSOR. Following [10],
the optimal overrelaxation parameter (assuming for simplicity hx = hy) is, to a good
approximation, given by

η =
2

1 +
√

1− s2
,(31)

where s = max(2, 1+C)/(2+C). In the isotropic case this yields η = 1.146 (compared
to η = 1 of RBGS). We compare the convergence factor of Algorithm 2 to that of the
multigrid solution to the basic problem with and without overrelaxation in Tables 1
and 2, respectively. We use νb = 2 and wb = 1. Evidently, the efficiency of Algorithm
2 is maintained in the isotropic case, even when SOR is used. There are a few excep-
tions, but νb = 3 always sufficed. We find that linear vertical interpolation generally
performs better than nearest-neighbor interpolation, and we use this interpolation in
the remaining tests.

Moderately anisotropic problem. We next test our solver on moderately anisotropic
problems, with C equal to 10 and 0.2. The results appear in Table 3. We find that
for relatively large C the performance for the model problem with boundary con-
straints fully matches that of the basic problem. When SOR smoothing is used, this
performance is quite adequate. However, for relatively small C the method fails for
the model problem. The reason for this is that when C is decreased, highly oscillatory
boundary data influence the interior solution deeper into the domain. One way of see-
ing this is by considering the reduction in C as a reduction in the horizontal meshsize,
with hz and g fixed. Given a smaller horizontal meshsize, a given function requires
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Table 2
Same as Table 1, but smoothing is done by RBSOR, with overrelaxation parameter calculated

from (31). The values in parentheses are obtained with νb = 3.

Vertical 3D Basic 3D Model
ν1 ν2 Prolongation Problem Problem

1 1 Nearest 0.187 0.185
2 0 Nearest 0.206 0.184
2 1 Nearest 0.091 0.117 (0.077)
2 2 Nearest 0.063 0.097 (0.059)

1 1 Linear 0.111 0.111
2 0 Linear 0.173 0.176
2 1 Linear 0.078 0.114 (0.075)
2 2 Linear 0.060 0.097 (0.059)

Table 3
Comparison of asymptotic convergence factors per cycle between the 3D basic problem (with

Dirichlet side-boundary conditions) and the 3D model problem (with integral constraints). The grid
is uniform in a cube, and linear vertical interpolation is used in the prolongation. νb = 2 and wb = 1,
except the values in parentheses, for which νb = wb = 3. DIV means that the algorithm failed to
converge.

3D Basic 3D Model
ν1 ν2 Smoothing C Problem Problem

1 1 RBGS 10 0.671 0.671
2 0 RBGS 10 0.671 0.671
2 1 RBGS 10 0.564 0.564
2 2 RBGS 10 0.474 0.474

1 1 RBSOR 10 0.393 0.392
2 0 RBSOR 10 0.391 0.391
2 1 RBSOR 10 0.211 0.210
2 2 RBSOR 10 0.112 0.109

1 1 RBGS 0.2 0.648 0.647
2 0 RBGS 0.2 0.648 0.646
2 1 RBGS 0.2 0.535 0.533
2 2 RBGS 0.2 0.443 0.440

1 1 RBSOR 0.2 0.355 0.510 (0.331)
2 0 RBSOR 0.2 0.364 0.754 (0.344)
2 1 RBSOR 0.2 0.179 DIV (0.145)
2 2 RBSOR 0.2 0.085 0.931 (0.236)

more mesh-intervals to decay away from the boundary. Alternatively, note that α in
(26) in the 2D case (which is straightforward to generalize to 3D) decreases as C is
decreased, resulting, by (25), in an error which decays more slowly away from the
boundary. Indeed, if we increase wb—the width of the strip near the boundary where
additional processing is performed—we regain good behavior (see values in parenthe-
ses in Table 3). Of course, the width of this strip must increase even more as C is
decreased, so this approach is not recommended for anisotropic problems. Instead,
we prefer not to coarsen in the vertical, employing so-called semicoarsening. Then,
the coarse grids resolve all components of the fine-grid boundary data, so each grid
need only converge boundary-errors whose influence decays on a scale of just a few
horizontal mesh-intervals. This approach is described next.

7. A robust algorithm. We have seen that the basic form of Algorithm 2 is
not robust due to the fact that for small C, as defined in (27), the width of the interior
region near the boundary which requires extra processing grows. Also, it is well known
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Table 4
Same as Table 1, employing zebra relaxation in the vertical and coarsening only in the horizontal.

3D Basic 3D Model
ν1 ν2 C Problem Problem

1 1 100 0.104 0.086
2 1 100 0.077 0.079

1 1 1 0.102 0.088
2 1 1 0.077 0.079

1 1 0.01 0.100 0.092
2 1 0.01 0.077 0.079

1 1 50 + 49.99 sin(2πz/D) 0.103 0.088
2 1 50 + 49.99 sin(2πz/D) 0.077 0.079

that point relaxation is not an effective smoother for very anisotropic problems (see,
e.g., [8] or [1], and also [9, 10] for a quantitative assessment). We treat both these
difficulties by employing red-black (zebra) line relaxation in the vertical, with (semi)
coarsening only in the horizontal directions. For the basic problem, we then expect the
convergence rates to be nearly independent of C and to be similar to those obtained
for the basic 2D Poisson problem; (this is shown by Fourier smoothing analysis in [9]).
But this also resolves the lack of robustness associated with the integral-constraint
equations. Since we do not coarsen in the vertical, all boundary-error frequencies are
resolved (vertically) on all the grids. Those frequencies whose influence on the interior
solution decays over a small number of meshsizes are eliminated by the boundary
relaxation, followed by interior relaxation along a thin strip near the side boundaries
(again we find that this strip need only include the interior points adjacent to the side
boundaries, i.e., wb = 1.) The remaining error frequencies are converged on coarser
grids.

In Table 4 we show the results of calculations on a uniform cubic grid with values
of C ranging from 0.01 to 100, including a case where a variable C spans this range.
The performance is, as expected, comparable to the 2D basic problem, virtually inde-
pendent of C, and the performance of the model problem (with integral constraints)
is as good as that of the basic problem, using as before νb = 2, wb = 1.

The additional cost due to employing semicoarsening is just a small fraction. Line
relaxation is, however, somewhat more expensive than point relaxation. Hence, for
nearly isotropic problems point relaxation and full coarsening are more efficient.

8. Conclusions. An efficient multigrid approach is presented for the solution
of a discretized elliptic problem with boundary conditions determined in part by
integral relations. The approach is to treat the integral relations as equations for the
boundary values. These are relaxed after each relaxation sweep of the interior problem,
followed by additional relaxation of the equations at interior points adjacent to the
boundary. This boundary process reduces errors in the integral relations that are
associated with high-frequency boundary data. The remaining errors in the integral
relations are resolved on coarser grids. For anisotropic problems an efficient and robust
approach is to apply the same method while coarsening only in the horizontal and
using line relaxation in the vertical for the interior problem. The additional cost
involved in these solvers, compared to similar solvers for the basic problem with
standard boundary conditions, is essentially just the cost of calculating the integral
relations. Furthermore, the convergence rates are just as good, consistent with the
general theory of [2], which claims that the “interior efficiency” can be obtained for
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many types of boundary conditions by performing extra work that is asymptotically
negligible near boundaries. Hence, this approach can be considered optimal.

We believe that our approach will be equally effective for more general boundary
shapes, though the boundary relaxation may require greater subtlety. We shall inves-
tigate this matter in future work when we apply this method to models of large-scale
ocean flows in realistic domains.
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