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Abstract. We investigate an approach to the solution of nonelliptic equations on a rectangular
grid. The multigrid algorithms presented here demonstrate the “textbook multigrid efficiency” even
in the case that the equation characteristics do not align with the grid. To serve as a model problem,
the two-dimensional (2D) and three-dimensional (3D) linearized sonic flow equations have been
chosen. Efficient full-multigrid (FMG) solvers for the problems are demonstrated.
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1. Introduction. The full-multigrid (FMG) algorithm is known to be the fastest
solver for discretized elliptic partial differential equations (PDEs). General nonlinear
elliptic systems can be solved in just a few minimal work units, a minimal unit being
defined as the number of operations necessary for the discretization of the system
on the target grid. However, attempts to extend the same techniques to nonelliptic
equations, such as the transonic potential flow equation or its degenerate case—the
sonic flow equation—have met with a more limited success. Although such multigrid
methods are usually much more efficient than comparable single-grid methods, the
“textbook” goal of solving in just a few minimal work units has not been attained.
Indeed, many of the reported solvers require hundreds of minimal work units. Others,
such as solvers based on various modifications of the ILU decomposition, being efficient
in two dimensions, cannot be directly extended to three dimensions without losing
most of their efficiency.

The increased amount of required work results from several different factors, and
the first important step therefore is to separate these out. The present research
addresses one basic difficulty in separation from others: the problem of nonalignment.
The problem arises wherever characteristics of a differential equation do not coincide
with grid lines. We study the nonalignment effect on our model problems: the two-
dimensional (2D) and three-dimensional (3D) sonic-flow equations linearized over a
given (variable) velocity field. These problems are reduced to solving degenerate
elliptic equations which are elliptic on lower-dimensional manifolds embedded in the
original space.

The usual goal of an FMG solver (see, e.g., [2, section 7] or [3, section 7]) is
to reduce the target-grid (grid h) algebraic error ‖uh − ũh‖ below the level of the
discretization error ‖uh−Uh‖, where uh and ũh are the exact and computed solutions
of the discretized equation, respectively; Uh is some target-grid representation of
the true solution to the differential equation; and ‖ · ‖ is a given norm of interest.
Sometimes the total error ‖ũh − Uh‖ is also measured.
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In many cases regular FMG algorithms are sufficient to yield a final solution with
an algebraic error much smaller than the discretization error. In some problems,
however, the usual algorithm cannot efficiently treat certain smooth components of
the target-grid solution. The sonic flow problem, as well as other PDEs in which
the discretization scheme introduces a numerical dissipation if the characteristic lines
are not consistently aligned with the grid, falls into this category. The trouble has
been previously observed and treated for convection-diffusion equations (see [1]) and
for high-Reynolds incompressible entering flows (see [10]). In such cases the usual
multigrid cycles lose their efficiency and so does the FMG algorithm employing the
cycles.

A simple explanation can be given when the characteristics of the differential
equation emanate from the boundary, in which case the quality of the coarse-grid
correction is determined by how well certain cross-characteristic oscillations are ad-
vected from the inflow boundary into the domain. The main trouble is the increased
numerical dissipation on coarse grids, which causes the decay and phase shift of these
cross-characteristic oscillations to differ greatly from their values on the fine grid.

The idea suggested in this paper to overcome the trouble is to use semicoar-
sening together with the introduction of a well-balanced explicit numerical dissipa-
tion on coarse grids to control the penetration of the incoming cross-characteristic
oscillations.

In section 2 we give a general formulation of the problem and introduce the main
ideas. This is followed by detailed descriptions of the concrete problems and the
solution algorithms in two dimensions (section 3 and section 5) and three dimen-
sions (section 4). A variety of numerical experiments and the Fourier mode analysis
(section 3.2.5) confirm the “textbook multigrid efficiency” of the suggested solvers.
In section 6 we discuss an approach to applying the developed algorithms for solv-
ing more complicated problems, including the full-potential equation and the Euler
system.

2. General description.

2.1. Differential problem. The full-potential flow equation has the quasi-
linear form

(ū · ∇)
2
Φ − a2�Φ = f,(2.1)

where ū is the velocity vector, a is the speed of sound, and the unknown scalar function
Φ(x, y) is the velocity potential of the irrotational flow. The operator appearing in
(2.1) is one of the factors of the principal part determinant of the Euler system
of equations for compressible flows (see [3, section 20]). Hence, according to rules
developed in [3] (see also [2], [10], and [16]), the development of efficient multigrid
solvers for the Euler system depends on devising such solvers for the principal part of
(2.1), in which ū and a are given fields unrelated to Φ.

The type of this equation depends on the ratio M = (ū · ū)1/2/a, which is called
the Mach number. For M < 1, the equation is elliptic; for M > 1, it is hyperbolic.
When M = 1, (2.1) degenerates to the sonic flow equation

�̃Φ = −f/a2,(2.2)

where �̃ is the Laplacian on a manifold orthogonal to the velocity field. We call each
such manifold a characteristic manifold.
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We first study the phenomenon of nonalignment in the case of constant fields ū
and a. This assumption implies that the characteristic manifold is a straight line in
two dimensions (characteristic line) and a plane in three dimensions (characteristic
plane). Although relatively simple, the problem nevertheless contains one of the main
difficulties appearing in flows not consistently aligned with the discretization grid.
The constant coefficient solver developed in section 3 will later be extended with some
modifications to solve sonic flows linearized over variable velocity fields (section 5).
Additional details related to the constant coefficient case, including a comprehensive
half-space mode analysis, can be found in [9], [11], and [13].

The approach we follow is to use a fixed Cartesian coordinate system independent
of the characteristic manifold. We call the x-y plane in three dimensions (or the x-axis
in two dimensions) the reference plane (axis). Thus each characteristic manifold is
uniquely defined by a point on it and its slopes relative to the coordinate axes of
the reference plane. To simplify the description of the algorithm in three dimensions
we will use the term “inclination to the x-axis” to denote the angle between the x-
coordinate axis and the intersection of the considered characteristic plane with the
x-z plane. The inclination to the y-axis is similarly defined. We restrict ourselves to
characteristic planes whose inclinations are less than or equal to π

4 (45◦), in other
words, to planes that can be written as αx + βy + γz = δ, where |γ| ≤ |α| and
|γ| ≤ |β|. Otherwise the role of the axes should be interchanged. (See section 5 below
concerning the case of variable coefficients.)

2.2. Principles of discretization. The target discretization grid we consider
is usually a uniform (square) grid. The coarse grids used in the multigrid con-
struction are rectangular grids with fixed (integer) aspect ratios. The aspect ratio
m = href/hvert is defined as the ratio of the meshsize in the reference plane (axis) to
the meshsize in the vertical axis. In three dimensions, grids in the reference plane are
always assumed to be uniform.

Let us consider a discretization of the differential operator (2.2) at a given grid
point. The characteristic manifold going through the point does not generally contain
other grid points. In order to discretize such an operator we introduce ghost points
located at the intersections of the characteristic manifold with the adjacent vertical
grid lines. The function value at a ghost point is interpolated from its genuine grid
neighbors placed on the same vertical grid line. For small aspect ratios this interpo-
lation degrades the discrete operator approximation order and to compensate for this
degradation a vertical operator should be added. Thus, the discretization involves the
following steps.

Step 1. The target degenerate elliptic operator is first discretized on the charac-
teristic manifold, using the ghost points, employing an h-elliptic discretization (see [2,
section 2.1] or [3, section 2.1]). We call this lower-dimensional discrete operator the
low-dimensional prototype.

Step 2. The full-dimension discretization is obtained from the low-dimensional
prototype by the vertical linear interpolation to the ghost points, together with the
addition of several compensating points on the vertical grid line going through the
point where the discrete operator is being defined. This discretization is h-elliptic in
the full dimension.

Such a discretization possesses a numerical dissipation (because of the nonalign-
ment and the resulting interpolation) that appears to be relatively small, especially
on grids with a high aspect ratio. Nevertheless, this dissipation exists on each grid.
We will call it the inherent numerical dissipation to distinguish it from the “explicit
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numerical dissipation” introduced below. Quantitatively, the inherent numerical dis-
sipation is defined as the coefficient of the lowest pure cross-characteristic derivative
arising in the first differential approximation (FDA) to the discrete operator (see [15]),
the cross-characteristic direction at a point being defined as the direction perpendic-
ular to the characteristic manifold. In our model problems the cross-characteristic
direction coincides with the velocity direction.

Let us now introduce some useful terms. A function defined on the space un-
der consideration will be referred to as a characteristic component if it is a smooth
function on the characteristic manifold. The terms high-frequency characteristic com-
ponent and smooth characteristic component will refer to components that are highly
oscillating and smooth in the cross-characteristic direction (but not as smooth as in
any of the characteristic directions).

Previous studies on several types of nonelliptic equations (see [1] and [10]) have
shown that the basic trouble in constructing an efficient multigrid solver is the poor
approximation of smooth characteristic components on coarse grids. The reason is
the increased coarse-grid inherent numerical dissipation appearing in cycles with full
coarsening, i.e., when the coarse grid has all the meshsizes twice as large as those of the
fine grid. A general way to overcome this trouble would be to use semicoarsening, with
meshsizes being doubled only in the reference plane. When applied in its pure form,
semicoarsening also results in some difficulties, since the inherent numerical dissipation
of the semicoarsened grid will be much less than that of the fine grid. However, we
can supply the operator on the semicoarsened grid with an additional term (explicit
numerical dissipation term) so that the total dissipation on the semicoarsened grid
would be the same as on the fine grid.

The three- or even four-level version of such a cycle, with two pointwise relaxation
sweeps on each level and appropriate intergrid transfers, can already be used to solve
efficiently the model problems discretized on a uniform target grid. However, the
implementation of a cycle with more levels raises the following new difficulty.

2.3. Strong cross-characteristic coupling. The inherent numerical dissipa-
tion in our discretizations arises from the vertical interpolation to the ghost points.
To obtain the same total dissipation, we introduce an explicit numerical dissipation
on the coarse grids by adding a term which is a discrete approximation to a vertical
derivative of a suitable order.

The multigrid theory of h-elliptic discrete operators (see [1], [3]) shows that
a pointwise relaxation can reduce only the error components that oscillate in the
strong-coupling directions. The coupling analysis of the discretizations considered in
sections 3.2.3 and 4.4 below shows that the target-grid discrete-operator directions
of stronger coupling approximately coincide with the characteristic manifold. Thus a
target-grid pointwise relaxation can reduce efficiently the noncharacteristic error com-
ponents and also some of the high-frequency characteristic components of the error.
That is all we need from the relaxation since the smooth characteristic components
(and most of the high-frequency characteristic components) are well reduced on the
next semicoarsened grids. However, successive semicoarsening implies a fast decrease
in the inherent numerical dissipation on the coarse grids and hence a fast increase
in the weight of the compensating explicit numerical dissipation in the coarse-grid
discrete operator. Thus, the direction of the strongest coupling after several semi-
coarsening steps tends to be vertical; hence, any pointwise relaxation on such coarse
grids cannot efficiently reduce some noncharacteristic components of the error. A way
to eliminate this degradation is to use a vertical line relaxation, in which all the points
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located on the same vertical grid line are relaxed simultaneously. Thus our general
strategy is to use a pointwise relaxation on several of the finest levels and switch to a
line relaxation on all the coarser levels. Since

a) the line solver is just a solver to a five-diagonal matrix;
b) line relaxation is used only starting from some coarse grid;
c) it remains a line relaxation (rather than a plane relaxation) in three dimensions,

the total amount of work will be practically the same as for a solver using only a
pointwise relaxation.

Instead of switching to a line relaxation on some of the coarser grids, one can
avoid creating strong cross-characteristic coupling altogether by replacing part of the
semicoarsening steps by full coarsening steps (see [11], [12]). This conditional coars-
ening is slightly cheaper in computing time but considerably more complicated to
program, especially in extensions to variable coefficients.

3. 2D sonic flow: The constant coefficient case.

3.1. Model problem statement. In two dimensions, (2.2) turns into the sim-
ple equation

∂2Φ

∂ξ2
= F,(3.1)

where the differentiation direction ξ coincides with the characteristic direction (or-
thogonal to the velocity direction).

In our model problem an unknown scalar function Φ(x, y) is defined on the square
(x, y) ∈ [0, 1] × [0, 1], and the variable along the characteristic direction is ξ =
(x + ty)(1 + t2)−1/2, where t = tanψ is the tangent of the angle of nonalignment,
i.e., the angle between the characteristic direction and the reference x-axis. Usually
|t| ≤ 1; otherwise one can improve the discretization described below by switching
the reference axis.

In our model problem we supply (3.1) with Dirichlet boundary conditions in the
x direction and periodic conditions in the y direction:

Φ(0, y) = g0(y), Φ(1, y) = g1(y), Φ(x, y) = Φ(x, y + 1),(3.2)

where g0(y) and g1(y) are given functions. The choice of periodic boundary conditions
is quite useful for this study, as it precludes boundary layers, which could obscure the
phenomena we would like to examine. It also facilitates implementation of any angle
of nonalignment.

Let us introduce an auxiliary Cartesian coordinate system (ξ, η), where ξ is the
variable along the characteristic direction defined above and η = (−tx+y)(1+t2)−1/2

is the variable along the cross-characteristic direction.
Consider the nine-point discretization of (3.1) on a grid with aspect ratio m =

hx/hy, where hx and hy are the meshsizes in the x and y directions, respectively. For
integers (i1, i2) the discrete approximation to Φ(i1hx, i2hy) is denoted by φi1,i2 , and
the discrete approximation to the differential operator in (3.1) is defined by

L(hx,hy)φi1,i2 ≡ 1

h2
x + (k + s)2h2

y

[(1 − s) (φi1−1,i2−k + φi1+1,i2+k)

+ s
(
φi1−1,i2−(k+1) + φi1+1,i2+(k+1)

)
− 2φi1,i2 − s(1 − s) (φi1,i2−1 − 2φi1,i2 + φi1,i2+1)](3.3)

− A
1

h2
y

[φi1,i2+2 − 4φi1,i2+1 + 6φi1,i2 − 4φi1,i2−1 + φi1,i2−2] ,
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Fig. 3.1. Anisotropic grid; nine-point stencil.

where k+ s = mt, k is an integer, and 0 ≤ s < 1 (see Figure 3.1); A is the explicit nu-
merical dissipation coefficient. Thus the differential problem (3.1)–(3.2) is discretized
on the grid as

L(hx,hy)φi1,i2 = fi1,i2 , i1 = 1, . . . , n1 − 1,

φ0,i2 = g0(i2hy),

φn1,i2 = g1(i2hy),(3.4)

φi1,i2+n2 = φi1,i2 , i1 = 0, 1, . . . , n1,

where n1 = 1/hx, i2 ∈ Z, n2 = 1/hy, and fi1,i2 = F (i1hx, i2hy).

The low-dimensional prototype to (3.4) is a simple one-dimensional (1D) Dirichlet
problem for the second derivative operator. It is well known that one V-cycle with
two red-black relaxation sweeps per level, the full-weighting residual transfer, and
the linear interpolation of the coarse-grid correction exactly solves the 1D-prototype
problem. We mimic this cycle in the full 2D solver.

The first differential approximation (cf. [15], [1]) to the operator (3.3) is

φhξξ − h2
y

[
A+

(
(1 − s)s cos(ψ)

2m

)2
]
φyyyy,(3.5)

where φhξξ is the first differential approximation to the 1D prototype. For characteristic

components φhξξ ≈ φξξ. On the target grid A = 0. On coarser grids we choose A so
that the total cross-characteristic dissipation, i.e., the coefficient of φyyyy in (3.5),
would remain the same as on the target grid. (Note that upon each semicoarsening
step the values of hy and ψ remain unchanged while s(1− s)/m decreases. Note also
that the true cross-characteristic dissipation should be defined as the coefficient of
the fourth derivative with respect to η, but for characteristic components that is just
proportional to the fourth derivative with respect to y.)
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3.2. Multigrid cycles. In this section the basic parts of the multigrid cycles,
such as relaxation, residual transfer, and correction interpolation are described. Nu-
merical two-level tests together with the two-level Fourier mode analysis discussed
here allow us to choose parameters for efficient multilevel cycles, which are then ex-
amined at the end of this section.

3.2.1. Relaxation schemes. Two types of relaxation are considered here:
pointwise and “zebra.”

The elementary step of the pointwise relaxation is to change the solution approx-
imation at the point (i1, i2) so as to satisfy (3.4). The order of performance of the
elementary steps obeys the following rules:

1) Odd vertical lines (the vertical lines with odd i1 coordinate) are relaxed before
even ones.

2) The relaxation in each vertical line consists of four sweeps. Each sweep performs
the elementary step for every fourth point in the line. The first sweep starts from
the point with vertical coordinate i2 = 0; the second, from the point with i2 = 2; the
third, from the point with i2 = 1; and the last, from the point with i2 = 3.

This eight-color order of relaxation is not necessary for efficient smoothing. It
is chosen to enable full parallelization and precludes the appearance of relaxation
“boundary layers.” To be sure, the usual red-black relaxation order would be efficient
as well, but then the results would depend slightly on where the sweeps start and end,
which we wanted to avoid.

The elementary step of the “zebra” line relaxation is to solve (or solve approx-
imately) the system of all the discrete equations centered at the same vertical grid
line. This step results in simultaneous replacement of the solution approximation at
all the grid points belonging to that line. All the residuals on this line are thereby
reduced to zero (or near zero). The order of lines remains as above: all the odd lines
are relaxed before all the even ones (hence the name “zebra”).

3.2.2. Intergrid transfers. In any cycle there are two types of intergrid com-
munication. The fine-to-coarse transfer (restriction) produces a coarse-grid approxi-
mation to the fine-grid residual function

ri1,i2 = fi1,i2 − L(hx,hy)φi1,i2 .

The coarse-to-fine transfer (prolongation) is the coarse-grid correction interpolation.
In the present algorithm both intergrid transfers are anisotropic. They roughly sim-
ulate the corresponding transfers of the 1D-prototype solver.

Residual transfer to the semicoarsened grid is given by

Ri1,i2 =

(
IHh r

)
i1,i2

= .5 r2i1,i2 + .25

[
(1 − s)

(
r2i1−1,i2−k + r2i1+1,i2+k

)

+ s
(
r2i1−1,i2−k−1 + r2i1+1,i2+k+1

)]
,(3.6)

where R and r denote the coarse- and fine-grid residual functions, respectively.
Notice that the weighted average (1 − s)r2i1−1,i2−k + sr2i1−1,i2−k−1 defines the

residual value at the ghost point r2i1−1,i2−k−s; hence, (3.6) corresponds to the stan-
dard 1D full-weighting residual transfer.

The scheme is described in Figure 3.2. The solid lines show to where a fine-grid
point residual is sent. The dashed arrows exhibit all the fine-grid points sending their
residuals to a given coarse-grid point.
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- fine grid point, -  coarse grid point, - characteristic

Fig. 3.2. Residual transfer to semicoarsened grid.

Interpolation of the coarse-grid correction simulates the 1D linear interpolation,
giving the operation adjoint to (3.6):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v2i1,i2 = Vi1,i2 ,

v2i1+1,i2 = .5

[(
1 − S1

)(
Vi1,i2−K1

+ Vi1+1,i2+K1

)
+ S1

(
Vi1,i2−K1−1 + Vi1+1,i2+K1+1

)]
,

(3.7)

where V denotes the solution of the coarse-grid problem, v denotes the correction to
the fine-grid solution approximation, and K1 is an integer such that (K + S)/2 =
K1 + S1, 0 ≤ S1 < 1, K and S being the parameters of the coarse-grid discretization
(defined like k and s in Figure 3.1).

3.2.3. Switching criterion. The condition of switching from pointwise to ze-
bra relaxation can be derived from the coupling analysis of the FDA approximation
(3.5). The term of the FDA responsible for the “characteristic” coupling is φhξξ, and
a quantitative measure of this coupling is

h−2
ξ =

((
m2 + (k + s)2

)
h2
y

)−1

.

The “dissipative” coupling is maintained by the second term in (3.5), in which φyyyy
has the coupling strength h−4

y . We switch to the zebra scheme when this “dissipative”
coupling becomes larger than the “characteristic” one, i.e., when the ratio between
them, which we call the relative coupling (RC), becomes larger than one. The derived
criterion completely agrees with the experimental one obtained from the asymptotic
convergence rates of two-level cycles.
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3.2.4. Two-level cycles. A two-level cycle V2(ν1, ν2) can be defined as the
following six steps:

Step 1. Prerelaxation sweeps. Improve the initial fine-grid approximation by ν1
relaxation sweeps.

Step 2. Residual transfer. Build the coarse-grid approximation R to the fine-grid
residual function ri1,i2 = fi1,i2 − L(hx,hy)φi1,i2 , namely, calculate R = IHh r, where IHh
is the fine-to-coarse residual transfer defined by (3.6).

Step 3. Coarse-grid equation. Form the coarse-grid equation

L(Hx,Hy)V = R.

At this stage we choose the precise dose of coarse-grid explicit numerical dissipation
A and recalculate the new values of the discretization parameters S and K depending
on the coarse-grid aspect ratio.

Step 4. Exact solution. Solve the coarse-grid equation by the desired method.
Step 5. Coarse-grid correction. Interpolate the obtained coarse-grid solution V to

the fine grid using (3.7); the result v is added to the current fine-grid approximation.
Step 6. Postrelaxation sweeps. Improve the corrected fine-grid approximation by

ν2 relaxation sweeps.
We ran two-level cycles with either the pointwise or the zebra relaxation on grids

with different aspect ratios and with either full or semicoarsening. Using zero right-
hand sides and zero boundary conditions, the function U(x, y) ≡ 0 is the exact solution
of the differential problem (3.1)–(3.2). This choice of data together with a random
choice of the initial approximation facilitates the observation of the cycle asymptotic
behavior.

V2(1, 1) cycles were performed on fine grids with aspect ratios m = 1, 2, 4, 8, 16.
In these experiments we chose the explicit numerical dissipation factor A on the fine
grid assuming that that grid itself was obtained by (log2m steps of) semicoarsening,
starting with a uniform target grid. In other words, the total dissipation TV of the
algorithm was equal to the inherent numerical dissipation of a uniform grid with
meshsize hy.

Each experiment included three different runs, each starting from a random initial
error. Run I used the pointwise relaxation and semicoarsening; Run II, the pointwise
relaxation and full coarsening (the coarse-grid discretization being then similar to that
on the fine grid); Run III employed the zebra relaxation and semicoarsened coarse
grid. Each run consisted of at least 12 cycles, stopping further cycling when the
convergence factor was stabilized, in the sense that the largest difference between the
convergence factors of the last three cycles did not exceed .01.

The results of these experiments are collected in Table 1. The notation used in
the table is the following: m = hy/hx is the aspect ratio; hy is the vertical meshsize.
The meshsize in the reference axis always remains the same hx = .03125, except for
the last group of experiments for m = 16, where hx = .125; t is the nonalignment
parameter defined in section 3.1; RC is the relative coupling (cf. section 3.2.3). The
column “No.” shows the number of cycles performed until the convergence factor has
been stabilized. In the column “Final” the convergence factor of this last cycle (the
L2-error norm before the cycle divided by that norm after the cycle) is printed. The
column “Aver.” exhibits the convergence factor averaged over all the cycles performed
in the experiment.

The presence of some very large average convergence factors in Table 1 emphasizes
the astounding efficiency of the cycles in reducing most error components. Indeed, all
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Table 1

Multigrid solver for ∂2U
∂ξ2

= F in two dimensions.

Two-level algorithm

Asymptotic convergence rate
Run I Run II Run III

m t RC No. Final Aver. No. Final Aver. No. Final Aver.

1 0.1 0.002 13 4.14 22.5 15 1.10 22.1 15 4.25 56.2
1 0.3 0.011 25 3.49 5.34 20 1.31 9.2 26 3.59 13.2
1 0.5 0.016 26 5.01 6.65 22 1.43 10.5 29 4.99 15.0
1 0.7 0.011 18 3.49 5.89 15 1.32 9.96 20 3.58 14.4
1 0.9 0.002 18 4.19 15.9 16 1.10 20.3 16 4.23 50.1
2 0.1 0.008 18 3.40 7.58 15 1.23 11.8 19 3.73 17.7
2 0.3 0.044 26 6.05 8.67 19 1.96 15.3 21 6.15 23.6
2 0.5 0.063 19 13.7 16.6 30 1.60 12.8 17 20.0 48.8
2 0.7 0.044 26 6.07 8.64 18 1.93 16.0 27 6.05 19.8
2 0.9 0.008 15 3.39 8.51 16 1.22 10.5 16 3.73 20.0
4 0.1 0.032 26 5.34 7.7 19 1.72 13.7 20 5.31 22.1
4 0.3 0.176 17 18.0 23.8 26 3.73 20.3 15 25.8 91.8
4 0.5 0.250 17 21.1 24.3 22 3.05 22.9 17 20.1 56.3
4 0.7 0.176 17 18.2 24.6 28 3.75 19.7 15 25.9 92.3
4 0.9 0.032 22 5.35 8.02 19 1.71 12.4 22 5.3 19.4
8 0.1 0.130 18 16.1 22.2 22 3.00 22.4 16 20.4 80.0
8 0.3 0.706 28 6.18 6.89 27 6.26 14.1 14 31.2 113
8 0.5 1.000 14 3.69 4.60 18 3.7 7.95 17 20.0 44.3
8 0.7 0.706 28 6.19 6.91 26 6.32 14.5 14 31.3 112
8 0.9 0.130 17 16.2 22.8 16 2.98 28.7 16 20.4 78.9
16 0.1 0.518 22 9.56 10.6 22 9.57 20.8 14 31.8 113
16 0.3 2.822 15 1.63 2.43 15 1.64 4.95 13 42.6 135
16 0.5 4.000 13 1.42 2.58 14 1.42 4.86 14 31.3 113
16 0.7 2.822 14 1.63 2.63 13 1.64 5.46 13 41.2 136
16 0.9 0.518 21 9.41 10.7 22 9.69 20.5 13 32.4 119

the components which are smooth in the cross-characteristic direction are converged
by the cycle with the efficiency similar to that of the 1D-prototype solver (where just
one cycle precisely solves the problem). The exceedingly fast rates in the first few
cycles are thus typical to our 2D case, disappearing in three dimensions. Our main
concern, though, is the asymptotic (“final”) convergence, which always shows the
worst-converging components. Regarding these asymptotic convergence rates, the first
obvious result is the superiority of the semicoarsening algorithms over the algorithm
with full coarsening. The two semicoarsening algorithms show similar asymptotic
convergence factors on grids with small RC (m = 1, 2, 4); but when RC > 1, only the
algorithm with zebra relaxation provides a good asymptotic convergence.

The tremendous discrepancy between “average” and “asymptotic” convergence
rates observed in these experiments raises two important issues:

1. The “average” convergence can be misleading, hiding the slowest-to-converge
components.

2. The “asymptotic” convergence rates are defined by some of the characteristic
error components which happened to be the worst-converging. The residuals
of these components are extremely small compared to typical residuals of non-
characteristic components of comparable size. This implies that in nonelliptic
problems one should not rely on the residual size as a convergence criterion.
Other criteria based on direct estimations of the approximation error, e.g.,
FMG convergence (see section 3.3), should be involved.
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3.2.5. Two-level mode analysis. The task of the full space Fourier mode anal-
ysis exhibited below is to give some confidence that the convergence rates of the two-
level cycles presented in the previous section do not deteriorate when the meshsizes
tend to zero. Usually, in nonelliptic problems, a half-space analysis taking into con-
sideration the boundary influence (see [1], [3, section 7.5], and [10]) should be used,
in order to bring out the trouble with characteristic components. However, for our
type of solver, where the trouble is removed, the two-level full space analysis gives a
good prediction of the overall cycle amplification factor as well.

To simplify the problem we analyze only the two-level cycle with two zebra re-
laxation sweeps on the fine grid. This simplification allows us to consider only two
coupled components at a time, differing by π in their x-directional frequency, while
analyzing the eight-color pointwise relaxation would require considering eight compo-
nents at a time.

The zebra relaxation symbol Z(θ) is the 2-by-2 amplification matrix acting on a

pair of Fourier modes ei(θxi1+θyi2) and ei(θ̃xi1+θyi2), θ̃x = θx − sign(θx)π.

Z(θ) =

⎛
⎜⎜⎝

C(θ)

(
1+C(θ)

)
2

C(θ̃)

(
1−C(θ̃)

)
2

C(θ)

(
1−C(θ)

)
2

C(θ̃)

(
1+C(θ̃)

)
2

⎞
⎟⎟⎠ ,

C(θ) =

(
1 − s

)
cos
(
θx + kθy

)
+ s cos

(
θx + (k + 1)θy

)
1 − s

(
1 − s

)(
1 − cos(θy)

)
+A

(
m2(1 + t2)

)(
cos(2θy) − 4 cos(θy) + 3

) ,

where the parameters A, m, k, and s are defined in section 3.1, θ = (θx, θy), θ̃ =

(θ̃x, θy).
Let θξ be a normalized frequency defined by θξ + π = (θx + (k + s)θy) mod 2π,∣∣∣θξ∣∣∣ ≤ π. Following [14] the smoothing factor Sm of the relaxation scheme is defined

as the spectral radius of matrix product Q(θ)Z(θ), where

Q(θ) =

(
q 0
0 q̃

)
,

if
π

2
<
∣∣∣θξ∣∣∣ ≤ π, then q = 1 and q̃ = 0,

otherwise q = 0 and q̃ = 1.

For any possible slopes t and aspect ratios m (all other parameters (A, k, and s) are
derived from these) Sm < .45. Thus, the smoothing factor is excellent throughout
the relevant range of parameters.

The symbol V2(θ) of a two-level V2(1, 1) cycle is defined by

V2(θ) = Z(θ)
(
I − P (θ)L−1

c (θ)R(θ)Lf (θ)
)
Z(θ),

where

Lf (θ) =

(
L(θ) 0

0 L(θ̃)

)
,
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Table 2

Two-level cycle V2(1, 1) Fourier mode analysis.

m t Afine Acoarse θx θy θξ Conv. rate

1 0.15 0.0000 0.0012 -0.074 2.528 0.381 0.32
1 0.54 0.0000 0.0117 -2.013 -1.473 -2.808 0.23
1 0.81 0.0000 0.0015 -2.258 2.356 -0.350 0.32
1 0.99 0.0000 0.0000 -3.142 -3.142 0.003 0.04

2 0.54 0.0117 0.0117 -2.011 -1.080 3.006 0.02
2 0.81 0.0015 0.0033 -2.651 1.473 -0.265 0.23
2 0.99 0.0000 0.0000 -3.142 -3.142 -3.079 0.07

4 0.54 0.0117 0.0118 -1.718 -0.736 2.974 0.02
4 0.81 0.0033 0.0034 -2.994 -1.080 -0.210 0.08
4 0.99 0.0000 0.0000 -3.142 -3.142 -3.016 0.14

L(θ) =
2

h2
y

(
1

m2(1 + t2)

((
1 − s

)
cos
(
θx + kθy

)
+ s cos

(
θx + (k + 1)θy

)

− 1 + s
(
1 − s

)(
1 − cos(θy)

))
−Afine

(
cos(2θy) − 4 cos(θy) + 3

))
,

Lc(θ) =
2

h2
y

(
1

(2m)2(1 + t2)

((
1 − S

)
cos
(
2θx +Kθy

)
+ S cos

(
2θx + (K + 1)θy

)

− 1 + S
(
1 − S

)(
1 − cos(θy)

))
−Acoarse

(
cos(2θy) − 4 cos(θy) + 3

))
,

P (θ) =

⎛
⎜⎜⎝

1
2

((
1 − s

)
cos
(
θx + kθy

)
+ s cos

(
θx + (k + 1)θy

)
+ 1

)
1
2

((
1 − s

)
cos
(
θ̃x + kθy

)
+ s cos

(
θ̃x + (k + 1)θy

)
+ 1

)
⎞
⎟⎟⎠ ,

R(θ) = PT (θ).

L(θ) and Lc(θ) are the symbols of the fine-grid and coarse-grid operators, respectively.
Vector-column P (θ) is the prolongation (3.7) symbol. Its adjoint (transposed) R(θ)
is the symbol of restriction (3.6).

The two-level cycle convergence rate is defined as max ρ(V2(θ)), where ρ(V2(θ))
is the spectral radius of V2(θ). The maximum is taken over all θ = (θx, θy) �= (0, 0).
Some representative samples of two-level convergence rates computed on different
grids for different slopes are exhibited in Table 2.

In the table m is the aspect ratio, t is the nonalignment (slope) parameter, Afine

and Acoarse are the fine-grid and coarse-grid explicit dissipation coefficients, “Conv.
rate” is the two-level convergence rate, ei(θxi1+θyi2) is the Fourier component for which
this convergence rate was achieved, and θξ is the normalized frequency.

The results of the analysis are in very good agreement with the results of two-level
numerical tests exhibited in Table 1.

3.2.6. Multilevel cycle. We performed experiments with a multilevel V(1, 1)
cycle, using the switching criterion introduced in section 3.2.3 above. The multilevel
cycle can be defined similarly to the two-level cycle, but Step 4 is replaced with
the recursive call to the same cycle applied to the coarse-grid problem. The target-
grid experiments showed a stable asymptotic convergence with rates ranging from 2.3
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(near-alignment case t ≈ 0 or t ≈ 1) to 5 (t ≈ .5). Convergence rates on coarse grids
(m = 2, 4, 8, 16) are even better. For detailed tables see [9] and [13].

3.3. FMG solver and numerical experiments. In this section we present
the FMG solver (see, e.g., [3]) based on the V (1, 1) cycle. Its setup work can be
described by the following four steps:

Step 1. Target-grid problem. We formulate the discrete equation (3.3) on the
chosen target grid. The parameter A for this grid is set to zero. The total dissipa-
tion value for the entire algorithm is defined as this target-grid’s inherent numerical
dissipation. A proper discretization of the right-hand side f and boundary condition
functions g0 and g1 is also performed. In our implementation these discrete functions
are simply injected from the corresponding continuous ones.

Step 2. Next coarse-grid construction. The next coarse grid is constructed by
semicoarsening, as in the cycles described above.

Step 3. Coarse-grid problem. The discretization parameters such as the aspect
ratio, the new K,S parameters, and the artificial dissipation coefficient A are cal-
culated for the new grid. The general form of the coarse-grid operator remains the
same. The coarse-grid right-hand side function F is formed by the same averaging
procedure that is used for the residual transfer inside the cycles, i.e.,

Fi1,i2 = .5 f2i1,i2 + .25

[
(1 − s)

(
f2i1−1,i2−k + f2i1+1,i2+k

)

+ s
(
f2i1−1,i2−k−1 + f2i1+1,i2+k+1

)]
.

The coarse-grid boundary conditions are injected from the previous fine grid (averaging
could be used as well).

Step 4. Steps 2 and 3 are repeated until the coarsest possible grid is reached and
its problem is defined.

The execution of the FMG algorithm then involves the following four steps.
Step 1. The coarsest-grid problem is solved by some method.
Step 2. The solution obtained on the current grid is interpolated to the next

fine grid to serve as an initial approximation to the fine-grid solution. The “FMG
interpolation” used in this step is of the fourth order in the characteristic direction
and of the second order in the vertical direction. (The experiments show that even
with this lower order vertical interpolation the algorithm successfully reduces all the
algebraic errors well below the level of the discretization errors. Nevertheless, in the
3D case below we do use the fourth order interpolation throughout).

Step 3. The obtained initial approximation is improved by one V(1, 1) cycle.
Step 4. We repeat Steps 2 and 3 until the target grid is reached. There we perform

one additional improving cycle (mainly for checking purposes).
In our experiments, the right-hand side f and the boundary conditions g0 and

g1 were chosen so that the function sin(θxx + θyy) was the exact solution of the
differential problem (3.1)–(3.2). Six-level experiments were performed for different
values of parameters θx and θy. The target (finest) grid throughout our experiments
was a uniform grid with meshsizes hx = hy = 2−7. For each component we checked
five different characteristic inclinations t = tanψ. Some representative results are
collected in Table 3, where the target-grid discretization error is compared with the
algebraic errors at three stages: immediately after the FMG interpolation of the
coarse-grid solution and at the end of the first and the second improving cycles. Here
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Table 3

Multigrid FMG solver for ∂2U
∂ξ2

= F in two dimensions.

Discr. Algebraic error after
t βξhy θyhy θxhx error Interp. 1 cycle 2 cycles

Characteristic components
0.1 0.04711 0.39270 0.00761 0.0122 0.00619 0.000348 0.000148
0.3 0.04894 0.39270 −0.07093 0.0104 0.0280 0.00204 0.000327
0.5 0.05241 0.39270 −0.14947 0.0424 0.0198 0.00106 0.000127
0.7 0.05722 0.39270 −0.22801 0.151 0.0131 0.000882 0.000206
0.9 0.06306 0.39270 −0.30655 0.354 0.00554 0.000185 2.16 · 10−05

0.1 0.04711 1.96350 −0.14947 0.523 0.0424 0.0104 0.00414
0.3 0.04894 1.96350 −0.54217 0.653 0.0487 0.00746 0.00174
0.5 0.05241 1.96350 −0.93487 0.664 0.0414 0.00630 0.000926
0.7 0.05722 1.96350 −1.32757 0.657 0.0492 0.00750 0.00173
0.9 0.06306 1.96350 −1.72027 0.581 0.0398 0.0116 0.00489

Intermediate components
0.1 0.78515 0.39270 0.74198 0.0708 0.0657 0.00259 0.0012
0.3 0.81565 0.39270 0.66344 0.159 0.0791 0.00331 0.000424
0.5 0.87346 0.39270 0.58490 0.319 0.107 0.00586 0.000241
0.7 0.95364 0.39270 0.50636 0.561 0.106 0.00295 0.000202

0.1 0.78515 1.96350 0.58490 0.353 0.132 0.00509 0.00201
0.3 0.81565 1.96350 0.19220 0.537 0.540 0.0749 0.0131
0.5 0.87346 1.96350 −0.20050 0.326 0.592 0.0646 0.00749
0.7 0.95364 1.96350 −0.59320 0.292 0.308 0.00643 0.00113
0.9 1.05106 1.96350 −0.98590 0.545 0.229 0.0120 0.00486

Noncharacteristic components
0.1 2.04138 0.39270 1.99198 0.392 1.19 0.00233 0.000666
0.3 2.12069 0.39270 1.91344 0.497 1.30 0.0201 0.000582
0.5 2.27101 0.39270 1.83490 0.697 1.47 0.0555 0.00179
0.7 2.47946 0.39270 1.75636 0.998 1.77 0.0440 0.00169
0.9 2.73277 0.39270 1.67782 1.4 2.13 0.00293 0.000500

0.1 2.04138 1.96350 1.83490 0.555 1.37 0.0284 0.00900
0.3 2.12069 1.96350 1.44220 1.05 1.85 0.0204 0.00343
0.5 2.27101 1.96350 1.04950 1.32 1.84 0.0259 0.0036
0.7 2.47946 1.96350 0.65680 1.32 2.31 0.0492 0.00579
0.9 2.73277 1.96350 0.26410 1.34 2.50 0.0334 0.00857

βξ is the characteristic frequency of a given component βξhy = θxhx + tθyhy. (For
more extensive tables see [9] and [13].)

The results show that for all the components the algebraic error after the first
cycle is much less than the discretization error. In fact, in the case of characteristic
components the algebraic error is less than the discretization error already after the
solution interpolation from the coarse grid. This is due to the artificial dissipation
introduced at the coarse levels, ensuring nearly the same characteristic-component
discretization error on all the grids (the differences are proportional to h4

y). The
situation is different for noncharacteristic components since they cannot be well ap-
proximated on coarse grids. However, it is exactly these components that are reduced
remarkably well by the target-grid cycle. Thus we can conclude that the FMG algo-
rithm requires only one V (1, 1) cycle per FMG level, or a total of about 13 “minimal
work units” to reach the discretization accuracy for the target-grid approximation.

Note 1. The FMG algorithm work-unit count is about twice larger than usual
in uniformly elliptic problems, due to the somewhat more expensive coarser levels,
using semicoarsening instead of full coarsening. This increased expense will almost
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disappear in three dimensions.
Note 2. In nonelliptic problems there are some “pathological” noncharacteris-

tic components which exhibit unusually small discretization errors. Noncharacteris-
tic components usually possess relatively large discretization errors (compared with
characteristic components). However, a very special choice of parameters (solution
component U and slope angle ψ) can result in vanishing discretization errors. It is
clear that in such special situations we cannot expect the algebraic error to be smaller
than or comparable to the discretization error at any stage of the algorithm. In spite
of the fact that the algorithm fails to reach the discretization accuracy for these com-
ponents, the total (algebraic plus discretization) error in these special cases is much
smaller than in neighboring regular cases. Moreover, upon any reasonable perturba-
tion the behavior becomes normal: the algebraic error after the first improving cycle
is already substantially below the level of the discretization error. It is thus clear in
any case that the statement that the algebraic error after one cycle is much less than
the discretization error will most likely hold in any real calculations (where mostly
nonpathological components and slope values exsist). One can find a detailed analysis
of this phenomenon in [9] and [13].

4. 3D sonic flow: The constant coefficient case.

4.1. Problem statement. Let µ and β be arbitrary orthonormal coordinates
in R

3 and the scalar function Φ(x, y, z) be defined in the unit cube (x, y, z) ∈ [0, 1] ×
[0, 1] × [0, 1]. Then the 3D differential equation we consider is equivalent to

LΦ ≡ ∂2Φ

∂µ2
+
∂2Φ

∂β2
= F.(4.1)

The “characteristic plane” defined by µ and β is assumed to be horizontally inclined;
i.e., its normal is closer to the vertical than to any of the horizontal axes. For con-
venience we assume vertical periodicity: Φ(x, y, z) = Φ(x, y, z + 1). On the vertical
faces of the cube we assume the Dirichlet boundary condition: Φ(x, y, z) is prescribed
for x = 0, 1 and y = 0, 1.

Natural (but nonorthogonal) coordinates in the characteristic plane are deter-
mined by the intersections of this plane with the x-z and y-z planes; they are

ξ =
x+ txz√

1 + t2x
and η =

y + tyz√
1 + t2y

,

where tx = tan(ψx) is the tangent of the angle between the x-axis and the intersec-
tion of the characteristic plane with the x-z coordinate plane; ty = tan(ψy) is the
same for the y-z coordinate plane. The horizontal-inclination assumption means that
0 ≤ |tx|, |ty| ≤ 1. For simplicity we can assume that 0 ≤ tx, ty ≤ 1. Let tα = tx − ty.
We will use the auxiliary characteristic variable

α =
x− y + tαz√

2 + t2α
=

(
1 + t2x
2 + t2α

) 1
2

ξ −
(

1 + t2y
2 + t2α

) 1
2

η.

Equation (4.1) can be written as

Cξ
∂2Φ

∂ξ2
+ Cη

∂2Φ

∂η2
+ Cα

∂2Φ

∂α2
= F,(4.2)
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Fig. 4.1. Nonorthogonal grid; seven-point stencil for Laplace operator.

where

Cξ =

(
1 + t2x

) [
(1 − tytα)

2
+ (1 − tytα) (1 + txtα)

]
2 + 2t2α + t2α

(
t2x + t2y

)
+ (tx + ty)

2 ;

Cη =

(
1 + t2y

) [
(1 + txtα)

2
+ (1 − tytα) (1 + txtα)

]
2 + 2t2α + t2α

(
t2x + t2y

)
+ (tx + ty)

2 ;

Cα = 1 − (1 − tytα) (1 + txtα)
(
2 + t2α

)
2 + 2t2α + t2α

(
t2x + t2y

)
+ (tx + ty)

2 .

Following the guiding principle formulated in section 2.2, we first state the 2D discrete
prototype problem on an auxiliary grid induced on a characteristic plane and study
its multigrid solver.

4.2. 2D-prototype: Laplacian on a nonorthogonal grid. Let the discrete
function φi1,i2 , defined at the nodes of the grid induced on a representative charac-
teristic plane, be a discrete approximation to function Φ(i1h, i2h, z̃), where h is the
meshsize in the reference x-y plane and z̃ is uniquely calculated from the condition
that the point belongs to the characteristic plane. The seven points used for discretiz-
ing (4.2) in this plane are shown in Figure 4.1. The discrete approximation to (4.2)
on these points is

Lhφi1,i2 ≡ Cξ

h2
ξ

(
φi1+1,i2 − 2φi1,i2 + φi1−1,i2

)
(4.3)

+
Cη

h2
η

(
φi1,i2+1 − 2φi1,i2 + φi1,i2−1

)
+
Cα

h2
α

(
φi1+1,i2−1 − 2φi1,i2 + φi1−1,i2+1

)
= fi1,i2 .
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This “2D-prototype” equation is approximately satisfied by any vertically smooth
solution of the real 3D problem.

The characteristic-plane horizontal-inclination assumption implies that the angle
between the axes ξ and η ranges within the relatively narrow interval [π/3, π/2].
In particular, when the angle is π/2 the grid becomes orthogonal and the variable α

disappears (Cα = 0). The meshsizes used in (4.3) are hξ =
√

1 + t2xh; hη =
√

1 + t2yh;

hα =
√

2 + (tx − ty)2h. Thus, the discretization (4.3) is h-elliptic and suffers no
substantial anisotropy. The boundary condition for the problem is straightforwardly
discretized, since the boundary strictly aligns with the grid.

The multigrid cycle V (1, 1) which we have tested for the discrete prototype equa-
tion consists of a pointwise Gauss–Seidel relaxation, the full-weighting residual trans-
fer, and the linear correction interpolation. The relaxation sweep is performed in the
following order: the points with both i1 and i2 odd are relaxed first; then the points
with both coordinates even; then those with i1 odd and i2 even; and the remaining
group of points is relaxed last.

Only points with both coordinates even are present on the coarse grid. The
full-weighting residual transfer and the linear correction interpolation used in the
cycle mimic those usually used with the five-point Laplacian solver on an orthogonal
uniform grid. For example, a fine-grid point with coordinates (2i1 + 1, 2i2 + 1) sends
its residual to (and gets its correction from) the coarse-grid points (i1, i2), (i1 +1, i2),
(i1, i2 +1), and (i1 +1, i2 +1) in equal proportions. Due to the near isotropy we need
not use here a line relaxation and/or semicoarsening.

This cycle proved to be very efficient for the prototype equation (4.3) always
reducing the error by more than an order of magnitude.

4.3. Discretization. Let a 3D grid have meshsizes hx, hy, and hz in the cor-
responding directions. Assuming hz to be the smallest of those, we define the aspect
ratios of the grid mx = hx/hz and my = hy/hz. Taking into account that the multi-
grid cycle for the 2D prototype employs full coarsening and also assuming that the
target grid is always horizontally uniform, we can restrict our considerations to 3D
grids with equal aspect ratios (hx = hy = h, hence mx = my = m). To discretize
(4.2) at a given grid node, we consider ghost points located at the intersections of the
characteristic plane (going through the given node) with the adjacent vertical grid
lines. The function values at the ghost points are defined by the linear interpolation
from the vertically nearest genuine grid neighbors. This and the addition of an explicit
dissipation term result in the following discretization:

L(h,h,hz)φi1,i2,i3 ≡ Cξ

m2(1 + t2x)h2
z

[
sx
(
φi1+1,i2,i3+(kx+1) + φi1−1,i2,i3−(kx+1)

)
− 2φi1,i2,i3 + (1 − sx)

(
φi1+1,i2,i3+kx

+ φi1−1,i2,i3−kx

)
− sx(1 − sx)

(
φi1,i2,i3+1 − 2φi1,i2,i3 + φi1,i2,i3−1

)]

+
Cη

m2(1 + t2y)h
2
z

[
sy
(
φi1,i2+1,i3+(ky+1) + φi1,i2−1,i3−(ky+1)

)− 2φi1,i2,i3

+ (1 − sy)
(
φi1,i2+1,i3+ky

+ φi1,i2−1,i3−ky

)
− sy(1 − sy) (φi1,i2,i3+1 − 2φi1,i2,i3 + φi1,i2,i3−1)

]
(4.4)
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+
Cα

m2(2 + t2α)h2
z

[
sα
(
φi1+1,i2−1,i3+(kα+1) + φi1−1,i2+1,i3−(kα+1)

)− 2φi1,i2,i3

+ (1 − sα)
(
φi1+1,i2−1,i3+kα

+ φi1−1,i2+1,i3−kα

)
− sα(1 − sα)

(
φi1,i2,i3+1 − 2φi1,i2,i3 + φi1,i2,i3−1

)]

−A
1

h2
z

[
φi1,i2,i3+2−4φi1,i2,i3+1 + 6φi1,i2,i3 − 4φi1,i2,i3−1 + φi1,i2,i3−2

]
= fi1,i2,i3 ,

where the integers kx, ky, and kα and the real numbers 0 ≤ sx, sy, sα < 1 are defined
by

mtx = kx + sx, mty = ky + sy, and mtα = kα + sα,

and A is the “explicit numerical dissipation” coefficient.

This is a 17-point h-elliptic discretization. Its first differential approximation is

�̃hφ− h2
z

[
A+ Cξ

(1 − sx)2s2x
4m2

(
1 + t2

x

) + Cη

(1 − sy)
2s2y

4m2
(
1 + t2y

) + Cα
(1 − sα)2s2α
4m2

(
1 + t2

α

)
]
φzzzz,(4.5)

where �̃hφ is the first differential approximation to the 2D-prototype discretization
(4.3) and φzzzz is the fourth derivative with respect to z. The explicit numerical
dissipation parameter A is chosen to ensure the same total numerical dissipation
TND on all the grids, where TND is defined to be the coefficient of φzzzz in (4.5).
The value of TND is determined by its value at the target grid, where we set A = 0.

4.4. Multigrid cycle. The cycle employed here is again the V (1, 1) cycle defined
in section 3.2.4, featuring the following components. (Details are omitted, since they
are similar to the 2D case and more cumbersome; they can be found in [11].)

4.4.1. Coarse grids. The V (1, 1) cycle employs semicoarsening, i.e., the mesh-
sizes in the reference plane are doubled at each coarsening step, while the z-direction
meshsize remains the same throughout the cycle. (Another approach involving con-
ditional coarsening is discussed in [11].)

4.4.2. Relaxation. Similarly to the 2D case discussed in section 3.2.3, we can
separate “dissipative” and “characteristic” couplings; the relative coupling RC defined
as their ratio turns out to be

RC = −
(
m

hz

)2
TND

Cξ

1+t2
x

+
Cη

1+t2
y

+ Cα

1+t2
α

.(4.6)

Any pointwise relaxation can be unconditionally efficient only on grids where RC is
not large. Hence, the global relaxation policy remains the same as in the 2D case:
as long as RC ≤ 1 we apply a point-by-point Gauss–Seidel relaxation; on grids with
RC > 1 we use a relaxation which simultaneously updates all the points placed on
the same vertical grid line. In either case the vertical lines are taken in the red-black
ordering. In the pointwise relaxation each such vertical line is relaxed in the four-color
order described in section 3.2. One could of course simplify the algorithm and use the
vertical line relaxation throughout.
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4.4.3. Restriction. The fine-to-coarse residual transfer is of the “full-weighting”
type (see [2, section 4.4] or [3, section 4.4]); i.e., the residual (divided by 4) at each
fine-grid point is distributed to neighboring coarse-grid points. (The division by 4
expresses the coarse-grid-to-fine-grid mesh-volume ratio.) This distribution follows
two rules:

1. A fine-grid point which is geometrically present on the next coarse grid sends
its whole residual (/4) to its coarse-grid representative.

2. A fine-grid point located in a vertical grid line absent from the coarse grid
sends its residual (/4) to ghost points (points on its characteristic planes) placed on
neighboring vertical grid-lines which do belong to the coarse grid. The transfer is the
same as in the 2D-prototype solver. The values received at the ghost points are then
redistributed: each ghost point sends its value to the two vertically nearest coarse-
grid neighbors. The ratio between the fractions received by each of the neighbors is
inversely proportional to the ratio of their distances from the ghost point.

As a result, each coarse-grid point receives residual fractions from 17 fine-grid
points.

4.4.4. Prolongation. The coarse-grid correction interpolation is the linear in-
terpolation which constitutes the adjoint to the residual (/4) transfer described above.

4.4.5. Numerical experiments. We experimented with two- and five-level
V (1, 1) cycles. The results show that the asymptotic convergence rate is good enough
(in our two-level tests it is better than three per cycle even in the worst cases) and
it does not essentially depend on the cycle depth. Since the behavior of the FMG
algorithm is more important, we do not present detailed tables of cycle convergence
rates. (They can be found in [11].)

4.5. FMG solver: Numerical results. The full algorithm for solving (4.4)
with the boundary conditions mentioned above is the FMG algorithm defined in
section 3.3. The total cost of the algorithm in 3D is about six minimal work units.

We performed the numerical experiments with a five-level FMG algorithm, having
a uniform target grid with meshsize h = .03125. The continuous problem’s right-
hand side and boundary conditions were chosen so that the solution was U(x, y, z) =
sin(θxx + θyy + θzz). Let ξ and η be the characteristic plane directions defined in
section 4.1 and let ζ be the coordinate perpendicular to the characteristic plane. Then
the same component U can be expressed in the new variables as U = sin(ωξξ+ωηη+
ωζζ).

Remember that the ξ and η axes can be nonorthogonal. A component is con-
sidered as being “characteristic” if both hξωξ and hηωη are small. We tested in
our experiments several representative components and various characteristic-plane
slopes. A sample of numerical results is shown in Table 4. (More are given in [9], [13],
and [11].) The target-grid discretization error is compared in the table with the al-
gebraic error of the target-grid approximations obtained after the FMG interpolation
and after the improving V (1, 1) cycle. The results confirm the top efficiency of the
algorithm in the sense that after just one target-grid cycle the algebraic error is always
much less than the discretization error (except for some pathological components (see
Note 2 in section 3.3)).

5. 2D sonic flow: The variable coefficient case. The subject of this sec-
tion is to demonstrate a solver to the 2D sonic flow equation (3.1) where the differ-
entiation direction is no longer constant; i.e., the variable ξ(x, y) is a given nonlinear
function of the spatial variables.
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Table 4

Multigrid five-level FMG solver for ∂2φ
∂µ2 + ∂2φ

∂β2 = F in three dimensions.

Characteristic components

Algebraic error
sx sy hξωξ hηωη hzθz Discr. err. Interp. V cycle

0.100 0.200 0.01973 0.04005 0.19635 0.000588 0.000323 4.08 · 10−05

0.100 0.400 0.01973 0.04229 0.19635 0.000967 0.000527 6.54 · 10−05

0.100 0.990 0.01973 0.05526 0.19635 0.00431 0.000107 1.19 · 10−05

0.450 0.500 0.02153 0.04391 0.19635 0.00473 0.000458 4.49 · 10−05

0.850 0.900 0.02577 0.05283 0.19635 0.0271 5.57 · 10−05 3.54 · 10−06

0.300 0.200 0.02050 0.04005 0.58905 0.0673 0.00879 0.00172
0.300 0.400 0.02050 0.04229 0.58905 0.0744 0.00908 0.00187
0.300 0.990 0.02050 0.05526 0.58905 0.0978 0.00427 0.000322
0.650 0.500 0.02342 0.04391 0.58905 0.0953 0.00286 0.000487
0.750 0.900 0.02454 0.05283 0.58905 0.117 0.00157 0.000143
0.100 0.200 0.01973 0.04005 1.37445 0.449 0.0210 0.00510
0.100 0.990 0.01973 0.05526 1.37445 0.472 0.00755 0.000742
0.450 0.500 0.02153 0.04391 1.37445 0.494 0.0337 0.00536
0.850 0.900 0.02577 0.05283 1.37445 0.491 0.00922 0.00127
0.200 0.200 0.02002 0.04005 2.35619 0.606 0.0342 0.00521
0.200 0.400 0.02002 0.04229 2.35619 0.619 0.0400 0.00501
0.200 0.990 0.02002 0.05526 2.35619 0.607 0.0307 0.00299
0.350 0.500 0.02080 0.04391 2.35619 0.627 0.0478 0.00294
0.950 0.900 0.02708 0.05283 2.35619 0.596 0.00734 0.000462

Noncharacteristic components
0.100 0.200 2.07195 2.46293 0.19635 0.399 1.08 0.0685
0.100 0.400 2.07195 2.60114 0.19635 0.432 1.11 0.0658
0.100 0.990 2.07195 3.39843 0.19635 0.633 1.32 0.0291
0.450 0.500 2.26080 2.70016 0.19635 0.423 1.10 0.0746
0.850 0.900 2.70582 3.24918 0.19635 0.142 0.87 0.0280
0.300 0.200 2.15245 2.46293 0.58905 0.440 1.13 0.0893
0.300 0.400 2.15245 2.60114 0.58905 0.467 1.15 0.0905
0.300 0.990 2.15245 3.39843 0.58905 0.506 1.19 0.0233
0.650 0.500 2.45893 2.70016 0.58905 0.439 1.14 0.136
0.750 0.900 2.57709 3.24918 0.58905 0.227 0.943 0.0344
0.100 0.200 2.07195 2.46293 1.37445 0.534 1.25 0.0770
0.100 0.500 2.07195 2.70016 1.37445 0.647 1.36 0.111
0.100 0.990 2.07195 3.39843 1.37445 0.694 1.37 0.0255
0.450 0.500 2.26080 2.70016 1.37445 0.709 1.54 0.301
0.850 0.900 2.70582 3.24918 1.37445 0.200 0.916 0.0715
0.200 0.200 2.10250 2.46293 2.35619 0.989 1.73 0.0399
0.200 0.400 2.10250 2.60114 2.35619 1.30 2.03 0.0526
0.200 0.990 2.10250 3.39843 2.35619 0.854 1.53 0.0298
0.350 0.500 2.18430 2.70016 2.35619 1.55 2.30 0.120
0.950 0.900 2.84369 3.24918 2.35619 0.0845 0.769 0.0406

5.1. Problem statement and discretization. We are still considering (3.1)
on the unit square. In the case of variable velocity fields the nonalignment parameter
t depends on the spatial coordinates and is defined as the ratio t = tanψ = ∂ξ

∂y/
∂ξ
∂x .

We assume some restrictions on the absolute value of t: |t| ≤ 2. (See discussion in
section 6.) In fact, instead of an explicit function ξ = ξ(x, y), we define a smooth
velocity field. This means that at each target-grid point (i1, i2) we define a unit vector
ūi1,i2 = (ui1,i2 , vi1,i2). This vector shows the velocity direction at the point and yields
parameter t = tanψ = −ui1,i2/vi1,i2 .

As before, the x-axis is the reference one and the boundary conditions remain
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Fig. 5.1. Variable coefficients; low-dimensional prototype. The curved line is the characteristic
y − t(x, y)x = const through the node of discretization.

the same, i.e., Dirichlet conditions in the x direction and periodicity in the vertical y
direction. In discretizing this problem we utilize again the low-dimensional prototype.
The main difference now is the lack of symmetry and, therefore, parameters related
to the left and the right ghost points should be defined separately. At each grid node
(i1, i2) we now define the following set of stencil parameters (see Figure 5.1):

a) The right and left stencil half-lengths hright and hleft which are the (approxi-
mate) distances along the characteristic from the point (i1, i2) to the adjacent right
and left vertical lines, respectively.

b) Parameters identifying the vertical coordinates of the ghost points. These are
integers kright and kleft denoting vertical displacements (in meshsizes) with respect to
the point (i1, i2) and sright, sleft (0 ≤ sright, sleft < 1) which are the tuning parameters.

c) The velocity vectors ūleft and ūright at the ghost points.
Figure 5.2 explains these parameters pictorially.

The discrete low-dimensional prototype for the variable coefficient problem is still
a three-point discretization of the second derivative but on a nonuniform grid.

1

hlefthavrg
Φ

(
(i1 − 1)hx,

(
i2 − (kleft + sleft)

)
hy

)

− 2

hlefthright
Φ

(
i1hx, i2hy

)
(5.1)

+
1

hrighthavrg
Φ

(
(i1 + 1)hx,

(
i2 + (kright + sright)

)
hy

)
,

where havrg = .5(hright + hleft). Generally speaking this discrete scheme is just first-
order accurate. However, the velocity field smoothness assumption implies that on
fine enough grids hright = hleft + O(h2), yielding the second-order approximation.
Utilizing the same smoothness assumption we can approximate (only in the target-

grid discretization) the genuine hright and hleft with
√
h2
x + (kright + sright)2h2

y and√
h2
x + (kleft + sleft)2h2

y, respectively. To calculate these parameters on coarse grids
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Fig. 5.2. Variable coefficients; nine-point stencil.

we use some cost-effective recursive procedure allowing us to approximate the coarse-
grid operator ghost point location with the target-grid accuracy.

In spite of the nonuniformity, there is a V (1, 1)-cycle employing red-black re-
laxations and appropriate intergrid transfers which solves exactly this 1D-prototype
problem. The 2D V -cycle mimics it in solving the problem in the full dimension.

As before, the coarsening we are using is semicoarsening and the discretization
on the semicoarsened grid is derived from the discrete low-dimensional prototype by
vertically interpolating values to the ghost points and adding some vertical derivatives
to ensure the second-order approximation. The result is a nine-point discretization:

L(hx,hy)φi1,i2 ≡ 1

hlefthavrg

(
(1 − sleft)φi1−1,i2−kleft

+ sleftφi1−1,i2−(kleft+1)

)
+

1

hrighthavrg

(
(1 − sright)φi1+1,i2+kright

+ srightφi1+1,i2+(kright+1)

)
− 2

hrighthleft
φi1,i2 +A2

1

h2
y

(
φi1,i2−1 − 2φi1,i2 + φi1,i2+1

)
(5.2)

+ A3
1

h2
y

(
φi1,i2+2 − 2φi1,i2+1 + 2φi1,i2−1 − φi1,i2−2

)

+ A4
1

h2
y

(
φi1,i2+2 − 4φi1,i2+1 + 6φi1,i2 − 4φi1,i2−1 + φi1,i2−2

)
.

The parameters A2 and A3 are chosen to keep the second-order accuracy

A2 = − h2
y

v2
(
hleft + hright

)( 1

hleft

(
(1 − sleft)sleftv

2
left

)

+
1

hright

(
(1 − sright)srightv

2
right

))
;
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A3 = − h2
y

3v3
(
hleft + hright

)( 1

hleft

(
(1 − 2sleft)(1 − sleft)sleftv

3
left

)
(5.3)

− 1

hright

(
(1 − 2sright)(1 − sright)srightv

3
right

))
.

Here v = cosψ is the cosine of the nonalignment angle at point (i1, i2).

ūleft = (1 − sleft)ūi1−1,i2−kleft
+ sleftūi1−1,i2−(kleft+1);

ūright = (1 − sright)ūi1+1,i2+kright
+ srightūi1+1,i2+(kright+1).

The first differential approximation to (5.2) with the given choice of A2 and A3

is

φhξξ − h2
y

[
A4v

4 + IND4

]
φηηηη,(5.4)

where φhξξ is the first differential approximation to the 1D prototype (5.1), η is the
cross-characteristic (streamwise) variable, and IND4 is the inherent numerical dissi-
pation coefficient:

IND4 =
h2
y

12
(
hleft + hright

)( 1

hleft

(
(1 − 3sleft + 3s2left)(1 − sleft)sleftv

4
left

)

+
1

hright

(
(1 − 3sright + 3s2right)(1 − sright)srightv

4
right

))
+

1

12
v4A2.

The inherent numerical dissipation coefficient decreases (roughly by a factor of 4) in
semicoarsening since the values hleft and hright are about doubled in each semicoars-
ening step.

The parameter A4 is the explicit numerical dissipation coefficient. On the target
grid it is set to zero. On coarse grids its value is chosen to retain the same total
cross-characteristic numerical dissipation (TND = A4v

4 + IND4) as on the target
grid. In fact, the target-grid cross-characteristic numerical dissipation can differ from
point to point. Therefore, the coarse-grid TND at a given point should represent
some local average of the target-grid IND4.

5.2. Multigrid cycle. The algorithm described in this section is very efficient,
even though not fully optimal. To simplify the presentation we avoid here the mech-
anism of switching between pointwise and “zebra” relaxation, opting to start line
relaxation already on the target grid. We are focusing here on the main (although
just technical) difficulty of intergrid transfers. We adopt the following notation con-
ventions:

1) The superscript of each parameter denotes the point this parameter belongs

to. For example, h
(i1,i2)
left (formerly hleft) is the distance along the characteristic from

the point (i1, i2) to the left neighboring vertical grid line.

2) Uppercase letters denote parameters related to the coarse-grid discretization

while lowercase letters refer to fine-grid parameters. For example, h
(2i1,i2)
right and H

(i1,i2)
right

are the right stencil half-length at the same geometric point on the fine and coarse
grids, respectively.
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5.2.1. Fine-to-coarse parameter transfers. The coarse-grid velocity field is
obtained from the fine-grid one by simple injection.

Ū(i1,i2) = ū(2i1,i2).(5.5)

The cost-effective accurate procedure for obtaining coarse-grid coordinates of ghost
points is presented in this paragraph. We first remark that all the necessary geomet-
rical information about the (say, left) ghost point location can be kept by storing just
its full vertical coordinate. Storing two parameters (kleft and sleft) instead is preferred
for algorithm efficiency considerations to avoid multiple recalculations of these two
parameters required at each stage of the multilevel cycle. In this paragraph, though,
the one-parameter representation is more convenient. Therefore, at each point we
introduce parameters yleft and yright (on coarse grid Yleft and Yright) which repre-
sent the vertical coordinate of the left and right ghost points, respectively. In these
parameters, the recursive relations are

Y
(i1,i2)
left =

(
1 − s

(
2i1,i2

)
left

)
y

(
2i1−1,i2−k

(2i1,i2)

left

)
left + s

(
2i1,i2

)
left y

(
2i1−1,i2−(k

(2i1,i2)

left
+1)
)

left ,

Y
(i1,i2)
right =

(
1 − s

(
2i1,i2

)
right

)
y

(
2i1+1,i2+k

(2i1,i2)

right

)
right + s

(
2i1,i2

)
right y

(
2i1+1,i2+(k

(2i1,i2)

right
+1)
)

right .

Having these coordinates we reconstruct the K and S parameters:

K
(i1,i2)
left = floor

(
i2Hy − Y

(i1,i2)
left

Hy

)
, S

(i1,i2)
left =

i2Hy − Y
(i1,i2)
left

Hy
−K

(i1,i2)
left ,

K
(i1,i2)
right = floor

(
Y

(i1,i2)
right − i2Hy

Hy

)
, S

(i1,i2)
right =

Y
(i1,i2)
right − i2Hy

Hy
−K

(i1,i2)
right ,

where floor(x) is the largest integer which is not greater than x.
The coarse-grid stencil half-lengths are computed from the fine-grid stencil half-

lengths:

H
(i1,i2)
left = h

(2i1,i2)
left +

(
1 − s

(
2i1,i2

)
left

)
h

(
2i1−1,i2−k

(2i1,i2)

left

)
left + s

(
2i1,i2

)
left h

(
2i1−1,i2−(k

(2i1,i2)

left
+1)
)

left ,

H
(i1,i2)
right = h

(2i1,i2)
right +

(
1 − s

(
2i1,i2

)
right

)
h

(
2i1+1,i2+k

(2i1,i2)

right

)
right + s

(
2i1,i2

)
right h

(
2i1+1,i2+(k

(2i1,i2)

right
+1)
)

right .

5.2.2. Residual and total dissipation transfers. The fine-to-coarse residual
transfer approximating its 1D-prototype counterpart is given by

Ri1,i2 =

(
IHh r

)
i1,i2

=
1

H
(i1,i2)
left +H

(i1,i2)
right

(
r2i1,i2

(
h

(2i1,i2)
left + h

(2i1,i2)
right

)

+
(
1 − sleft

)
r2i1−1,i2−kleft

h
(2i1−1,i2−kleft)
left

+ sleftr2i1−1,i2−(kleft+1)h
(2i1−1,i2−(kleft+1))
left

+
(
1 − sright

)
r2i1+1,i2+kright

h
(2i1+1,i2+kright)
right

+ srightr2i1+1,i2+(kright+1)h
(2i1+1,i2+(kright+1))
right

)
.
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As already mentioned, the fine-grid total cross-characteristic dissipation is also
subject to averaging. The target-grid parameters A2 and A3 (see (5.3)) were cho-
sen to annihilate the coefficients of the second and the third cross-characteristic (η-)
derivatives in the first differential approximation (5.4). Setting A4 = 0 means that
the target-grid inherent numerical dissipation constitutes the total numerical cross-
characteristic dissipation at each point (TND = IND4). The fine-to-coarse total
dissipation transfer is performed in the same way as the residual transfer.

TND(i1,i2)
coarse =

(
IHh TNDfine

)(i1,i2)

=
1

H
(i1,i2)
left +H

(i1,i2)
right

(
TND

(
2i1,i2

)
fine

(
h

(2i1,i2)
left + h

(2i1,i2)
right

)

+
(
1 − sleft

)
TND

(
2i1−1,i2−kleft

)
fine h

(2i1−1,i2−kleft)
left

+ sleftTND

(
2i1−1,i2−(kleft+1)

)
fine h

(2i1−1,i2−(kleft+1))
left

+
(
1 − sright

)
TND

(
2i1+1,i2+kright

)
fine h

(2i1+1,i2+kright)
right

+ srightTND

(
2i1+1,i2+(kright+1)

)
fine h

(2i1+1,i2+(kright+1))
right

)
.

On the coarse grid the inherent dissipation IND4 decreases and, therefore, to satisfy

TND = A4v
4 + IND4,

the coarse-grid parameter A4 is set to a suitable positive value at each coarse-grid
point.

5.2.3. Correction interpolation. This is a linear interpolation derived from
the interpolation used in the 1D-prototype solver.⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v2i1,i2 = Vi1,i2 ,

v2i1+1,i2 = 1
hleft+hright

(((
1 − sleft

)
Vi1,i2−kleft

+ sleftVi1,i2−(kleft+1)

)
hright

+

((
1 − sright

)
Vi1+1,i2+kright

+ srightVi1+1,i2+(kright+1)

)
hleft

)
,

(5.6)

where V denotes the solution to the coarse-grid problem, v denotes the correction
to the fine-grid solution approximation, and the fine-grid parameters hleft, hright, kleft,
kright, sleft, and sright written without superscripts are taken at the fine-grid point
(2i1 + 1, i2).

5.2.4. Multilevel cycle: Numerical experiments. The formal description
of the multilevel V (1, 1) cycle is essentially the same as in section 3.2. Now, however,
Step 3 involves transferring all the necessary parameters, including the velocity field
and the total numerical dissipation.

Numerical experiments with multigrid V (1, 1) cycles were performed for a smooth
variable vector velocity field. Let x0 = sin(arc tan(2)). Then the characteristic field
(orthogonal to this velocity field) can be described as follows: the characteristic going
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Table 5

Asymptotic convergence rate.

m Cycles Final Average

1 14 2.67 3.89
2 17 4.52 5.56
4 19 6.93 8.39
8 39 12.88 15.28

through the point (x0, y) is an arc of the unit circle centered at (x0, y + 1). This
simple field depends on the x-coordinate only and satisfies the following properties:

1) It is a smooth variable field.
2) The inclination parameter t is bounded: |t| ≤ 2.
3) The maximal value of |t| (t = −2) is reached at x = 0.
As before, we impose zero boundary conditions g1(y) ≡ g2(y) ≡ 0 and zero right-

hand side fi1,i2 ≡ 0. This implies the zero function as the exact solution of (3.4).
The initial approximation inside the domain is taken to be random. We perform
experiments on grids with the aspect ratios m = 1, 2, 4, 8. The y-directional meshsize
is hy = 2−7 for all the experiments. This means that the target grid is always the
uniform grid of 129 × 129 points. Parameter values for cycles with fine-grid aspect
ratios m �= 1 are derived from the assumption that the grid itself was obtained by
log2m semicoarsening steps starting from that target grid. Every experiment consists
of at least 12 successive V (1, 1) cycles. The convergence factor for each cycle is defined
as the ratio of the L2-norm of the residual function before the cycle to that norm after
the cycle. The cycling is stopped if the maximal difference between convergence rates
of the last three cycles does not exceed 0.01. The results of the experiments are
collected in Table 5.

The notation is the following: m is the aspect ratio, the column “Cycles” shows
the number of cycles performed in each experiment, the column “Final” exhibits the
asymptotic convergence rates, and the column “Average” gives the convergence factor
averaged over all the cycles performed in the experiment.

5.3. FMG solver. A five-level FMG algorithm employing just one V (1, 1) cycle
on each level is tested in this section. The variable velocity field is chosen so that the
velocity direction at each point coincides with the outward normal to a circle centered
at (1,−1). For this choice the new curvilinear coordinates are ξ = arctan(1−x

1+y ); η =√
(1 − x)2 + (1 + y)2. The domain of interest is still the unit square and, therefore,

the inclination parameter t = tan(ξ) = 1−x
1+y satisfies the inequalities 0 ≤ t ≤ 1.

This velocity field is not smooth because of the periodic boundary conditions in the
y direction. It implies velocity direction discontinuity at the line y = 0. However,
even in this case the tested algorithm demonstrates good convergence properties that
highlight its efficiency and robustness. The target grid we use in the tests is a uniform
grid with meshsizes hx = hy = 1/64. The boundary conditions for (3.4) are g0(y) =
sin(ωy); g1(y) = sin(θ + ωy). We tested the FMG solver for problems with different
right-hand side functions. The target-grid approximate solutions obtained in these
experiments always attained algebraic errors well below the discretization errors. For
presentation purposes here we choose the right-hand side function

F (x, y) = −β2
1 sin(θx+ ωy) + β2 cos(θx+ ωy),

β1 =
η(θ + ωt)√

1 + t2
, β2 =

η(θt− ω)√
1 + t2

.
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Table 6

Five-level 1FMG solver.

Discretization Algebraic error
βξhx ωhy θhx error Interp. 1 cycle 2 cycles

0.147 0.098 0.098 0.10299 0.10877 0.010929 0.0017899
0.540 0.491 0.098 0.85212 0.19956 0.038575 0.0047681
1.031 0.982 0.098 0.5311 0.50828 0.036816 0.006457
2.013 1.963 0.098 0.89483 3.211 0.17133 0.034948

0.344 0.098 0.491 0.25935 0.25098 0.030913 0.0058224
0.736 0.491 0.491 1.0205 0.31052 0.054264 0.0059497
1.227 0.982 0.491 0.65877 0.8174 0.048544 0.0089859
2.209 1.963 0.491 1.1011 3.7617 0.21005 0.046631

0.589 0.098 0.982 0.72293 0.59177 0.12307 0.022576
0.982 0.491 0.982 1.4687 0.65473 0.070375 0.0080511
1.473 0.982 0.982 0.90164 1.4269 0.058127 0.010506
2.454 1.963 0.982 1.4712 4.9979 0.25662 0.059136

1.080 0.098 1.963 2.4668 2.7428 0.62663 0.13894
1.473 0.491 1.963 2.4685 2.1171 0.10683 0.021413
1.964 0.982 1.963 2.0744 3.4209 0.19794 0.044562
2.945 1.963 1.963 3.6965 14.576 1.3898 0.15049

This choice of F would imply that the function U(x, y) = sin(θx + ωy) is the exact
solution of the differential problem, but the periodicity of the velocity field breaks
this claim. That is why in all the experiments the discretization error function is
approximated by calculating the difference between the exact solutions of the prob-
lem discretized on the target grid and on a finer grid with hx = hy = 1/128. The
algebraic error function is, as before, the difference between the exact and the current
approximate solutions on the target grid. The results of numerical experiments are
exhibited in Table 6. The most important property demonstrated in the experiments
is that the algorithm produces an accurate solution for both characteristic and non-
characteristic components. The choice of the right-hand side function F allows us to
separate roughly these two types of components. Small values (in comparison with

π) of the normalized characteristic frequency βξhx = (β4
1 + β2

2)
1
4hx correspond to a

characteristic component while βξhx ≥ π/2 indicates a noncharacteristic component.
We have experimented with different values of θ and ω. In Table 6 we compare the
L2-norm of the target-grid discretization error function with the L2-norms of the alge-
braic error functions after the FMG interpolation (Interp.), after the first target-grid
cycle (1 cycle) and after the second target-grid cycle (2 cycles). The second cycle is
performed just for comparison since the algebraic error after the first cycle is always
below the discretization error. Similar to the constant coefficient case, for charac-
teristic components, the algebraic error is better than the discretization one already
after the FMG interpolation. For noncharacteristic components, one V (1, 1) cycle is
enough to drastically reduce the initial error.

6. Discussion. The research reported in this paper was mainly motivated by
the need to develop “textbook multigrid efficiency” for compressible fluid dynamics.
For any near-sonic flow regimes, both the fundamental difficulty (poor coarse-grid cor-
rection for smooth characteristic components) and an efficient way to treat it (semi-
coarsening and artificially balanced coarse-grid added dissipation) are essentially the
same as described above. In fact, in the pure sonic case this difficulty is most pro-
nounced, which is why we have researched it first. Extensions to near-sonic cases of
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the linearized equation (2.1) are discussed in [8].

Developing efficient solvers for the linearized equation paves the way toward con-
structing a robust solver to the transonic nonlinear full potential equation (see [8])
which, in turn, should result in a very efficient solver to the Euler system.

Indeed, the full potential operator (2.1) is a factor of the principal determinant
of the Euler system. As shown in the past (see [3], [4], [5], and [10]), to obtain
the textbook multigrid efficiency for any discretized PDE system it is necessary and
usually (with proper boundary treatment) also sufficient to attain that efficiency for
each factor of the PDE principal determinant. The way to separate the factors is by
distributed (and possibly also weighted) relaxation schemes in which there corresponds
to each factor a “ghost” discrete function. The latter can be directly relaxed for its
corresponding factor, dictating a resulting pattern of changes to be distributed to the
actual discrete functions (see details in [3, section 3.7] and [16]). In this framework the
entire multigrid solver described in this paper (extended to near-sonic regimes) can
be used as one of several distributed-relaxation steps (applied to the ghost function
associated with the full-potential factor) in an outer multigrid solver for the Euler
system. (See also [6] and [7, section 2].)

More generally, each of the multigrid algorithms presented in this article can
serve as a relaxation step in the framework of an outer solver to a more complicated
problem. In this way the approach can be efficiently applied even when the char-
acteristic manifold changes its general orientation over various parts of the domain.
In such a case one should divide the entire near-sonic domain into subdomains (each
occupying an O(1) part of the total volume and having a unique reference axis (or
axes) compatible throughout with the characteristic manifold orientation), applying
the above algorithms separately on each of the subdomains, as part of the outer relax-
ation scheme. The outer solver can be a multigrid solver using, say, full coarsening.
This approach is still very cost effective (especially in three dimensions).
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