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recognition. It is important to construct algorithmsfor segmentation that are e�cient and that can faith-fully extract regions of di�erent sizes from an image.A large class of graph algorithms have been adaptedto deal with the segmentation problem. These algo-rithms typically construct a graph in which the nodesrepresent the pixels in the image and arcs representa�nities (\couplings") between nearby pixels. Theimage is segmented by minimizing a cost associatedwith cutting the graph into subgraphs. In the simplerversion, the cost is the sum of the a�nities across thecut [20]. Other versions normalize this cost by dividingit by the overall area of the segments [6] or by a mea-sure derived from the a�nities between nodes withinthe segments [17, 13, 19]. Normalizing the cost of acut prevents over-segmentation of the image. Polyno-mial methods for �nding a globally optimal solutionwhen the cost is normalized exist when the graph isplanar, but the runtime complexity of these methods isO(N2 logN), where N denotes the number of pixels inthe image (see [14, 6]). When the graph is non-planarthe problem of �nding a globally optimal solution isNP-hard. Therefore, approximation methods are em-ployed. The most common of these uses spectral tech-niques to �nd an approximate solution. These spectralmethods are analogous to �nding the principal modesof certain physical systems. With these methods, andexploiting the sparseness of the graph, a cut can befound in O(N3=2) [17].Below we introduce a fast algorithm for data clus-tering, which we apply to image segmentation as anexample. Our algorithm too �nds an approximate so-lution to a normalized cut problem, but it does so intime that is linear in the number of pixels in the imagewith only a few dozen operations per pixel. Since atypical image may contain several hundreds of thou-sands of pixels, the factor pN gained may be quitesigni�cant. The algorithm is based on representingthe same minimization problem at di�erent scales, en-abling fast extraction of the segments that minimizethe optimization criterion. Because of its multiscalenature, the algorithm provides a full hierarchical de-composition of the image into segments in just onepass. In addition, it allows us to modify the optimiza-tion criterion with scale so that we can incorporatehigher order statistics of the segments when their sizeis su�ciently large to allow reliable extraction of suchstatistics. Our algorithm relates to the same physical



systems whose modes are found by the spectral meth-ods, but uses modern numeric techniques that providea fast and accurate solution to these problems. Theresults of running our algorithm on a variety of imagesare at least comparable to the results obtained by thespectral methods.Our algorithm proceeds as follows. Given an im-age, we �rst construct a graph so that every pixel isa node in the graph and neighboring pixels are con-nected by an arc. A weight is associated with the arcre
ecting the likelihood that the corresponding pix-els are separated by an edge. To �nd the minimalcuts in the graph we recursively coarsen the graphusing a weighted aggregation procedure in which werepeatedly select smaller sets of representative pixels(blocks). These representative pixels do not have to lieon a regular grid, giving rise to an irregular pyramid.The purpose of these coarsening steps is to producesmaller and smaller graphs that faithfully representthe same minimization problem. In the course of thisprocess segments that are distinct from their environ-ment emerge and they are detected at their appropri-ate size scale. After constructing the entire pyramidwe scan the pyramid from the top down performingrelaxation sweeps to associate each pixel with the ap-propriate segment.In the simple version of our algorithm the couplingsbetween block pixels at a coarse level are computed di-rectly from the couplings between �ner level pixels. Ina variation of this algorithm we modify the couplingsbetween block pixels to re
ect certain global statisticsof each block. These statistics can be computed re-cursively throughout the coarsening process and mayinclude the average intensity level of the blocks, theposition of their center, their principal orientation,their area, texture measurements, etc. This enablesus, for example, to identify large segments even if theintensity levels separating them vary gradually.Our algorithm is inspired by Algebraic Multigrid(AMG) solvers applied to physical systems of heator electric networks. By analogy the graph producedfrom the image to be segmented can be thought ofas such a network, where the couplings between theintensity levels of neighboring pixels are treated asconductivity measures. A common problem is to �ndthe optimal state of such a network given a set ofconstraints, which physically represent a set of heatsources or input currents. AMG solvers provide a fast,multiscale way to solve such optimization problems.For our purposes we do not need to minimize the en-ergy for any particular set of constraints. Instead, itwill be su�cient to borrow from the AMG solver itsweighted aggregation (or interpolation) rules, whichare independent of the particular constraints. Whiledoing so we solve a problem of a di�erent nature thanthat traditionally solved by AMG.Pyramidal structures have been used in manyalgorithms for segmentation (see reviews in [7, 9,11]). However, methods that use regular pyramids(e.g., [10]) have di�culties in extracting regions of ir-regular structures. Methods that construct irregularpyramids (e.g., [1, 5, 12, 18]) are strongly a�ected bylocal decisions. Fuzzy C-means clustering algorithms

(e.g., [4]) avoid such premature decisions, but theyinvolve a slow iterative process. Also related are algo-rithms motivated by physical processes (e.g., [8, 15]).The paper is divided as follows. Section 2 formu-lates the segmentation problem and describes the prin-ciples of our method. Section 3 describes the algo-rithm. Section 4 discusses how more global propertiesof segments can be incorporated in the algorithm. Sec-tion 5 discusses the computational complexity of thealgorithm. Finally, Section 6 provides experimentalresults.2 Motivation and FormulationIn this section we cast the segmentation problemas a graph clustering problem (Sec. 2.1). Then, wedescribe the coarsening process (Sec. 2.2). Finally, weinterpret this as an aggregation process (Sec. 2.3).2.1 Problem De�nitionGiven an image 
 that contains N = n � n pixelswe construct a graph in which each node representsa pixel and every two nodes representing neighboringpixels are connected by an arc. In our implementa-tion we connected each node to the four neighbors ofthe respective pixel, producing a planar graph. (Notethat the method we present can be applied also tonon-planar graphs. In fact, the graphs obtained fol-lowing the coarsening steps are non-planar.) Belowwe denote a pixel by an index i 2 f1; 2; :::; Ng and itsintensity by gi. To every arc connecting two neighbor-ing pixels i and j we assign a positive \coupling" valueaij , re
ecting the degree to which they tend to belongto the same segment. For example, aij could be a de-creasing function of jgi � gj j. In our implementationwe used local responses to edge �lters to determinethe couplings between elements (see Section 3).To detect the segments, we associate with the grapha state vector u = (u1; u2; :::; uN ), where ui 2 IRis a state variable associated with pixel i. We de-�ne a segment S(m) as a collection of pixels, S(m) =fim1 ; im2 ; :::; imnmg and associate with it a state vec-tor u(m) = (u(m)1 ; u(m)2 ; :::; u(m)N ), in whichu(m)i = � 1 if i 2 Sm0 if i =2 Sm : (1)In practice, we allow the state variables to take nonbinary values. In particular, we expect that pixelsnear fuzzy sections of the boundaries of a segment mayhave intermediate values 0 < u(m)i < 1 re
ecting theirrelative tendency to belong to either the segment orits complement.Next, we de�ne an energy functional to rank thesegments. Consider �rst the functionalE(u) = X<i;j> aij(ui � uj)2 ; (2)where the sum is over all pairs of adjacent pixels i andj. Clearly, for an ideal segment (with only binary statevariables) E(u(m)) sums the coupling values along the



boundaries of S(m). With such a cost function smallsegments (and similarly very large ones) are often en-couraged. To avoid such preference we can modify thisenergy as follows:�(u) = E(u)=V �(u) ; (3)where V (u) denotes the \volume" of the respectivesegment, V (u) =Pi ui, and � is some predeterminedparameter. Thus, for example, V (u(m)) will measurethe area in pixels of S(m). To avoid selecting very largesegments we consider only segments whose total vol-ume is less than half of the entire image. This is equiv-alent to de�ning the volume as minfV (u); N�V (u)g.Alternatively, we can replace the volume by the prod-uct V (u)(N � V (u)). This and similar modi�cationsof �(u) can too be incorporated in our fast algorithm.Note that setting � = 0:5 will eliminate size prefer-ence since �(u(m)) in this case is roughly the average ofthe couplings along the boundary of S(m). (E(u(m)) isthe sum of the couplings along the boundary of S(m),and pV (u(m)) is roughly proportional to the perime-ter of S(m).) In contrast, setting � > 0:5 will createpreference for large segments. In our implementationwe used � = 1, which is equivalent to the so called \av-erage" or \normalized" cut measures (e.g., [6, 16, 17]).Finally, the volume of u can be generalized by re-placing V (u) byV�(u) = NXi=1 �iui ; NXi=1 �i = N ; (4)where �i is a \mass" assigned to the pixel i. This willbecome important in coarser steps when nodes maydraw their mass from sets of pixels of di�erent size.Also, in the �nest scale we may assign lower volumesto pixels at \less interesting" or \less reliable" partsof the image, e.g., along its margins.2.2 Problem CoarseningWe now present a method for the recursive step bystep coarsening of the segmentation problem. In eachcoarsening step a new, approximately equivalent seg-mentation problem will be de�ned, reducing the num-ber of state variables to a fraction (typically between1/4 and 1/2) of the former number. We construct thecoarser problems such that each of the coarse vari-ables will represent several �ne variables with di�erentweights, and every �ne variable will be represented byseveral coarse variables with di�erent weights. Thelow-energy con�gurations of the coarse problem willre
ect the low-energy con�gurations of the �ne prob-lem.Below we describe the �rst coarsening step. Thestate variables in the coarser problem can be thoughtof as the values (ideally 0 or 1) of a diluted set of pixels,i.e., a subset C of the original set of pixels. The valuesui associated with the rest of the pixels (i =2 C) willbe determined from the coarse state variables usingpre-assigned dependence rules. These rules will de�ne�(u) as a functional of the smaller set of variables, i.e.,

�c(fuigi2C). We shall select C and the dependencerules so that the detection of segments with small �c(in the coarser problem) would lead to segments withsmall � (in the �ne problem).Generally, for any chosen subset of indicesC def= fckgKk=1 � f1; 2; :::; Ng ;denote uck as Uk, we will choose dependence rules ofthe form of a weighted interpolation rule:ui = KXk=1wikUk ; (5)where wik � 0, PKk=1 wik = 1, and for i = ck 2 C,wik = 1. We will consider only local interpolationrules, i.e., wik = 0 for all pixels ck not in the neighbor-hood of pixel i. The values of wik will be determinedby the coupling values only, and will not depend onthe values of the state variables (see below).Substituting (5) into (2) we getEc(U) def= E(u) =Xk;l Akl(Uk � Ul)2 ; (6)where the couplings Akl between the coarse-level vari-ables are given byAkl =Xi6=j aij(wjl � wil)(wik � wjk) : (7)In addition, substituting (5) into (4) we getV c(U) def= V�(u) = V�(U) = KXk=1�kUk ; (8)where �k =Xi �iwik ; k = 1; :::;K : (9)Thus, the dependence rules (5) yields�c(U) def= �(u) = Ec(U)= [V c(U)]� : (10)The set C itself will be chosen in such a way thateach pixel i =2 C is strongly coupled to pixels in C. Bythis we mean roughly thatXck2C aick � �Xj aij ; (11)where � is a control parameter. (A somewhat weakertype of requirement emerges in the Appendix.) Thischoice will ensure that for any low-energy con�gura-tions the values of u indeed depend, to a good approx-imation, on those of the subset U . This choice of Cis common in applying fast, multiscale AMG solvers(e.g., [3]).



We now discuss the interpolation rule in Eq. (5).Given a segment Sm, we de�ne U (m) asU (m)k = � 1 if ck 2 Sm0 if ck =2 Sm ; (12)and de�ne ~u(m) as the con�guration interpolated fromU (m) by using Eq. (5). That is,~u(m)i = KXk=1wikU (m)k : (13)Note that Ec(U (m)) = E(~u(m)), V c(U (m)) = V (~u(m)),and hence �c(U (m)) = �(~u(m)). A proper interpo-lation rule should satisfy the condition that for everySm, �c(U (m)) = �(~u(m)) is small if and only if �(u(m))is small.One possible interpolation rule could be that a statevariable ~ui for i =2 C would inherit its state from thecoarse state variable Uk to which it is most stronglyattached (in other words, ~ui = Uk such that aik ismaximal). This rule, however, may lead to mistakesin assigning the correct state to the interpolated vari-ables due to nearby outliers, which in turn may re-sult in a noticeable increase in the energy E(~u(m))associated with the segment. Consequently, the mini-mization problem with the coarse variables will poorlyapproximate the minimization problem with the �nevariables.Instead, we will set the interpolation weights as fol-lows: wik = aickPKl=1 aicl ; 8i =2 C ; ck 2 C : (14)These settings are commonly used by the AMG mini-mizer [3]. (For a de�nition of weights that leads to aneven more precise interpolation - see the Appendix.)With this interpolation rule the state of a variable ~ui,i =2 C, is determined by several nearby coarse pixelswith pixels coupled more strongly a�ecting its valuemore.It is straightforward to verify that boundary sec-tions of a segment across which intensity variations aresharp contribute very little to the energy associatedwith the segment, whereas sections of the boundaryacross which intensity is varying gradually contributemost of the energy of the segment. It can be shownfurther that when the problem is coarsened the contri-bution of such sections in general decreases by abouthalf. Since the volume of a segment is roughly pre-served when the problem is coarsened, we obtain thatfor a segment Sm that is distinct from its surround-ing �c(U (m)) � �(u(m)) � 0, whereas for a segmentSm that is not strongly decoupled along its boundaries�c(U (m)) � 12�(u(m)). Thus, under the weighted in-terpolation (14), the problem of �nding all segmentsSm for which �(u(m)) is below a certain threshold isequivalent approximately to the smaller, coarse prob-lem of �nding all Sm for which �c(U (m)) is below halfthe same threshold.

Note that the resulting coarse problem is exactly ofthe same form as the original problem, and hence itcan in turn be reduced using the same procedure toan equivalent, yet coarser problem of the same form.This recursive coarsening process is terminated whenthe number of variables is su�ciently small so that theproblem can be solved directly for the coarsest grid.There is one case in which a state variable cannotbe approximated accurately by the state variables ofits neighbors. This happens when a salient segmentSm coincides at some scale with a single pixel i; i.e.,u(m)i = 1 while u(m)j = 0 for j 6= i. (This, of course,would not happen usually at the original, �nest level,but at coarser levels of the algorithm, where \pixels"are no longer original image pixels.) Consequently, ifi =2 C then the segment will no longer be representedat the coarser levels. But it is exactly at this point ofthe coarsening process that we can detect that �(u(m))is small, and hence identify the salient Sm in its nat-ural size scale (see algorithm in Section 3).2.3 Hierarchical AggregationA natural and useful way to interpret each coars-ening step is as an aggregation step. In that view weare choosing small aggregates of pixels, in terms ofwhich the minimization problem can be reformulatedwith a substantially smaller number of variables. Thatis, enumerating the aggregates 1,2,...,K, we associatewith the k-th aggregate a \block variable" Uk, and wederive from the original minimization problem a min-imization problem in terms of U1,...,UK1.The interpolation rule that relates the coarse to the�ne pixels ((5) and (14)) leads to a process of weightedaggregation, in which a fractions wik of a pixel i can besent into the aggregate k. This fraction may be inter-preted as the likelihood of the pixel i to belong to theaggregate k. These likelihoods will then accumulateand reinforcing each other at each further coarseningstep.The choice of the coarser aggregates and the na-ture of this coarsening process is such that stronglycoupled aggregates join together to form yet coarseraggregates. A set of pixels with strong internal cou-plings but with weak external couplings is bound to re-sult at some level of coarsening in one aggregate whichis weakly coupled to all other aggregates of that level.Such an aggregate will indicate the existence of animage segment (see Sec. 3).The \coarse couplings" relations (Eq. (7)) can besomewhat simpli�ed, yielding a similar coarsening pro-cess, named Iterated Weighted Aggregation (IWA).IWA consists of exactly the same steps as the AMGcoarsening, except that the coarse couplings fAklg arecalculated by the simpler formulaAkl =Xi6=j wikaijwjl : (15)1The coarse variables in fact do not have to be identi�edeach with a particular pixel, as in Sec. 2.2. Instead, they canbe identi�ed with weighted averages of pixels. But this gener-ality does not improve the performance of the algorithm and iscertainly less convenient.



It can be shown that (15) in many situations providesa good approximation to (7). In certain cases the twoprocesses are identical, e.g., in the case that each pixelis associated with only two blocks. Moreover, (15) canbe motivated by itself: it states that the coupling be-tween two blocks is the sum of the couplings betweenthe pixels associated with these blocks weigthed ap-propriately.3 The AlgorithmBased on these ideas we have developed a segmen-tation algorithm that is composed of two stages. Inthe �rst stage salient segments are detected and in thesecond stage the exact boundaries of the segments aredetermined. The rest of this section describes the twostages.3.1 Detecting the Salient SegmentsGiven an image we consider each pixel to be a nodeconnected to its four immediate neighbors. We thenassign coupling values between each pair of neighbors.The coupling values aij are set to be aij = exp(��rij),where � is a global parameter, and rij is an \edgeness"measure between i and j. Speci�cally, for horizon-tally spaced neighbors i and j we tested the presenceof an edge in �ve orientations at the angular range�45� � � � 45� about the vertical direction, eachby di�erentiating two 3 � 1 masks whose centers areplaced on i and j. We then took rij to be the maximalof the �ve responses.Next, we coarsen this graph by performing iteratedweighted aggregation. At each step of the coarseningwe �rst select block pixels and then update the cou-plings between the blocks. Subsequently, we obtain apyramidal structure that makes the optimal segmentsexplicit.Selecting the block pixels. We �rst order thenodes (pixels) by the volume they represent. (Wesort the nodes by bucketing to maintain linear run-time complexity, see Sec. 5.) We select the �rst pixelto be a block. Then, we scan pixels according to thisorder and check their degree of attachment each to thepreviously selected blocks. Whenever we encounter apixel that is weakly attached to the selected blocks weadd that pixel to the list of blocks.Speci�cally, let C(i�1) denote the set of blocks se-lected before a pixel i is tested, we check the inequalitymaxj2C(i�1) aij � ~�Xl ail ; (16)where ~� is a parameter (typically ~� � :1). Notethat since generally a node is connected to a smallnumber of neighbors it must be coupled strongly toat least one of its neighbors. In case the inequalityis satis�ed we set C(i) = C(i�1), otherwise we setC(i) = C(i�1)Sfig. As a result of this process al-most every pixel i =2 C becomes strongly coupled tothe pixels in C. The few remaining pixels are thenadded to C.Segmentation. We update the couplings betweenthe blocks using Eq. (15), where the weights wik arede�ned by (14) (or its generalization described in the

Appendix). In addition, we compute the volume �k ofeach block at this level using Eq. (9). Next, we want todetermine if a block represents a salient segment. Thesaliency of a segment is given by the ratio between thesum of its external couplings and its volume. Whenwe compute the saliency of a block, however, we needto take into account that every coarsening step dimin-ishes the external couplings of the segment by about ahalf. We can compensate for this reduction by multi-plying this ratio by 2 to the power of the level number.Thus, the saliency of a block k becomes�(Uk) = PAkl��k 2� ;where � denotes the scale. Alternatively, we can usethe volume of the block as a measure of scale, in whichcase we obtain �(Uk) = PAkl���
k ;where 
 can be set between 0.5 to 1 according to theratio of pixels that survive each coarsening step (0.25to 0.5 respectively). In our implementation we simplycompare the blocks of the same scale and detect theones whose saliency values are very low. We then allowthese blocks to participate in forming larger blocks toobtain a hierarchical decomposition of the image intosegments.3.2 Sharpening Segment BoundariesDuring the �rst stage of our algorithm a salient seg-ment is detected as a single element at some level ofthe pyramid. It remains then to determine exactlywhich pixels of the original image (at the �nest level)in fact belong to that segment. One way to determinewhich pixels belong to a segment is to compute recur-sively the degree of attachment of every pixel to eachof the blocks in the pyramid. Unfortunately, the de-grees of attachment computed this way will often pro-duce \fuzzy" values between 0 to 1 particularly nearthe boundaries of a segment, rendering the decision ofthe extent of a segment somewhat arbitrary. To avoidthis fuzziness we scan the pyramid from coarse to �nestarting at the level in which a segment is detected andapply relaxation sweeps whose intent is to sharpen theboundaries of a segment. Below we describe one stepof the algorithm.Suppose a segment Sm has been detected, and sup-pose that at a certain level (which we will call nowthe \coarse-level") we have already determined whichpixels belong to Sm, we show how to determine at thenext �ner level (called now the \�ne level") which pix-els belong to Sm. Using the same notation as before,the coarse level variables, fU (m)k gKk=1, satisfy (12). Ac-tually, along the boundaries of Sm some U (m)k 's mayassume values between 0 and 1. Our task is to de-termine which pixels fu(m)j gNj=1 satisfy (1), but againallowing only pixels along the boundaries to obtainintermediate values between 0 and 1. Guided by theprinciple of minimizing �(u(m)), a sharpening cycle



consists of the following steps, iteratively changing~u(m).We �x two parameters 0 < �1 < �2 < 1 andde�ne Dx;y to be the set of all pixels i such thatx < ~u(m)i < y at the beginning of the cycle. Wethen modify ~u(m) by setting ~u(m)i = 0 for i 2 D0;�1 ,setting ~u(m)i = 1 for i 2 D�2;1, and leaving ~u(m)i un-changed for i 2 D�1;�2 . This is followed by apply-ing � \Gauss-Seidel relaxation sweeps" over D�1�2 ,where � is another free parameter. Each such \relax-ation sweep" is a sequence of steps aimed at loweringE(~u(m)). In each sweep we go over all the pixels inD�1�2 , in any order. For each pixel i we replace ~u(m)iby the new value Pj aij ~u(m)j =(Pj aij), which is thevalue for which E(~u(m)) is lowered the most. Sincethe volume V (~u(m)) is only marginally a�ected also�(~u(m)) is lowered. Since in the beginning of thisprocedure already only pixels around the boundarieshave fuzzy values (because this procedure has beenapplied to the coarser level) this relaxation procedureconverges quickly. Hence, a small number of sweeps,�, will generally su�ce. In our experiments we ap-plied two relaxation sweeps in every level with, e.g.,�1 = 1��2 = :15 in the �rst cycle and �1 = 1��2 = :3in the second cycle. The �nal ~u(m) is de�ned as thedesired vector u(m).4 Modi�ed Coarse CouplingsIn the algorithm described above the couplings atall levels are derived directly from the couplings be-tween the pixels at the �nest level. However, sinceeach element at a coarse level represents an aggregateof pixels we may use information about the emergingsegments that is not directly available at the �nestlevel to facilitate the segmentation process. We canthus measure \observables" at the coarse levels, anduse them to increase or decrease the couplings be-tween blocks obtained with the original algorithm. Anexample for such an observable is the average inten-sity of a block, which can be used to separate seg-ments even when the transition between their inten-sity values is gradual, and so they are di�cult to sep-arate at the �nest levels. The average intensity Gkof a block k in the above coarsening step (Sec. 2.2)is de�ned as Gk = Pi wikgi=Pi wik , where gi de-notes the intensity of pixel i; This observable can becalculated recursively at all coarser levels. Then, thecouplings Akl computed by (15) may be replaced, e.g.,by Akl exp(�� jGk �Glj), where � is some predeter-mined constant.The number of observables per aggregate can in-crease at coarser levels. Other possible observablesinclude the center of mass of a block, its diameter,principal orientations, texture measures, etc. Usingthese observables it is possible to incorporate quiteelaborate criteria into the segmentation process. Forexample, strong couplings can be assigned betweentwo aggregates whose orientations align with the di-rection of the line connecting their centers of mass (or

when their boundaries co-align), even when these ag-gregates are separated by a gap and thus do not inheritany mutual couplings from �ner levels.5 Computational ComplexityAt every coarsening step we select a subset ofthe nodes such that the remaining nodes are coupledstrongly to at least one of the nodes. Following thisselection procedure almost no two neighboring nodescan survive to the next level. Thus, at every level ofscale we obtain about half the nodes from the pre-vious level. The total number of nodes in all levels,therefore, is about twice the number of pixels.During the selection procedure there are two opera-tions whose naive implementation may result in a non-linear complexity. First, we need to order the nodes,say, according to their volumes. This can be done inlinear time by dividing the range of possible volumesinto a �xed number of buckets since it is unnecessaryto sort nodes whose volumes are similar. Furthermore,in the �rst few levels the nodes usually have similarvolumes, and so we do not apply this ordering. In-stead, we merely scan the nodes in some arbitrary or-der. Secondly, for every node we need to �nd its maxi-mal connection to the selected blocks (Eq. (16)). Thisoperation can be implemented e�ciently by noticingthat every node need only to consider its neighboringnodes, typically up to 8 nodes. Finally, computingthe degree of attachment of the pixels to all the blockvariables can be done in one pass once the pyramid iscomplete.The number of operations per pixel can be reducedsigni�cantly by replacing the �rst 1-3 coarsening stepsby equivalent geometric coarsening. In these coars-ening steps the same operations are performed, butthe pixels selected as blocks are determined in ad-vance to lie along a regular grid of twice the mesh-size. (This may require adding some of the �ne pixelsto the coarse set to avoid inaccurate interpolations.)With this modi�cation it is possible to reduce the ex-ecution time of the algorithm to only several dozenoperations per pixel.In the following section we show examples of seg-mentation obtained with our implementation of thealgorithm. The implementation is far from optimized,and, for example, we did not include geometric coars-ening to reduce the number of operations per pixels.Due to wasteful space management, which lead to con-siderable page swapping, our implementation (writtenin C and run on an Intel 400MHz Pentium II proces-sor) took 60 seconds to segment a 200 � 200 image.The pyramid produced in this run contained about73000 nodes (less than twice the number of pixels.)Segmenting a 100� 100 image took only 12 seconds.6 ExperimentsThe following pictures demonstrate the applicationof our algorithm to several real images. Figure 1 showsan input image (adopted from [17]). At the top mostscale the picture was divided into two segments. Atscale 8 �ve segments stood out, two capturing most ofthe bodies of the two players, one captures the handof one of the players, and one captures the head of



(a) (b)
(c) (d)Figure 1: Segmentation results: (a) The input image. (b)Segments extracted at scale 11 (the boundaries of the segmentsare highlighted with color). (c) Scale 8. (d) Scale 7.the other. At scale 7 smaller segments are obtained,separating some of the body parts of the two play-ers. Figure 2 was decomposed at level 10 into foursegments, one of which captures the lioness. At level8 the bottom segment was further decomposed intothree segments, splitting the cub and the stone fromthe ground. Figure 3 shows the three segments ob-tained at scale 10, capturing the skies, the grass, anda single segment that includes the cow and the hillybackground. At scale 9 the cow was separated fromthe hills, and the grass was split into two segments.Finally, in Figure 4 at the coarsest scale the grass wasseparated from the cows (except for the bright back ofthe cow which was decomposed later from the grass).The three cows were then split (with the rightmostcow split into two segments). Body parts of the cowsare obtained in the lower scale. Overall, these pic-tures demonstrate that our algorithm accurately �ndsthe relevant regions in the images.7 ConclusionWe have introduced a fast, multiscale algorithmfor image segmentation. The algorithm uses a pro-cess of recursive weighted aggregation to detect thedistinctive segments at di�erent scales. It �nds anapproximate solution to normalized cuts measure intime that is linear in the size of the image with onlya few dozen operations per pixel. Future research di-rections include the use of various statistics to obtainsegmentation based on richer information, improvingthe isotropy of the interpolations to produce smootherboundaries of segments, and combining the segmen-tation process with curve completion algorithms andtop-down analysis of the image.

(a) (b)
(c)Figure 2: (a) The input image. (b) Scale 10. (c) Scale 8.

(a) (b)
(c)Figure 3: (a) The input image. (b) Scale 10. (c) Scale 9.



(a) (b)
(c) (d)Figure 4: (a) The input image. (b) Scale 10. (c) Scale 9. (d)Scale 8.AppendixThe interpolation weights (14) can be improved,yielding a better approximation of the �ne level min-imization problem by the coarser representations andallowing us to represent the coarser problems withfewer block pixels. Ideally, the interpolation rule (5)should yield a �ne-level con�guration u that satis�esthe energy-minimization condition @E(u)=@ui = 0.Since E is quadratic in u this condition can be writtenas u(m)i =Xj2C âiju(m)j +Xj =2C âiju(m)j ; (17)where âij are the normalized couplings, de�ned byâij = aij=(Pl ail). Notice that the interpolation rule(5) considers only the �rst terms in (17). Given any(non-ideal) interpolation weights fwikg, improved in-terpolation weights f �wikg are given by�wik = âick +Xj =2C âijwjk : (18)This same rule can recursively be reused several time,to create increasingly improved interpolation weights.A measure of the \de�ciency" di of interpolating topixel i with the interpolation weights (14) is de�nedas the relative part of (17) being ignored by the re-lation (14), i.e., di = Pj =2C âij . Similarly, given anyinterpolation weights fwikg with de�ciencies fdig, theimproved interpolation weights f �wikg created by (18)will have the de�ciencies �di = Pj =2C âijdj . Hence,with reasonably dense set C, the de�ciencies will bemuch reduced with each improvement, so that nor-mally very few such improvements (if at all) would beneeded. (Such improved interpolation rules are widelyused in AMG, see, e.g., [2].)With the improved interpolation weights (18), thecoarse-variable selection criterion (11) can be relaxed,
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