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Abstract

“Textbook multigrid efficiency” (TME) means solving a discrete PDE prob-
lem in a computational work which is only a small (less than 10) multiple of the
operation count in the discretized system of equations itself. As a guide to attain-
ing this optimal performance for general CFD problems, the table below lists every
foreseen kind of computational difficulty for achieving that goal, together with the
possible ways for resolving that difficulty, their current state of development, and
references.

Included in the table are staggered and nonstaggered, conservative and non-
conservative discretizations of viscous and inviscid, incompressible and compress-
ible flows at various Mach numbers, as well as a simple (algebraic) turbulence
model and comments on chemically reacting flows. The listing of associated com-
putational barriers involves: non-alignment of streamlines or sonic characteristics
with the grids; recirculating flows; stagnation points; discretization and relax-
ation on and near shocks and boundaries; far-field artificial boundary conditions;
small-scale singularities (meaning important features, such as the complete air-
plane, which are not visible on some of the coarse grids); large grid aspect ratios;
boundary layer resolution; and grid adaption.

Introduction (by James L. Thomas, NASA LaRC)

Computational fluid dynamics (CFD) is becoming a more important part of
the complete aircraft design cycle because of the availability of faster computers
with more memory and improved numerical algorithms. As an example, all of the
external cruise-surface shapes of the new Boeing 777 wide-body subsonic transport
were designed with CFD [R1]. The cruise shape of such a vehicle is designed to
minimize viscous and shock wave losses at transonic speeds and can be analyzed
with potential low methods coupled with interacting boundary layers. Off-design
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performance associated with maximum lift, buffet, and flutter and the determina-
tion of stability and control derivatives, involving unsteady separated and vortical
flows with stronger shock waves, are determined largely by experimental methods.
Computational simulations of these flowfields require the use of Reynolds-averaged
Navier-Stokes (RANS) methods; these computations for high-Reynolds flows over
complex geometries are very expensive, the turnaround time is too long to impact
the design cycle, and the turbulence models for separated flows have a high degree
of variability. Thus in these areas experiments, rather than computations, are
preferred for reasons of cost and uncertainty

Inroads are being made into these off-design areas with RANS methods. A
major lesson learned from industrial use of RANS methods is that both the numer-
ics and the physics must be improved substantially for a new procedure to replace
an older procedure. Also, there is a synergistic interplay between the speed of
the simulation and the fidelity of the turbulence model, since a larger parameter
variation and/or model formulation can be explored on fine enough grids with
a faster simulation. For example, the TLNS3D Navier-Stokes code [R2] found
its way into use because it was the first three-dimensional Navier-Stokes code to
show true multigrid performance, in which the cost scales linearly with the num-
ber of unknowns, and it incorporated a better turbulence model than the algebraic
models then in use. Solutions with 1 million grid points could be converged in ap-
proximately 1 hr of Cray-2 time, which allowed spatial convergence studies to be
conducted to ensure that the level of truncation error is sufficiently low, and the
prediction of the angle of attack to attain a desired lift coefficient was improved
over interacted potential methods [R3]. The faster turnaround of the multigrid
procedure enabled the extension and calibration of the original two-dimensional
turbulence model to three-dimensions, thus allowing a more accurate prediction
of the transonic shock/boundary-layer interaction.

The current RANS solvers with multigrid require on the order of 1500 residual
evaluations to converge the lift and drag to one percent of their final values for
wing-body geometries near transonic cruise conditions. Complex geometry and
complex physics simulations require many more residual evaluations to converge,
if indeed convergence can even be attained. It is well-known for elliptic problems
that solutions can be attained using full multigrid (FMG) processes in far fewer, on
the order of 3—6, residual evaluations; this efficiency is known as textbook multi-
grid efficiency (TME). Thus, there is a potential gain of two orders of magnitude
in operation count reduction if TME could be attained for the RANS equation
sets. This possible two order of magnitude improvement in convergence represents
an algorithmic floor since it is unlikely that faster convergence for these nonlin-
ear equations could be attained. This algorithmic speed-up, however, coupled
with further increases in computational speed can open up avenues and accelerate
progress in many areas, including: the application of steady and time-dependent
simulations in the high-lift, off-design, and stability and control areas; the usage
of RANS solvers in the aerodynamic and multidisciplinary design areas; and the
development of improved turbulence models.
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The RANS equation sets are a system of coupled nonlinear equations which
are not, even for subsonic Mach numbers, fully elliptic, but contain hyperbolic
factors. The theory of multigrid for hyperbolic and mixed-type equations is much
less developed than that for purely elliptic equations. Resolution of complex ge-
ometries and the thin boundary layers at high Reynolds number cause the grid to
be highly irregular and stretched, leading to a slowdown in convergence. Discon-
tinuities, such as shocks and slip surfaces, introduce additional difficulties. These
difficulties are illustrated in the sketch in Fig. 1 for a typical multi-element sec-
tion of a three-dimensional wing with the flaps deployed at takeoff and landing
conditions. Overcoming these difficulties poses a formidable challenge, especially
because in order to attain optimal and robust convergence rates for the applica-
tions of interest in aircraft design, they must all be overcome.

Brandt, in 1984 [G84], summarized the state of the art for attaining multi-
grid performance for fluid dynamics. Since that time, there has been considerable
progress in the field, although optimal results have only been shown for inviscid
flows, viscous flows at low Reynolds number, and simple geometries. The method-
ology and theory that Brandt and others have developed is applicable to the RANS
equations and can lead to optimal convergence rates; however, a rational and sys-
tematic attack on the barriers which stand in the way needs to be mounted. The
purpose of this paper is to delineate clearly the barriers which exist to attaining op-
timal convergence rates for solutions to the fluid dynamic equations for complex
geometries. The following sections identify the barriers, possible solutions, and
current status of the problem. The paper is intended as a guide to attaining the
optimal convergence goal and is written for the most part in a tabular form so that
new solutions and updates to the current status can be made. When completed,
the document is intended to list every type of computational difficulty encountered
on the road to attaining TME for RANS and the solution paths taken. The in-
sights, lessons learned, and methodologies gained from aerodynamic applications
should be applicable to other areas such as acoustics, electromagnetics, hypersonic
propulsion, and aerothermodynamics.

Preliminary comments

The table below does not refer to a vast literature on multigrid methods
in CFD (see for example [AJ]), in which enormous improvements over previous
(single-grid) techniques have been achieved, but without adopting the systematic
TME approach. This approach insists on obtaining basically the same ideal ef-
ficiency to every problem, by a very systematic study of each type of difficulty,
through a carefully chosen sequence of model problems. Several fundamental tech-
niques are typically absent in the multigrid codes that have not adopted the TME
strategy. Most important, those codes fail to decompose the solution process into
separate treatments of each factor of the PDE principal determinant, and there-
fore do not identify, let alone treat, the separate obstacles associated with each
such factor. Indeed, depending on flow conditions, each of those factors may have
different ellipticity measures (some are uniformly elliptic, others are non elliptic
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at some or all of the relevant scales) and/or different set of characteristic surfaces,
requiring different combinations of relaxation and coarsening procedures.

The table deals only with steady-state flows and their direct multigrid solvers,
i.e., not through pseudo-time marching. Time-accurate solvers for genuine time-
dependent flow problems are in principle simpler to develop than their steady-
state counterparts. Using semi implicit or fully implicit discretizations, large and
adaptable time steps can be used, and parallel processing across space and time is
feasible [R88|. The resulting system of equations (i.e., the system to be solved at
each time step) is much easier than the steady-state system because it has better
ellipticity measures (due to the time term), it does not involve the difficulties
associated with recirculations, and it comes with a good first approximation (from
the previous time step). A simple multigrid “F cycle” at each time step can
solve the equations much below the discretization errors of that step [Par|. It is
thus believed that fully efficient multigrid methods for the steady-state equations
will also yield fully efficient and highly parallelizable methods for time-accurate
integrations.
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