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Abstract

A multilevel Monte Carlo method for simulations of fluids under gravity is developed.
The approach is based on the Conditional Probability of a state which can be treated as
the stochastic equation for the simulated system. The method is illustrated for test cases
of a perfect gas and hard-core fluids in one- and two-dimension, using model Conditional
Probability functions.

1 Introduction

The Monte Carlo technique is widely used to simulate many-body systems. In the frame-
work of the conventional approach current locations of particles are generated with the
probability proportional to the Gibbs distribution function [1]. The process is local, mov-
ing e.g., one particle at a time and this leads to very slow changes of large scale features.
Thus the following inefficiency is inherent to the conventional Monte Carlo method: the
larger the scale (that is necessary to approach the thermodynamic limit) the slower the
change and longer (per particle) is the process required to produce new independent
features.

In practice, application of the Monte Carlo technique is restricted to a small, on
the macroscopic scale, volume of the system under consideration. For the simulation of a
bulk system periodic boundary conditions are supposed [1]. It follows from the periodicity
conditions that the real system is replaced by a superlattice with the same configurations
in each cell. As a result the fluctuations of the particle number at scales comparable with
or lager than the simulation domain are cut off.

The conventional Monte Carlo process leads to reasonable results for many-body sys-
tems at high temperatures (when the short-range repulsive contribution to the inter-
particle interaction dominates and the correlation length is small). In the neighborhood
of a phase change, especially in the critical region, the growth of the correlation size causes
a loss of accuracy due to slowing down of the simulation process [2], [3]. An approach
which allows to overcome this drawback of conventional Monte Carlo Methods consist
of a multilevel view of the system [2], [4]. The efficiency of multilevel methods in solv-
ing problems of statistical physics has been shown on examples with sufficiently simple
systems [2], [5].

The realistic treatment of critical phenomena is complicated by gravity, which induce
a density gradient [6], [7]. The density profile changes on the macroscopic (or mesoscopic)
scale and the simultaneous consideration of microscopic features is difficult because of the
large difference in scales. This problem can be avoided in the case of a perfect gas [8],
[9]. For more realistic systems, analytical solutions are known only for hard rods under
gravity [10], [11], [12]. The range of density change is comparable with the particle size
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in the case of granular materials [13] and such small systems were successfully studied
by simulations [10], [14]. Nevertheless, the small rate of the particle exchange between
the dense and the more dilute regions results in very slow equilibration [6], i.e., again in
slowing down. Therefore it is suitable to apply the Multilevel Monte Carlo approach for
studying large scale phenomena in many-body systems under gravity.

The aim of the present paper is the development of the general multilevel method for
simulations of fluids under gravity.

2 Multilevel Monte Carlo Method

The Monte Carlo method in the statistical theory is used to evaluate numerically the
average A of any functional A, defined by:

A= [AX) w(X)-dX ~ % > Ay (1)

were w(X) is the probability density of the state X ( the state, or the configuration, is
defined by the set of N variables X = {x1,2,...2x5} ) in the configuration space 2, and
the nodes X; are generated by a random walk in Q that satisfies detailed balance [1].

The simplest definition of the probability to pass from node X to X’ in detailed balance
is given by:

w(X — X') = min [1 w(X’)]

2
The probability density in statistical physics given by Gibbs in the canonical ensemble
is [15]:

w(X) = const - exp(—%) (3)

where kg is the Boltzmann constant, 7" is the temperature and U is the potential energy
of the system. The meaning of variables x; is defined by the system under consideration
(e.g., for simple fluids these variables are particle locations, while in the Ising model they
are spin signs at gridpoints).

The transition between states in the conventional Monte Carlo process is made, in
accordance with (2), by the random change of one variable x; at a time. Therefore the
conventional Monte Carlo simulation is a local process, with the result that the main trou-
ble of this process is its slowness. A slowing-down is inherent not only in the conventional
Monte Carlo algorithm, it is a common problem for all local processes (e.g. Gauss- Seidel
relaxation for discretized partial differential equations). The solution to this problem lies
in introducing system changes of more collective nature. In the case of partial differential



equations fast convergence of solutions had been attained by multigrid algorithms [16].
These algorithms are looking for solution representation on a sequence of lattices with
increasingly larger meshsizes (coarser scales), combining local processing at each scale
with various inter-scale (inter-lattice) interactions.

A similar technique can be applied to the simulation of liquids. The space is dis-
cretizied and sets of coarse-level variables are defined at gridpoints of a sequence of
lattices. The main idea of the multilevel approach is to equilibrate on each level only
modes with short (comparable with the level’s meshsize) wave lengths. Long wave modes
with slow convergence at a given level are equilibrated at coarser levels where their wave
lengths are comparable with the meshsize. As a result, the multilevel process leads to fast
equilibration of all modes.

In order to realize the multilevel Monte Carlo algorithm it is necessary to introduce
the set of coarse-level variables and the probability density of the state defined by this
set.

There are many possible ways to choose the set of coarse variables. A general criterion
for the quality of this set is the speed of equilibration of a compatible Monte Carlo (CMC).
By this we mean a Monte Carlo process on the fine level which is restricted to the subset of
fine-level configurations compatible with a fized coarse-level configuration. For example,
if each coarse variable is defined as a certain local spatial average of several fine-level
variables, the CMC should be confined to steps that keep all these local spatial averages
invariant (by, e.g., changing a pair of fine-level variables at a time, keeping their sum
unaltered). A fast CMC equilibration implies that up to local processing all equilibrium
configurations are fully determined by their coarse-level representations (their local spatial
averages).

In the framework of the multilevel Monte Carlo algorithm, only a local process is
performed at each level, defined in terms of the corresponding variables. For changing the
variable with the number 7, say, one can see from (2) that it is enough to use, instead of the
Gibbs function (3), the conditional probability P(z; | R;), which defines the probability
of the given value for the variable z; when the values of all other variables, defined by the
set Ry = {z1,...,%i_1,Tit1,.--, TN}, are fixed.

For example, in the case of simple fluids, on the finest (particle) level the definition of
the conditional probability follows from (3) and (2):

) (@

P(7; | R;) = const - exp(—

where 7; is the location of the ¢-th particle and :

wiRi) = > (|7 — 75 ) ()

3, (3#19)



Here ¢(| 7; — 7 |) corresponds to the energy of a two-body interaction.

The Conditional Probability is defined exactly only on the finest level where the motion
of particles is continuous. In order to calculate transition probabilities (2) on coarse
levels, conditional probabilities should be derived for each coarse level. These conditional
probabilities can be expressed in the form of a Conditional Probability (CP) table, which
in principle tabulates numerically the probability distribution of any coarse-level variable,
given the values of all others. Of course, not all other variables should in practice be taken
into account: only a certain small neighborhood counts, due to the near locality property
of the conditional probability. This property results from the fast CMC equilibration:
see the discussion of near locality in [17]. The CP tables for any coarse level k are
calculated by gathering appropriate statistics during Monte Carlo simulation at the next
finer level k — 1. Because of the near-locality property, no global equilibration is needed;
local equilibration is enough to provide the correct CP values.

Due to the property of near locality, on coarse levels with large meshsize, states of
neighbor gridpoints can sometimes be considered to be independent of their environment.
In this case an analytical approximation for a Conditional Probabilities (CP) function can
be developed. Examples of CP functions will be considered in the next sections.

3 Perfect Gas Under Gravity

In order to introduce coarse-level variables the simulation domain is devided into M
disjoint parts (e.g. cubes) V;' of equal volume with linear size hy, 1 < 7 < M (each
V! being associated with a gridpoint 7 of the first coarse-level lattice). Configurations
of the finest (particle) level are mapped to the first coarse level by the operation of
coarsening, this operation creates the coarse-level variable set. For example, at any instant
the corresponding coarse-level variables can be defined in terms of the particle number:

n; = Number of particles in V;' (6)

M
with " n] = N, where N is the total number of particles in the simulation domain.
i=1
The set {n}} defines the current configuration on the first coarse-level: instead of
particle locations the occupation numbers at gridpoints are used (see Fig.1).
The extension of the coarsening operation (6) to coarser levels leads to the following

definition of the coarse-variable at the level k:

nf= Y nflEk>1 (7)
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Figure 1: Coarsening from the finest level Figure 2: Neighboring coarse-level variables.
to the first coarse level, o denotes
a gridpoint.

for each volume element ij of level k, assuming it to be a union of volume elements of the
level £ — 1. The coarsening can be repeated till the coarsest level, whose choice depends
on the scale of the phenomena one wants to compute.

In the case of perfect gas all coarse-level variables (6) and (7) are essentially statistically
independent. It means that neighboring coarse-level variables in Fig.2 can be treated
independently of all other variables. Under the assumption that the sum:

N; =n; + Ni+1 (8)

is fixed, the probability that the value of the coarse-level variable at gridpoint 7 is n;,
follows from the usual consideration of the distribution of molecules of a perfect gas
between two subdomains [18]:

N;!
- n; Ti41

*Pi Piga (9)
7?,1! * ni_|_1!

P(n; | N;) =

where p; is the probability that any given particle is in the subdomain i, i.e. is ascribed
to the gridpoint i ( obviously p; + p;y1 = 1). The probability p; is a one-particle property,
in the uniform gas p; = p;11 = 0.5.

In a uniform gravitational field of acceleration g each particle which is placed at
distance x from a reference point has the energy:

Ulzx)=m-g-z (10)

where m is the mass of a particle.



For two horizontally neighboring gridpoints (see Fig.2) on a coarse level with meshsize
h, in accordance with the Gibbs distribution (3):

1 q
4 = s i = , 11
p 1+gq Pit1 1+gq (11)
where e
g=-¢e it ", (12)
The quantity:
a = kgT/mg (13)

is called the gravitational length.

The approximation (12) is the consequence of the discretization of the space and
coincides with the gravitational part of the lattice gas free energy functional [19].

In order to define a state of the two neighboring gridpoints shown in Fig.2 it is conve-
nient to introduce in addition to (8) the following variable:

Ai =MN; — Ni41- (14)

Substituting (11) into (9) and taking into account (14) we find the desired form for the
CP function:

oY)
P(A; | N;)=C- N#Ai‘—’ 2Ni_Ai (15)
(5579t (557)!
where the quantity:
C=N!-( ¢ )N (16)
1+g¢

is independent of the difference A; and therefore is unimportant for the calculation of the
transition probability (2).

On can use the Stirling formula in order to transform (15) to a form suitable for
numerical calculations at large occupation numbers:

P(A; | N;) = const - e 05 Niv(8) (17)
where 6; = A;/N; and:
P(6:)=1+6) -In(1+6)+(1—6) In(1—6)+1In(q) -6 (18)

The most probable state is defined by the condition %'(6;) = 0 which leads to the
following deterministic equation in finite differences:
mg

(2kBT

h) - N; (19)
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The CP function in the form (17) can be treated as the stochastic equation.
In the limit A~ — 0 the usual differential equation for the density profile of a perfect
gas in the external gravitational field follows from (19):

dp(x)

mg

dx

T kT

P

where p(z) is the local particle number density.
In the case of a gas column of height L, the solution of this equation is:

Ly

()

p(z) =7

a-(1—exp(—Ly/a))

-exp(—z/a)

where p is the mean value of the particle number density.
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Figure 3: Free perfect gas. The dashed line on the right side corresponds to the bulk
value of the particle number fluctuation.

In a coarse level Monte Carlo run, each trial move on the level k£ consists of particle

. . . . . ! !
exchange between two neighboring gridpoints, i.e. n¥ — n¥ = nF 4+ An, an — an =
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n¥ , — An, where An is a random integer in the range | An |< Anp,, , the acceptance
rate of new configurations depends on the value of An,,... The acceptance probability for
this move is defined by (2). The CP function (17) is used on all levels. It means that in
this case the finest (particle) level is not included in the multilevel cycle. If the exchange
of particles is done in the direction perpendicular to z-axis the gravitational term in the
CP function is omitted.

The multilevel cycle begins from the coarsest level, runs are started from an initial
uniform distribution of particles between gridpoints confined by the x = 0 and x = L,
planes (in general, in the presence of gravity, it is enough to restrict the particle motion
by the z = 0 plane). On the coarsest level one can use so large a meshsize that the
number of gridpoints will be relatively small, therefore the equilibration is fast. To pass
from a coarse level to the next finer level one needs first to interpolate, i.e., to produce
the fine level configurations represented by the current coarse level configuration. The
interpolation is performed by CMC sweeps at the fine level (the meshsize at the next fine
level is half the current one, and the number of gridpoints is larger by the factor 2¢, where
d is the space dimension. Nevertheless, a small number sweeps is enough, due to the fast
CMC equilibration). The finest level is defined by the desired resolution.

After the equilibration on the fine level the configuration is coarsened and returned
to the coarse level, where simulations are resumed. The ensemble average properties of a
system are estimated during these simulations at each level. When the coarsest level is
attained, the multilevel cycle repeats if necessary.

In order to test the multilevel algorithm it was first applied to the simulation of one-
dimensional perfect gas in the absence of gravity. There is no relevant length scale in free
perfect gas. Therefore an arbitrary length unit a is used. The simulation was performed
for a system of 10 particles contained in a domain of size L, = 125000-a that corresponds
to the particle number density p-a = 8. Ten gridpoints are introduced on the coarsest
level, it is numbered as level #1, the next fine level is numbered as level #2, etc.

The total number of levels in the simulation equals 10. The meshsize on the coarsest
level is hq, the meshsize on the i-th level is h; = h;/ 2¢. The multilevel run consists of 500
cycles which corresponds to 30000 Monte Carlo sweeps on each level. Half of them is used
for the calculation of average values of the particle number density and the fluctuation of
the particle number:

ko (<nf)?E > — <nk>?
= <nk>

(22)

at each gridpoint 7 of a level k.

Results of the simulation are shown in Fig.3. The mean value of the particle number
density at each gridpoint slightly deviates from the average value over the whole simulation
domain p-a = 8, this disagreement decreases with increasing the amount of statistics. The
same is true for the fluctuation of the particle number with one exception: the average
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Figure 4: Perfect gas under gravity. The dashed line on the left side corresponds to the
exact density profile (21). On the right side the dashed line corresponds to the bulk value
of the particle number fluctuation of a free gas.

value of the fluctuation on coarse levels is smaller then the bulk value of a perfect gas
Upur, = 1 [18]. Tt is caused by the finite-size effect; in the case of a perfect gas the correction
to the bulk value of the particle number fluctuation is given by [21], [22]:

Ve = Vpuir * (1 — %) (23)
where hy is the meshsize of level k. The result of the calculation of the average fluctuation
at each level is shown in Fig.5. One can see that the result is in agreement with (23).

Results for the example of a perfect gas under gravity in the case h;/a = 0.125 are
shown in Fig.4. The simulation was performed under the same conditions as for the free
perfect gas. The characteristic feature of the gas influenced by gravity is the non-uniform
density profile. Therefore the optimal choice of An,,., has to be associated with the
local particle number density. In the algorithm the following simple relation between this
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Figure 5: Dependence of the particle number fluctuation in a subdomain on the meshsize
for free perfect gas (left panel) and a perfect gas under gravity (right panel)

quantity and the sum of the particle number at the two neighboring gridpoints under the

trial move was used:
Anma:z: = MNe¢ - V Nz (24)

where n, is a constant.

One can see from Fig.4 that the density profile calculated by the Multilevel Monte
Carlo method coincides with the exact result (21). The fluctuation of the particle number
on finer levels is the same as in the free system. On the coarser levels the fluctuation
profile is non-uniform and increases in the low density tail. Nevertheless the average
fluctuations also conform to (23) (see Fig.5).

4 Hard-Core Particle Fluids

In contrast to the case of a perfect gas, one can expect that the CP function for systems,
which consist of finite size particles, is reduced for large values of the particle number
density. Therefore the binomial distribution (3) has to be corrected. It was shown that
the distribution of molecules between two subdomains in a lattice gas model is given by
the hypergeometric distribution [23]. A further analysis have shown that the asymptotic
representation of this distribution can be used successfully for the description of the parti-
cle number fluctuation in continuous systems of hard disks and spheres [24]. Therefore it
is reasonable to use this approximation to develop the CP function for hard-sphere fluids.

In the framework of the lattice model the distribution of particles between two sub-
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domains is given by [23]:

M;—N;
P@u«M)=(Nﬁ(K@¢) (29
(i)
where M, is the total number of lattice sites in the two subdomains (see Fig.2) and K; is
the number of lattice cites in the subdomain i (K; + K; 1 = M;), N; = n; + n;y1 being
fixed.

The fluctuation of the particle number in the subdomain ¢ follows from the dispersion
for the distribution (25):

(2

Ni Kz Ki—|—1 1 Nz
vi= ot (-2

(26)

If one subdomain, say ¢, is much smaller then the other, i.e., under the condition K; <
M;, M; — oo, the fluctuation of the particle number can be associated with the isother-
mal compressibility x [15]:

v;=p-kgTk (27)

The interpretation of the quantity M; for non- lattice models follows from (26) and (27):
=1 4

i (28)
where x = p - kgT'k is the dimensionless isothermal compressibility.

Under the assumption that the relation (28) is valid in continuous models (the interac-
tion between particles results in the dependence of the isothermal compressibility on the
particle number density) the CP function follows from (25) and (28) assuming K; = M, /2:

1 1
(Ni+Ai)! . (Ni—Ai)! (Niﬁ-i-Ai N X _A.

) (—5—)!

The isothermal compressibility of a perfect gasis x = 1 [18]; in this case (29) is reduced
to (15) in the absence of the external field (¢ = 1). Therefore the last term in (29) can
be considered as the correction due to the finite particle size.

After applying the Stirling formula to (29) one obtains the CP function in the form
(17) with the following corrected definition of the function (6;):

(29)

P(6;) =146) -In(1+6)+(1—06) In(l—6)+ (1+ 1_Tx5z) ‘In(1 + 1_TX5Z) +

L= X6y (1 — 27X ) — In(a) - 6.
1= ) In(1 = —X6) ~ In(g) -6 (30)
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The deterministic equation in finite differences which corresponds to (30) is defined by:

1= y1-4-(1—x) x-a?

A; = - N; 31
a 2-(1-x) (31)
where a = th(52%:h). If the gravitational length is much larger then the meshsize, (31)
is reduced to the following equation:
myg
A; = hi - x - N;. 32
ST X (32)

In the continuum limit A; — 0, one obtains the usual nonlinear differential equation for
the density profile in a system of hard-core particles:

dp(x) mg
=——-x- . 33

This equation coincides with the result of the density functional approach [10] and the
consideration of the osmotic pressure in the sedimentation equilibrium of colloids [25],
[26].

In order to use the CP function defined by (17) and (30) in the multilevel Monte Carlo
cycle the isothermal compressibility should be derived. For that purpose the following
thermodynamical relation can be used [15]:

1 dP/ksT

—= 34
X op It (34)
where P is the pressure.
In the one-dimensional case the exact equation of state is known [27]:
P
== (35)
kT 1—p-0

where ¢ is the diameter of a particle. The exact isothermal compressibility for this system
follows from (34) and (35):

x=@1-p-o) (36)
The differential equation for the density profile for a system of hard rods follows from
(33) and (36):

dp(x
9) — (1= (@) -0)* - ple) (37)
Equation (37) can be integrated and the density profile is defined by [10]:
1 1—p(x) -0
z/a=C— —————+In—F—"— 38
e AR O 9
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where the coefficient C is defined by the wall contact value of the local particle number
density p, :

1 ].—pw'O' Ntot
In ’ Puw - QO

C = — - Trer
1—pw-0 Puw O 14+ Nyt - 0/

(39)

where N, is the total number of particles in the system.
The solution (38) is valid in semi-infinite space, therefore the comparison with the
Monte Carlo result of the simulation in confined space must be done carefully.
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Figure 6: Results of the Multilevel Monte Carlo simulation for a system of hard rods. The
dashed line on the left side corresponds to the analytical solution (38). On the right side
the dashed line corresponds to the local estimation of the particle number fluctuation.

Results of the simulation for the mean value of the particle number density p-o = 0.5
and hy/a = 2 after five multilevel cycles (500 Monte Carlo sweeps at each level) are
shown in Fig.6. The density profile is in a very good agreement with the exact (for eq.
(37)) solution. The fluctuation of the particle number on the coarsest level considerably
exceeds the expected value calculated by the particle number density at the subdomain
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in accordance with (36) (the local approximation). On finer levels, at least at the dense
part of the density profile, this quantity coincides with the local estimation.
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Figure 7: Results of the multilevel Monte Carlo simulation for the system of hard disks.
The dashed line corresponds to the local estimation of the particle number fluctuation.
The density profile and the particle number fluctuation are averaged over the y-direction.

The exact equation of state for the system of hard disks is not available but many
empirical functions have been proposed. The simplest one follows from the scale particle
theory [28]:

Py p
ksT — (1—n)?

(40)

where n =% - p- o’

The expression for the isothermal compressibility is defined, in accordance with (34)
and (40), by:
(1—n)°

1+mn (41)

Xspt(P) =
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The compressibility (41) is zero at n = 1, which corresponds to the density p-o? = 1.273.
However the hard disk fluid crystallizes into the hexagonal structure at the density p. =
1.155 (n = .907) [14]. Therefore for the hard disk fluid the isothermal compressibility was
defined by:
_f Xepr(0) P < pe
X { 0 P> pe (42)

A six level Multilevel Monte Carlo simulation was performed for the system of hard
disks with the mean particle number density p- o? = 0.5 and h;/a = 7.07. The system
is confined in the x-direction, gravity acts along this axis. Periodic boundary conditions
along the y-axis are assumed, the square simulation domain of the linear size L = 141.42-¢0
contains 10° particles. The equilibration of density profiles and fluctuations is attained
after one multilevel cycle (200 Monte Carlo sweeps on each level), and the following
modifications are small.

Results are shown in Fig.7. A close-packing structure is formed at the bottom. Similar
to the one-dimensional case, fluctuations at the dense part of the density profile coincide
with the evaluation by the local approximation.This simulation result is in agreement with
experimental data on the two-dimensional granular medium [29]. A clear disagreement is
observed at the low density tail, the larger the scale the larger the fluctuations.

5 Discussion

The theoretical investigation of a number of problems in the physics of liquids, colloids
and fluidized granular materials is connected with the consideration of the external grav-
itational field. The present results show that the multilevel Monte Carlo method can be
successfully applied for the investigation of a many-body system under gravity.

The conditional probability (CP) functions are developed and it is shown that the
correct deterministic differential equations can be derived from them in the continuum
limit. At the same time the CP function can be considered as the stochastic equation of
state, which can be realized in multilevel Monte Carlo simulations. As a result in addition
to the average values of thermodynamic quantities (which can be obtained as the solution
of the deterministic equation, if known) it is possible to estimate fluctuations.

It is known that fluctuations reflect the atomic structure of matter [21]. In the CP
function approach the matter is considered via the isothermal compressibility which is
defined by the microscopic structure. For simple systems considered here the isothermal
compressibility can be derived from first principles. In the more widespread case this
quantity is unknown and can be obtained by simulation. In this case the multilevel
approach can again be applied, using CP tables [17], [20] instead of the CP function. The
isothermal compressibility obtained in this way can be used in the CP function in order
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to simulate a system on the mesoscopic or macroscopic scale.
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