MULTILEVEL EVALUATION OF INTEGRAL TRANSFORMS WITH
ASYMPTOTICALLY SMOOTH KERNELS

A. BRANDT t AND C. H. VENNER !

Abstract. Multilevel algorithms developed for the fast evaluation of integral transforms and the
solution of the corresponding integral and integro-differential equations rely on smoothness properties
of the discrete kernel (matrix) and thereby on grid uniformity (see [6], [18]). However, in actual
applications, e.g. in contact mechanics, in many cases a substantial increase of efficiency can be
obtained using non-uniform grids, since the solution is smooth in large parts of the domain with
large gradients that occur only locally.

In this paper a new algorithm is presented which relies on the smoothness of the continuum kernel
only, independent of the grid configuration. This will facilitate the introduction of local refinements,
wherever needed. Also, the evaluations will generally be faster; for a d dimensional problem only
O(sd+1) operations per gridpoint are needed, if s is the order of discretization. The algorithm is
tested using a one dimensional model problem with logarithmic kernel. Results are presented using
both a second and fourth order discretization. For testing purposes, and to compare with results
presented in [6], uniform grids covering the entire domain were considered first.

Key words. multigrid, integral transform, singular smooth kernel, fast evaluation, local grid
refinement
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1. Introduction. The numerical evaluation of integral transforms (multi-integrals)
of the type:

(1) Gu(z) = /Q Gz, y)u(y)dy

is a common task in many fields in mathematics, physics, and engineering, includ-
ing: integro-differential equations, (Fredholm) integral equations, elasticity problems,
computer graphics (radiosity), electrostatics, astrophysics, and ab-initio Hartree-Fock
chemistry calculations. The evaluation can be a task by itself or be needed in the
process of (numerically) solving a (system of) integro-differential equation(s) in which
case u generally is the unknown function.

Discretizing (1) on a grid generally implies that, at the expense of a discretization
error, the continuous transform is replaced by a matrix multiplication, or “multi-
summation”, i.e., the evaluation of the n-vector Gu = Gu given the 7 x n (dense)
matrix G and the n-vector u, a task well known also from problems with gravitating
masses, vortex schemes, coulombic molecular forces, and other many-body long range
interactions.

If the matrix G has arbitrary entries, each of them must enter the calculations and
nn (often n = n) operations must be used. In that case there can exist no way which is
significantly faster than such a straigthforward multiplication. In many applications
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of interest, however the “discrete kernel” G has certain special properties that can
be used. In particular, in most physical problems Gij = G(=z;,y;) where z; € R?
and y; € R? (ie. 2; = (2}, 22, .., 2d), y; = (y},y]?, ...,y;»l) where z{* and yf are real
numbers) and the kernel G(z,y) has some smoothness properties; usually d = d and
often y; = z;. These kernels for example arise in many-body interactions, where y; is
the position of the particle with “charge” u; = u(y;), and Gu; = Gu(z;) is the total
effect of all particles at point 2;. When originating from the discretization of (1), the
points z; are usually the points of a grid, and so are the points y;. However, unlike
the cases referred to above, the discretization generally yields a mesh-size dependent
discrete kernel Gj # G(z;, y;); see e.g. [6].

Using specific properties of the matrix G, a variety of approaches has been in-
troduced to reduce the computational cost of the multi-summation Gu to below the
O(nn) operations mentioned above, e.g. using far field expansions [16], [15], [13], hi-
erarchical solvers in many body simulations [1], [3], [10], [12], and FFT based schemes
[17] (for the solution of the corresponding integral equations). In the past decade
wavelet techniques have become popular, e.g. see [5], [2], where the complexity reduc-
tion is obtained by representation on a suitable set of increasingly coarse base func-
tions. Most of these techniques have restrictions, e.g. a limited accuracy, limitation to
potential type kernels, or they require a significant amount of matrix manipulations
to arrive at the sparse matrix which enables the fast evaluation.

A simple and general approach referred to as multilevel matriz multiplication
or multilevel multi-integration was introduced in [6], [7]. This algorithm only relies
on the smoothness properties of the matrix G. For example in the case n = n
the complexity of the evaluation up to accuracy ¢ was reduced by this approach

1
to O(nlolgf‘oé %) for smooth kernels, to O(n ln(%)) for asymptotically smooth kernels,

and to O((nlogn)(log(1)?) if d > 1 and O(nln(L)) if d = 1 for oscillatory kernels.
Moreover, when merged with a suitable distributed relaxation and the usual multigrid
solution techniques, an associated integral or integro-differential equation (e.g., finding
u given Gu)), can be solved to an error below the discretization error in an amount
of work that is only a fraction larger than the work involved in a single evaluation of
the discrete transform; see e.g. [6],[18].

In this paper the subject of fast evaluation of integral transforms with asymptot-
ically smooth kernels is revisited. In actual applications, e.g. in contact mechanics, in
many cases the function u(y) will be smooth in large parts of the domain, and large
gradients will occur only locally. It is only in such regions that a fine grid is really
needed. Whenever this is the case one can expect local grid refinement techniques
(adaptive grids) to yield substantially reduced computing times without loss of accu-
racy. In addition, local grid refinements may be essential to maintain work-accuracy
efficiency in the case that u has some singularity. In principle the multilevel method-
ology allows such local grid refinements in a very natural way. For partial differential
problems this is shown in e.g. [8], [4], and [9]. The aim of the present work is to de-
velop such techniques for the fast evaluation of integral transforms of the above type,
and for the solution of the corresponding integro-differential equation. However, first
we restrict ourselves to the evaluation only.

In [6] the discrete transform (multisummation) was obtained by discretizing (1)
on a uniform grid covering the entire domain. Indeed, if the kernel G(z, y) is smooth,
then with a suitable discretization on a uniform grid the discrete kernel Gi]' will
have the same smoothness properties, and the evaluation of Gu on a given grid can
(recursively) be replaced by a restriction of u to a coarser grid, a multisummation
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on this coarser grid, and interpolation to the finer grid (and a local correction if the
kernel has a singularity). However, on a non-uniform grid, smoothness of G(z, y) does
not entail that G’ZJ is also smooth and therefore a new algorithm had to be developed.

The novelty of this algorithm is that instead of writing the discretized transform
as a single discrete transform Gu it is written in a form containing several multi-
summations G'U', where for each I, GiJ = GY(;, y;), with G'(z,y) being the [ times
integrated kernel G(z,y). Each of these multisummations can subsequently be eval-
uated fast relying only on the smoothness of the continuum kernels G'(z,y), which
trivially follows from the smoothness of the continuum kernel G(z,y). Hence, the
algorithm allows fast evaluation independent of grid uniformity. This will facilitate
the introduction of local refinements, wherever needed.

In addition, due to the use of the integrated kernels, the evaluation can generally
be faster and the algorithm allows a minimal (even zero) number of local corrections
m and a minimal order of transfer p on the finest grid (where the bulk of the com-
putational work is invested), and only gradually increasing m and p at coarser levels,
reaching values O(ln%) at the coarsest evaluation level. The total work needed to
evaluate the transform to the level of accuracy of the employed discretization adds up
to O(s%*!) operations per gridpoint, where s is the order of discretization and d the
dimension of the problem.

The algorithm was tested for a one dimensional model problem with G(z,y) =
In|y — z|. Detailed results will be presented using both a second and fourth order
discretization. For testing purposes, and to compare with [6], uniform grids covering
the entire domain were considered first. This leaves the actual application to locally
refined grid structures for the next step.

2. Discretization. For simplicity below we will restrict the description to a one
dimensional problem. The generalization to d dimensional problems will be discussed
in section 7.

The domain  is subdivided into intervals [y;,yj+1]. This will be called the
integration-grid. Let ﬂ?(y) denote an interpolation polynomial of order s, i.e. of
degree s — 1 approximating u(y) on [y;, y;+1]. This interpolation is done from a data-
grid of points {z;} on which for each point z;, u; = u(z;) is given. In that case
Gfuh(:v) . the contribution of the interval [y;, yj+1] to the discrete integral transform

G"u"(z), is defined by:

2) Gl (z) = /ym Gz, y)ii! (y)dy

Yi

Let G*(z,y) denote a “family” of kernels defined recursively:

GO(I: y) =Gz, y)

3) 6= [ 6= i

If G(z,y) is asymptotically smooth, so are all the new kernels. By “asymptotically
smooth” we mean that G(z,y) is increasingly smooth with increasing |y — «|. This is
explained in more detail in section 3.
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In some cases the new kernels can be computed analytically. For example for the
case G(z,y) = In |y — z|:

1

(1) G'(e9) = gy — ) inly— 2= 37 %)

ji=1 J
However, such closed-form expressions for G! are not essential.

Integrating (2) by parts s times using (3) one obtains:

k] k]

(5) Ghul(z) = 3 (~1'al V)G @y) = (D' TV (40) G (e y).

=1 =1

where ﬂ;’(l_l) denotes the [—1 derivative of ﬂ; Subsequently G"u"(z) approximating
Gu(z) is obtained by summing up over all integration intervals:

n—1

Ghul(x) = Z G;luh(r)

j=0

=31 [ag " wo)G (@ w0) — @V ()G (. vi)
=1

(©) DY [l ) - D )] Gy,

Hence, the discrete integral transform is the sum of a series of “boundary terms” and
s discrete transforms:

S

(7) GMul'() = B (x) + ) (—1)'s"(a),

=1

where:

8

B @)=Y (=1)' i TV (50) G o) — 1T ()G ()|
=1

and

(8) M (x) = Z G'(a. y)U;}!

with
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(9) Ut =) - 15 ().

J J Jj-1

The discretization error, i.e. the difference between (7) and (1), in the case of a
uniform grid, per unit length is bounded by

(10) 7" < (rah)* 1)) |G,

where h is the mesh size, ||u(*)|| the maximum of the s derivative of u in Q, and |G|
stands for the average of |G(z, y)| over the integration domain.

Depending on the choice of the integration grid intervals relative to the datagrid,
for some [ all the terms in S*!(z) may vanish, namely if Ujh"’ = 0 for all 5. This for
example holds for [ = 1 if the integration intervals coincide with the intervals of the
datagrid (y; = z;). In the case of a uniform grid this also holds (except perhaps at
some endpoints) for any s even and ! odd (assuming integration intervals coinciding
with data grid intervals, as is natural for s even) or for any s odd and [ even (assuming
integration interval endpoints coincide with data-grid midpoints y; = (2; + zj_1)/2,
as is natural for s odd). Hence, the number of discrete transforms to be evaluated
will usually be s/2 if s is even, and (s + 1)/2 if s is odd. In the cases where (9) does
not vanish:

(11) U7 = 2(y2h)* =+ ul) (y;)] + O(h*~12),

with 92 & 0.5 for a uniform grid; see Appendix A.

At this point it should be noted that the discretization of the integral as used here
is the same as used in e.g. [6]. However, in [6], the common approach of condensing
(6) to the form

(12) Ghul () = hdZGh(m,yj)u?,

is used. [6] then exploits the asymptotic smoothness of G”(z,y;) to obtain a fast
evaluation algorithm. Unfortunately, the asymptotic smoothness of G"(z,y) as a
function of y depends sensitively on the simultaneous uniformity of the data grid and
the integration grid. The core of the new algorithm is that instead of rewriting (6)
into such a single discrete transform, it is maintained in its form, and each of the
discrete transforms S”+(z) for which the aforementioned cancellations do not occur,
is evaluated separately. As a result the fast evaluation will use only the asymptotic
smoothness of the given continuum kernel G(z,y), and the asymptotic smoothness
of the continuum kernels G'(z,y) which trivially follows from it, independently of
grid uniformity. This will facilitate the introduction of local refinements, wherever
needed. Also, the evaluations will be faster, since we will be able to differentially use
the smallness of U]»h’l for small [ (see (11)), and the reduced degree of singularity in

G' for larger [ (see (4)).

3. Kernel Softening. We assume that the kernel G(z, y) is asymptotically smooth.
By this we mean that G(z,y) is increasingly smooth for larger |y — z|, in such a way
that for any given “allowed error” e > 0 there exist nonnegative integers m and p for
which a “softened kernel” Gy (x,y) can be defined at any “softening scale” H > 0,
with the following two properties.
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TABLE 1
For the kernel G?(z,y) = %(y —z)2(Inly — z| - %) the p—order softened kernel G%(z‘,y) in
- 2 —_
the interval |y — z| < mH is given by G%(x,y) = %ln(mH) + (mH)? f:; AJ(%)QJ, where
& = |y — z|. In the table M AX denotes the maximum of |(mH)pG§{’(p)(z’, y)|.

P 2 3 4 5 6 7 8 9 10
A _1 _1 _ L _ L _ 1 _ L _ 1 _ 1 _ 1
0 4 8 12 16 20 24 28 32 36
A 1 _3 7 _23 _ 49 _ 257 _ 89 _ 643 1321
1 2 4 8 24 48 240 80 560 1120
1 1 3 1 5 3 7
AQ 8 4 8 2 8 4 8 1
A _1 _1 _1 _> _5 _z _z
3 24 8 4 12 8 8 6
A 1 1 5 5 25 4
4 48 12 24 12 48 6
1 1 3 7 7
A5 80 16 16 16 K]
1 1 7 7
A6 120 20 40 15
1 1 1
A? 168 T 24 6
1 1
As 224 28
1
Ag ~ 288
MAX 1 3 9 50 390 3864 4.710% 6.510° 1.03107
TABLE 2

For the kernel G*(x,y) = ﬁ(y —z)4(Inly - 90|4— %) the p—order softened kernel G%(z‘,y) in
the interval |y — z| < mH is given by G%(aj,y) = g—4ln(mH) + (mH)* f;; AJ(%)QJ, forp > 2.
In the table M AX denotes the maximum of |(mH)PG;’(p)($,y)|.

p 2 3 4 5 6 7 8 9 10
A T T T T T I I I
0 96 288 576 960 1440 2016 2688 3456
A -1 _1 _4 _1 -1 _1 1 1
1 24 48 72 96 120 144 168 192
A _ 1 _ 11 _ 25 _ 3 _ 19 _ 33 307 2209
2 18 144 288 32 192 320 2880 20160
A 1 1 1 1 5 i 7
3 144 72 48 36 144 24 144
A _ 1 _ 1 _ 1 _ 5 _ 5 _ 1
4 576 192 96 288 192 192
A 1 1 1 1 7
5 1440 360 144 72 288
A 1 _ 1 _1 7
6 2880 576 192 576
1 1 1
A? 5040 840 240
1 1
Ag T 8064 1152
1
A9 12096
MAX 4/3  11/6 5/3 15 126 1274 1.510%  2.110°
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(1) Locality: Gu(x.,y) = G(z,y) for |y — x| > mH.

(ii) Gu(z,y) is suitably smooth on the scale H. By this it is meant that, both
as a function of x for any fixed y, and as a function of y for any fixed z, Gg(z,y)
can be approximated up to an error smaller than ¢ by a p-order interpolation from
its values on any uniform grid with meshsize H (or smaller). This translates into the
requirement that

(v H )P |GH (2. y)] < O(e)

for any (#, y), where G(p)(;r, y) stands for any p-order derivative of Gy with respect to
either z or y, and 73 is a constant depending on the interpolation geometry, y5 = 1/2
for the usual central interpolations.

With the exception of oscillatory kernels, treated in [7], most kernels arising in
physics are smooth in a way that a “softening” satisfying (i) and (ii) can easily be
provided with m and p rising only slowly for decreasing €. In particular, a convenient
softening is obtained by defining

v _f Gulz.y) ifly—z[<mH
(13) Gu(z.y) —{ G(z,y)  otherwise,

where GH(m,y) is a (2p — 1) degree polynomial of (y — z) such that Gg(z,y) is
continuous and has p — 1 continuous derivatives at y — z = +mH.

For the family of kernels G'(z,y) defined by (4), softened kernels exist with m =
O(In %) and p = O(In %) For these kernels the polynomial (N}'ﬂq can be written as:

~ y—z) p-l _ g\ Zhtodd
(14) Glyle.y) = %m(mﬂ) +(mH) Y Ay (ym_H)
' k=0

with odd = 0 if | is even, and odd = 1 if | is odd. The coefficients Ay are H-
independent; for [ = 2 and [ = 4 and for 2 < p < 10 they are given in Tables 1 and 2,
together with the maximum of the p—order derivative of Gﬂq(r y). An illustration of
kernel softening appears in Figure 1.

Let H denote the mesh size of any grid coarser than h and let {Y;} be its grid-
points. The softening property (ii) implies that the value of Gy (z,y) can be interpo-
lated from Gg(z,Ys) with only O(e) error. In particular, for any y; on grid A there
are interpolation weights thf such that:

(15) (z.y) Zw Gu(z,Ys)+ O(e)

for all z. Notice that the summation actually only extends over just p terms (e.g.,
the terms for which |y; — Ys| < pH/2, if even p and central interpolation are used).

In the same way, if {z;} are the points of a grid h and {X} are the points of a
grid H coarser than h, there are interpolation weights @ such that for all y:

(16) Gul(ziy) =Y wif' Gu(X1.y) + O(e).
I



8 A. Brandt and C. H. Venner

00 _ _ 0.0
-0.75 | . -0.75
-1.50 7\\H\\\H‘\\\H\\\\‘\\\H\\\\‘\\\\H\H‘HHH\H‘HH\HH7 -1.50

150 -1.00 -050 000 050 1.00 1.50
X-y

Fic. 1. Illustration of kernel softening. G2(z,y) (thin line) and G%(z,y) (thick line) as a
function of y —x formH =1, p=4.

For smallest errors, these p—order interpolations should preferably be central. Near
the boundaries non-central interpolations can be used such that all interpolation
points are within the problem domain Q. However, usually G(z,y) is well defined
beyond the boundaries, and central interpolations can be used throughout.

4. Fast evaluation of the discrete transforms. Let G%(z, y) denote the soft-
ened kernel of G'(z,y) on the scale H. The integration grid points on this scale will
be denoted with {Y;}. Using softening requirement (I) the discrete transform S*!(z)
(8) can be written as:

(17) S"(x) = Sy (x) + MM (),

with

(18) Sti'(z) = Z Gl (. y))U}!

(19) MM@) = 30 (Gey) - Ghlay)U)

ly—z|<mH
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Assuming m < n, the main computational task of evaluating S*!(z) now is the
evaluation of the softened-kernel transform (18). From softening property (ii), i.e.
equation (15), it follows that, neglecting O(¢) errors:

(20) hll)—zzu 7Gx, Yy) UM

j=1 J

Changing the order of summation gives

(21) Si'(x) ZGH (z, YU,
J=0
where
(22) Uit =S witult.
j=0

Notice that, for a given J, the summation over j actually only involves the points j
for which |y; — ys| < pH/2, hence it is local. UH1 is simply the restriction of U"' to
the coarse (integration)grid H, a procedure referred to as anterpolation in [7], since
it is the adjoint of interpolation (15).

Next, let {z;} denote the points of the evaluation grid A, i.e. the points in which
the integral transform is to be computed, and let {X;} be the points of a similar grid
but coarser, with a mesh size H. By the smoothness of G%(:L‘, y) with respect to the
x variable, it follows from (16) that up to an O(e) error, for each point ;:

(23) Syt (i) =Y wlf' Sy (Xr),
I
where
(24) SpH(Xp) = ZGH (X1, YU
J=0

Summarizing, the level-h (grid h) multisummation task (17) to obtain S*:!(z;) for all
z; in the level-h evaluation grid, is replaced by:

1. anterpolation from the level-h integration grid points y; to the level- H in-
tegration grid points Y, according to equation (22).

2. coarse grid multi-summation, i.e. (24).

3. interpolation of the result of this summation from the level- H evaluation grid
points X1 to the level-h evaluation grid points z;, i.e. equation (23).

4. Addition of the local corrections M":!(z;) as defined by equation (19)

So far coarser grids (with respect to @ and y) with mesh size H were assumed.
However, H can not be chosen arbitrarily. For example H must be sufficiently close
to h, to keep the evaluation of (19) inexpensive. In this respect H = 2h is often
convenient. However, if the number of nodes on grid A is n, than the number of nodes
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on grid H will be roughly N = n/2, which may still be too large to directly calculate
(24). In that case, with one minor modification, the procedure described above to
obtain S*!(z;) can also be applied to calculate SEZ’I(XI). Indeed, equation (24) can
be written as

(25) S (Xp) = Siy ' (Xn) + M),
where
N
(26) Sty (wr) = Gup(Xr. YU,
J=0

and M2"!(X[) is a grid 2h local correction:

(27) M) = YT (Gh(X1Y)) — Gl (X, Yo ) UM
|XI—Y]|S4mh

Subsequently, using the smoothness of GY;,, direct evaluation of SgZ’I(XI) using (24)
can be replaced by an anterpolation of U?":! to grid 4h, a multisummation on grid 4h
yielding Sj:"’, interpolation of the result from evaluation grid 4h to evaluation grid
2h, and addition of the grid 2h correction M2%! as defined by (27).

The above described procedure can be repeated recursively until a grid is reached
at which direct summation can be done in at most O(n) operations.

5. Parameter optimization and control. In the previous sections the basic
elements of the algorithm were described. The remaining question is the selection of
m and p on each of the grids (2h, 4h, etc) that will be used in the process of evaluating
each of the transforms S*!. Below the basic procedure is explained to obtain optimal
values of p and m, so as to minimize computational work under the constraint that
the incremental evaluation error, is smaller than an estimate for the original fine-
grid discretization error (¢ = O(h*)). For the example problem G = log|y — | this
optimization is discussed in detail in appendix B.

For any z the discretization error per unit length of integration, see §2, is bounded

by:

(28) 7" < (rah)* 1] |G-

Due to (11) and (15), the error that results from replacing (18) by (20), i.e. the
incremental evaluation error resulting from transferring evaluation from grid H/2 to
grid H, per unit length, is given by:

s— H s
(29) ] = ya(72h)* |Gy — IR 2 Gl ()]

where Gl (z,y) — ]lg/ZG}I(m, y) stands for the order p interpolation error made with
the interpolation of G!; from grid H to a point z or a point y of grid H/2, and
|Gy — Hg/QGﬂLﬂ is the average of its absolute value over the integration points y.
Generally this error is bounded by
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(30) Gy — 17 GYy| < (3 H)P|GRP).

where |G;(Ip)| stands for the average of the absolute value of the p'® derivative of
Gﬂq, and y3 depends on the geometry of the interpolation, i.e., y3 = 1/2 for central
interpolation. Generally, by (28), (29) |ef| < |7*] requires:

(31) (72) "Gy — I Gy < (n)* |G

Under this constraint we want to minimize the incremental work W = O(p + 4m)
related to transferring evaluation from grid H/2 to grid H. This work estimate was
obtained as follows. Taking an operation to mean a combination of one multiplication
and one addition, the number of operations in transferring UH/%! to grid H, is p/2
per grid H/2 point (since d = 1, for half of the values the transfer is trivial). Similarly
p/2 operations per grid H/2 point are used to interpolate Sg’l from grid H to grid
H/2. Finally the corrections are added which involve summations over 4m grid H/?2
points.

Due to the use of integrated kernels it will usually be possible to employ m = 0
and a certain minimal p (derived from (31) and depending only on [) for several of the
finest coarsening H ( provided the basic meshsize h is sufficiently small). At large H
(i.e., after several coarsening stages), m and p will start to rise, reaching finally the
typical size (e.g. O(log 1)) which in the method of [6] must be used at all coarsenings
stages. The rates at which p and m increase need not actually be calculated very
precisely: If they increase faster than the necessary rates, no substantial harm (i.e.,
increased work) is done, since most of the work is anyway still spent at the finest
levels with m = 0 and a minimal p.

For the case G = In |y — z| this optimization, see appendix B, yields that p should
be taken the maximum of the first non-negative integer satisfying

(32) p>—0.83In(g)+ 1+ 1,

and [ 4+ 1, and m the first integer satisfying

(33) m>123(p—1-1),
where
ghi K
(34) g= e
'yé+1'yz I+1 J7i+1

From (34) it can be seen that:

(35) In(g) = ¢+ 1 In(h) — (I + 1) In(H),

with ¢; some constant depending on the geometry of the interpolation, order of dis-
cretization, and [. From (32), (33), and (35) it follows that, for a given finest grid
mesh size h, m and p will increase logarithmically with increasing coarse grid mesh
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size. On the other hand, with decreasing H, both m and p decrease, and for H ~ h
they reach the limits m = 0 and p > [+ 1.

The implications for the amount of work performed to obtain the discrete trans-
form are investigated below. p+ 4m operations are performed per finest grid point in
the anterpolation to grid 2h, the interpolation from grid 2h and the grid h correction.
Adding to this the work performed on all the coarser grids, with mesh sizes 4h, .. 2th,
then, assuming the actual multisummation is performed on a grid with H = /2, the
total work per fine grid point in evaluating S*! will be:

¢
(36) Z p; + 4m;)2
:0

where p; and m; denote p and m from equations (32), and (33) using H = 2/ h in
(35). With decreasing h, on an increasing number grids: m = 0 and p = ppmin > (+1.
As a result the work per grid point will tend to 2p,in + 1.

6. Numerical Results. As a first model problem the following integral trans-
form was taken:

(37) Gu() = [ Iy - zluly)dy

1

with u(y) = (1—y?). For this example the integral transform Gu(z) can be computed
analytically, which enables a detailed check of the accuracy of the multilevel algorithm.
The integration grid, data grid, and evaluation grid were chosen to be the same
uniform grid with mesh size h, (y; = z; = 2; for 0 < i < n). In that case equation (6)
for s = 2 (piecewise linear) yields:

(38) G"u" (@) = B" (2:) + 5" (xs).
where
n—1
(39) St (@) = Y G,y U]
ji=1
with
1
(40) Ut = E('u;_l —2ul + ),
and
Bh(ml) — UZGl(l;Zyn)_UOG ($2y0)+
1
E(U]f — ug)G* (i, yo) —
1
(41) —(upy = ul )G (@i, yn)-
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B"(z;) was computed straightforwardly. S*2(z;) for all z; was computed using the
fast evaluation algorithm explained in section 4 on a sequence of grids with mesh sizes
h, 2h etc. These grids will be referred to as levels and are numbered, starting with the
coarsest grid that will be called level 1, the next finer grid being level 2, etc. For the
present calculations the coarsest grid (level 1) had 8 4+ 1 gridpoints (mesh size 1/4),
the second coarsest 16+ 1, (mesh size 1/8), etc. The finest level, with n+1 gridpoints,
is denoted by k, thus n = 2¥+2. To monitor the accuracy of the fast evaluation vs. the
discretization error we define the error £} as the average absolute difference between
the analytical integral transform and the discrete integral transform obtained on level
k when the multisummation itself is carried out on level r, (r < k):

(42)

SR
(l

1 n
m—— Z (GMu")o (1) — Gu(a:)].
i=0

In particular Ef is the L; norm of the discretization error on grid k. The minimum
objective to be achieved is E} ~ EF for r ~ k/2 such that the multisummation on
level r requires at most O(n) operations.

As explained in section 5, the softening order p and softening width m depend on
the mesh size. First p’ was computed using (32) with { = 2 and ¢; = 0 in (35). Then
p was obtained from:

(43) p = max(round(p’), pmin)

and set to the nearest (larger) even value. Subsequently m was obtained from:

(44) m— { round(1.23(p' — 1 —1)) if p' > Pmin

0 otherwise.

Table 3 and Table 4 give £} obtained in numerical tests with such parameters, for
the case s = 2, i.e. 2"% order discretization. Indeed, the leftmost column giving the
discretization error E,’j confirms its second order. The results in the tables marked by
asterisks denote the cases where gridlevel r, the summation grid, consists of n'/2 41
points. The tables clearly show that with the fast evaluation algorithm as presented,
the integral transform can be computed executing the multisummation on a grid with
O(nl/Q) points at negligable loss of accuracy.

To get a better insight into the error introduced by the fast evaluation at the
various levels we have also monitored the incremental error defined as:

(45) TBL = — 3 S HGM s 1) = (GP )+ ).

For a given k. r this quantity can be explained as the additional error introduced by
the coarsening step from r 4+ 1 to r. Table 5 and Table 6 display this quantity for
the cases presented in Table 3 and Table 4. It shows that the evaluation errors are in
most relevant cases (k < r < k/2), one or several orders of magnitude smaller than
the discretization error.
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TABLE 3
Error nJT Zzzg [(GPrul)FT (2;) — (Gu)(z;)| for the second order (s = 2) model problem.

Ell r=k r=k—1 k—2 k—3 k—4 k—5

2 || 3.921073 3.76 103

3 || 1.0210°° 9.62 10~ % 1.6310~°

4 || 2.5810°% 24910~ % 3.0310% *3.75 10~ %

5 || 6.5110°° 6.3710~° 5.45 10~° 5.85 10~° 8.58 10~°

6 || 1.631077 1.62 1075 1.48 1077 1.92 1077 *2.0910°° 2.34 1072

7 || 41010°° 4.07107° 3.89 10~° 4.26 10~° 4.47107° 4.77 1078

8 || 1.0310°° 1.0210°° 9.98 107 8.13 107 8.19 107 *9.24 107

9 || 2.56107 2.56 10~7 2.53 107 2.2910~7 2.62 107 2.68 107
10 || 6.4110°8 6.41 107% 6.37 1038 6.06 103 6.37 103 6.34 108
11 || 1.6010~® 1.6010~% 1.60 10~ 1.56 10~ 1.25 10~ 1.24 1078
12 || 4 107° 4.00 1079 3.95 109 3.56 109 3.89 1079
13 || =1 1079 9.95 1010 9.46 1010 9.82 1010
14 || ~2.510710 2.43 10710 1.94 10~10
15 || 6 10711 5.56 10~ 11
16 || = 1.5 10711

17 || /4 10712

18 || =1 10712

TABLE 4

[(GPul)F:T (2;) — (Gu)(z;)| for the second order (s = 2) model problem.

k r==k r=k—6 k-7 k-8 k-9 k—10
7 || 4.10107° 5.36 10~

8 || 1.0310°° 1.08 10~° 1.2310°°

9 || 2.56 10=7 278107 3.16 107 3.5110~7
10 || 6.41 1078 *6.46 10~° 6.68 103 7.56 1078 9.21 1078
11 || 1.6010~% 1.28 1078 1.37 1078 1.3910°°F 1.48 1078 2.1110°°
12 || 4 107° 3.91 1079 *3.95 1077 4.15107? 4.21 1079 4.42107°
13 || =1 107° 9.63 1010 9.68 1010 9.77 1010 1.02 1079 1.0810~°
14 || ~ 2.5 10710 1.91 10~10 1.9310710 | ¥ 198 10~10 1.98 10~10 2.01 10710
15 || 6 10711 5.98 10~ 11 5.98 10~ 11 6.00 10~ 1T 6.09 1011 6.10 10~ 1T
16 || = 1.5 10711 1.53 10~ 11 1.49 10~ 11 14910~ 1T | *1.49 10~ 1T 1.52 10~ 1T
17 || =4 10712 2.98 10~ 12 2.98 1012 3.00 10712 3.00 10~ 12
18 [ /1 10712 9.28 10~ 13 9.28 10715 | ¥9.3210°13

As mentioned above, m and p depend on the mesh size. As an example Table 7 gives
the values of p and m used on the different grids k — 1, £k — 2, k — 3 (or in terms
of section 4 grids 2h, 4h, 8h) used to obtain S"2(z;) as part of the computation of
(G"u™)*7(z;), for k = 12 as presented in Table 3 and Table 4. Indeed, on the finest
grid, and several of the coarser grids no corrections are needed at all. For larger & the
number of such grids only increases. This is reflected in the amount of work needed
to obtain the discrete transform, as is illustrated in Table 8 which shows the amount
of work per finest grid point invested to obtain S"?(z;) for all z;, as a function of
the gridlevel k& and the summation grid r. Notice that the leftmost column, & = r
represents the amount of work per gridpoint if $#:2(z;) is computed by a simple multi-
summation on grid level k. As explained in section 5, asymptotically, i.e. for large
enough k. the work per gridpoint should tend to 2p,,in + 1. As ppin = 4 the present
results clearly satisfy this prediction. The total work per grid (h) point invested to
obtain the discrete transform G”u” itself can be obainted from Table 8 by adding the
additional operations needed for the evaluation of B"(x;).
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TABLE 5

15

Incremental error an Z;:g [(GRrul)FT (2;) — (GPhuP)Em 1 (2;)| for the second order (s = 2)

model problem

Incremental error

1

n+1

model problem.

Zzg [(GPul)ET (2;) — (GPul)k:m+1(z4)| for the second order (s = 2)

k r=k—1 k—2 k-3 kE—4 k—5
2 || 4.6410°%

3 6.97 10~° 6.67 10~ %

4 || 1.03107° 5.4110~° *1.3010~%

5 1.4210°° 1.0210°° 8.64 10~° 4.76 10~°

6 || 1.8810°7 1.4210°° 4.4410°° *3.07 109 7.1410°°
7 2.44 10°°% 1.88 107 3.721077 5.93 107 7.69 107
8 || 3.10107? 2.43107% 1.88 107 4.3310°8 *1.97 107
9 || 39210710 | 3.10107° 2.4310°° 3.3110°% 1.2410°°
10 || 4.9310~ 1T | 3.92 10~ 10 3.10107? 3.17107° 3.47107°
11 |[ 6.1810712 | 49310~ 11 3.92 10~ 10 3.10 1077 3.1310°10
12 6.18 10~ 12 4.93 10~ 11 3.92 1010 3.28 1010
13 6.18 10~ 12 4.93 10~ 11 3.63 10~ 1T
14 6.18 10~ 12 4.92 10~ 1T
15 6.18 1012
16

17

18

TABLE 6

k k—6 k—7 k—8 k—9 k—10
7 1.8610~°

8 4.4910°7 3.80 107

9 2.8110°° 123107 1.16 10~7
10 || *3.04 1077 7.69 107? 3.16 10~¢ 4.41 1078
11 8.10 10~ 10 1.77 10~? 2.04107° 3.92 1079 1.40 10~%
12 5.31 10~ 1T | *1.1010~10 4.81 1010 5.44 1010 8.81 1010
13 3.17 10— 11 1.22 10~ 11 3.01 10— 11 1.29 1010 2.69 1010
14 3.49 1012 3.76 10712 | * 7.00 10712 8.00 1012 1.68 1011
15 4.22 10712 2.82 10713 4.45 1013 1.88 1012 2.1310° 12
16 5.02 1013 4.07 10713 5.36 10~ 1% | *1.2010°13 5.06 10~ 13
17 5.17 10~ 1% 2.52 10~ 1% 3.09 10~1% 3.37 101%
18 6.04 10~ 1% 5.57 1071 | *1.09 10~ 1%

TABLE 7

m and p on the different grid levels k — t used in the calculation of (G"u")¥:7 (x) as presented
in Table 3 and Table 4 (k= 12,1 <t < 10).

k—t
11

—
o

wo| w| | ol oo ~1| oo| @
=] =] =
NSNS ESE
=] =
RIS EEEEE
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TABLE 8
Work per gridpoint W invested to obtain S"2 for the second order (s = 2) model problem.

k r=k | k-1 k-2 k—-3]k—4]| k—-5]k—-6|k—7]k—-8]k—=—9] k—10
2 17 9

3 33 13 10

4 65 21 12 *13

5 129 37 14 12 13

6 257 69 22 12 | *12 13

7 513 133 38 16 12 12 13

8 1025 261 70 23 13 | *11 11 12

9 2049 517 134 39 16 11 11 11 11
10 4097 | 1028 262 71 24 13 | *11 11 11 11
11 8193 | 2052 518 135 40 16 11 10 10 10 10
12 || 1.6 10% 1030 263 72 24 13 | *10 10 10 10
13 || 3.2 10% 519 136 41 17 11 10 9 10
14 || 6.4 10% 264 72 24 13 | *10 9 9
15 || 1.3 10° 136 40 16 11 9 9
16 || 2.6 10° 72 24 12 *10 9
17 || 5.2 10° 40 16 10 9
18 1 10° 24 12 *9

As a second model problem we considered (37) with u(y) = (1 —y*), usinga s =4
discretization. Also for this example the integral transform Gu(z) can be computed
analytically, which facilitates a detailed check of the accuracy of the developed fast
evaluation algorithm. As for the previous example the integration, data, and evalua-
tion grids are chosen to coincide. For each point z; equation (6) with s = 4 (piecewise

cubic) yields:

(46)
where:

B"(2;)
(47)
(48) Sh2 ()
(49) StA ()

h
2ug —

R h h

Uy — Juy + 3uy —u
R
n

GMul (i) = B (i) + S () + 8" (w1),

lug — 18uf + 9uly — 2uf)/(6h)
Lujy, — 18upy_y + 9ujy_y — 2u),_5)/(6h)
Suj + duy —uz)/(h?)

n = By 4wy —up_g)/(h?)

)/ (h?)

- 'UZ—S)/(hS):
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TABLE 9

k r=k r=k—1 k—2 k—3 k—4
2 1.1210°% 1.26 103

3| 7.9610°° 1.0310°° 1.5910~°

4 || 5.3310°7 6.00 10— 7 712107 *9.4110~7

5 || 3.4310°% 3.4310°% 3.00 1078 3.3310°% 5.44 10~%
6 2.18 1077 2.17107° 2.03107°7 2.63107° *3.0310°°7
7 |l 1.371071° | 1.36 10~1° | 1.31 10710 1.4310~10 1.52 1010
8 || 85810712 | 855 10~12 | 8.39 10~ 12 7.04 10712 7.18 12712
9 || 5.371071° | 535 10°1% | 5.28 10~ 1% 4.84 1013 5.52 1013
10 || 3.29 1071 | 319107 1% | 3.23 10~ 1% 2.95 1012 3.20 10— 1%
11 ~210°T° 4.18 10~ 10 3.59 10~ 1% 3.05 10~ 1%

TABLE 10

17

Error nl? Z:g (G ul)F:T (2;) — (Gu)(z;)| for the fourth order (s = 4) model problem.

k r==k k—5 k—6 k—7
6 2.18 1077 5.60 107

7 | 1.3710°1° 1.75 1010 2.0410°10

8 || 8.5810°12 | *8.23 1012 11510711 | 1.82 10~ 1T
9 [ 5.3710°13 5.84 1013 6.431071% | 1.0910°12
10 || 3.29 107 1% 3.15 10~ | * 33710~ | 4.271071%
11 ~ 2101 2.66 1010 2.5410°1° | 2.16 10~ 1°

with:
1
(50) U]h’2 = 6—}1(—74;7_2 + 411;7_1 - 6'uJ’7 + 4u;7+1 - 'uJ’?+2),
and
51 O S S W S S
(51) j 53 (Wio2 — duj_y + 6uj —dujy, + Ujya)-

Compared with the previous example to obtain the discrete integral transform G"u",
now two discrete transforms S*%(z;) and S"*(z;) have to be evaluated. To each of
these transforms the algorithm as described in section 4 was applied separately. The
values of m and p on the different coarser grids used in the evaluation process of S
were computed as described above for the s = 2 example. The values of m and p used
in the evaluation process of S®4(z;) were obtained in the same way, but for this case
Pmin Was set to 6, the maximum p was set to 16, and ¢4 = —2 was used.

Table 9 through 14 show the results in the same way as for the second order
example. In Table 9 and Table 10 E7 is given as a function of r and k. The left-
most column of these tables, E,’j, shows the anticipated 4" order convergence of the
discrete transform to the analytical transform. Each time the mesh size is halved
the discretization error decreases by a factor 16. The results marked by an asterisk
indicate the cases were the summation grid r contains n'/2 + 1 points. As for the
previous example for sufficiently dense fine grids the algorithm allows E} ~ E,’j with
level O(n'/?) points on the summation level.

Table 11 and Table 12 give the incremental error IE} as defined by (45). These
tables indicates that the selected m and p for relevant r ensure that the evaluation
error is smaller than the discretization error, although not by an order of magnitude
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TAaBLE 11

k k—1 k—2 k-3 k—4

2 1.15 1072

3 2.68 10~° 5.7210°°

4 || 7601078 1.15 107 *4.78 107

5 || 6.4710710 | 5.4310~° 7.71107° 3.8010°%

6 || 1.75 10711 | 2.04 10710 6.58 10~ 10 [ *1.10107?

7 || 11310712 | 6.21 10712 1.32 1011 2.81 10~ 1T

8 || 3.85 1071 | 1.83 10713 1.55 1012 6.82 10~ 13

9 || 5.57 1071 | 84310~ T° 4.77 10~ 1% 7.48 10~ 1%

10 |[[ 1.31 107 | 5831015 5.32 10~1° 3.31 10715

11 1.31 10 1% 5.34 10— 1° 4.43 1015
TABLE 12

ncremental error —— : u T xy) — u : x; or the fourth order (s = 4
I 1 n.1|.1 Z:g Gh hyk,r Gh hyk,7+1 £ he £ h d

model problem.

k k—5 k—6 k—7
6 4.09 107?

7 7.80 10— 11 8.48 1011

8 || *2.6510°12 1.3410~1T [ 1.18 10~ 1T
9 8.94 10~ 1% 4.02107 1% | 76210713
10 3.66 10~15 | * 74810715 | 2.54 10~ 1%
11 3.0310°1° 2.9510°1° | 2141010

TABLE 13

m and p on the different grid levels k — t used in the calculation of (G?u")¥:" (x) as presented
in Table 9 and Table 10 (k =10,1 < ¢ < 7).

Sh’Q ShA
k—t P m P m
9 4 0 6 0
8 4 0 6 1
7 4 0 10 5
6 4 1 12 9
5 6 2 16 | 12
4 8 5 16 | 16
3 10 7 16 | 21
TABLE 14

Work per gridpoint W invested to obtain S"2 and S™* for the fourth order (s = 4) model
problem.

k r=k |r=k—-1|k—-2 | k-3 | k-4 | k-5 |k—-6| k-7
2 2x17 37

3 2x33 38 46

4 2X65 54 50 * 59

5 2x129 80 48 51 59

6 2X257 144 61 49 * 53 58

7 2x513 268 89 53 49 53 56

8 2x 1025 524 149 62 46 * 46 48 50
9 2x 2049 1036 277 94 53 46 47 48
10 2Xx 4097 2069 530 154 65 46 * 43 43
11 2X 8193 1042 281 94 50 41 40
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as in many of the cases for the s = 2 model problem. As an illustration, Table 13
gives an example of the values of m and p used on the different grids in the evaluation
of S"2(z;) and S"*(x;) as part of the computation of (G*u")*", for k = 10. For
both discrete transforms the tendency towards m = 0 and p = p,n on the finest
grids (where most of the work is invested) is clearly shown.

Finally Table 14 shows the total number of operations per gridpoint used in the
evaluation of the two discrete transforms. Based on work estimate given in section 5
one would expect the work per gridpoint to tend to 2(p2,;, + pt,,) + 2 if p2;, and
pi .. denote the values of ppin used in the evaluation of S"2 and S®* respectively.
For the present results this would give 2 x (44 6) 4+ 2 = 22 operations per gridpoint.
Table 14 shows that the actual work per gridpoint is about twice as large: Indeed,
for such a one dimensional problem. the asymptotic behaviour would clearly show
only on much finer grids; finer in fact than can be calculated with the usual computer
precision.

7. Higher Dimensions. In section 2 for simplicity a one dimensional problem
was addressed. Below the generalization of our approach to higher dimensions is

briefly discussed. For simplicity We assume d = d. Let z and y denote vectors
z = (21,22 ..., 2% and y = (y', 4% ..., y%). In the same way the subscript j is now
a vector j = (jl,j2,.., j9) and y; stands for the vector y; = (y]ll,yfg,...y}id). Let

e® denote the s unit vector, e.g. €' = (1,0,0....,0), e2 = (0,1,0....,0), etc. for
1 < k £ d. The d dimensional domain is subdivided in integration subspaces V; =
{y € ]Rd|yf~ <Y < Yfeyr:1 <k < d} On each of these integration subspaces u;(y)
denotes an interpolation polynomial of order s (degree s — 1) approximating u”. The
contribution of this subspace to the discrete integral transform G"u” is:

(52) Ghu( / Gz, y)a(y)dy*, ..., dy*.

G'(z,y), with { = (11,12, ..., 1%), again stands for a family of kernels defined by

GO(I: y) =Gz, y)

(53) Gl(x.y) = /y G~ (z.y + (n — y*)e")dn,

K

for any k such that [* > 0. Integrating (52) by parts s times with respect to each
dimension yields:

(54) Gju"(x) = Z Z DG &, )@ (g140).

Lvi=0 d=1

where |l| = Zizl I* and |v| = Zizl v*. The discrete integral transform itself is

obtained by summing up over all integration intervals:

(55)  GMu(x Z Z Z — DG (@, gy 40) 00D (g 40).

Lpd=0 1. d=1
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TABLE 15
Estimated Work per gridpoint W needed for the evaluation of all (s/2)d (s even) discrete trans-
forms Shfl(x), given that m = 0 and p™ = " + 2 are used on the finest grid, and the interpolations
and anterpolations, are done in the optimal way: one direction at a time, interpolation with highest
order first, and anterpolation with lowest order first.

s

4 6 8 10 12
20 36 56 80 108
39 103 211 373 601
75 293 793 1743 3348

W N =a
0 G0 0o N

As was done in §2 for d = 1, for a given d, equation (55) can be written as the sum of
a set of boundary terms, and a series of discrete transforms. In general there will be
s? of these transforms. However, depending on the specifics of the relative positions
of the integration grid and the datagrid many cancellations may occur. For example
for s even and datagrid and integration grid uniform and coinciding (as is natural
for s even), all discrete transforms for which one of the {* is odd cancel, except for
contributions from the boundary. Similarly, if s is odd and the datagrid points are
integration-grid midpoints, as is natural for s odd, all terms for which one of the *
is even cancel. In these situations there remain only (s/2)? discrete transforms to be
evaluated for s even, and ((s + 1)/2)¢ for odd s.

A first estimate of the work per gridpoint to be invested for the evaluation of all
discrete transforms can be obtained as follows. The anterpolation from and interpola-
tion to the finest grid can be done one dimension at a time. If the order of tranfer p is
the same for all directions, the interpolation and anterpolation each require (1—274)p
operations per fine grid point. Assuming that for each discrete transform S*/(zx) we
can use m = 0 and some p = p . on the finest grid, one obtains that for even s,
W ~ 2179, 5% operations per fine grid point are needed to evaluate all discrete
transforms. ppn denotes the largest of all pim»n. Since for s even pymin = s+ 2 we
obtain W & 2179(s42)s?. In the same way for s odd one obtains W ~ 2179 (s41)4+1.
Hence, W & 217959+ for sufficiently large s. However, the work needed is actually
smaller. If the anterpolation and interpolation are indeed done one dimension at a
time, different orders of transfer and softening can be used in the different dimen-
sions, e.g. p® for the order of transfer with respect to the «* dimension. The optimal
way then is to interpolate first with respect to the dimension for which p* is largest,
and last with respect to the dimension for which p* is the lowest, and vice versa, to
anterpolate with respect to the dimensions in order of ascending p”, i.e. treating the
lowest order first. Organized in this way the fast evaluation of a discrete transform
Shl(z,y) with I = (11,12, ...,19) can use p* = [* +2 on the finest grid if s is even. The
estimated work per gridpoint needed to obtain all discrete transforms can be com-
puted numerically, e.g. see Table 15 where this optimal work is given as a function of
s and d for s even.

To get the discrete integral transform itself we have to add the boundary terms. In
d dimensions these terms in principle are multisummations over domains of dimension
d— 1. For d = 1 their evaluation has little consequences for the work per gridpoint,
but for general d these evaluations should also be done using a multilevel approach.
However, in many practical cases this can be avoided by adding external points with
u(y) = 0 for y ¢ Q. In that case (11) near the boundary may no longer hold and
locally a larger m and p may be needed. However, the extra work involved will be
small, and the algorithm in principle enables evaluation using a number of operations
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TABLE 16
Work per gridpoint in multilevel solver of equivalent differential problem W = 6sd

s

2 4 6 8 10 12
12 24 36 48 60 72
24 48 72 96 120 144
36 72 108 144 180 216

W N =

per fine grid point that is only a little larger than the work needed for the evaluation
of all discrete transforms S”:(z); see Table 15.

8. Comment on the harmonic kernels. For some special kernels, the integral
transform (1) is equivalent to a differential equation with special boundary conditions.
The most common example is the harmonic kernel, given by:

, —z|*>% ford+#2
(56) Glz.y) = { {zg|y|— z| d:2.¢

where d is the dimension and

d 1/2
ly—a| = [Zw —y“)?] .

For this kernel, the evaluation of (1) is equivalent to solving the Poisson equation
AU = C4qU with so-called “absorbing” boundary conditions. A multigrid solver of
this problem, discretized to s order accuracy, is estimated to cost roughly W = 6sd
operations per gridpoint; see Table 16. From comparing this table with Table 15
it appears that for small s and d the evaluation of the integral transform requires
less work per gridpoint than solving the equivalent differential problem. However,
for larger s and d, solving the problem in its differential form should generally be
preferred.

9. Conclusion. Initiated by the need for local grid refinement techniques in
actual applications, a new algorithm has been developed for the fast evaluation of
integral transforms with asymptotically smooth kernels. This new algorithm does not
depend on the uniformity of the grid for creating a suitably smooth discrete kernel.
Rather, it only relies on the asymptotic smoothness of the continuum kernel as it ap-
pears in the integral transform. Thereby it facilitates local grid refinements. Also, the
evaluations will generally be faster; for a d dimensional problem only O(s%*!) opera-
tions per gridpoint are needed, if s is the order of discretization, and d the dimension
of the problem. This is illustrated by the results obtained for a one dimensional model
problem with logarithmic kernel.
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Appendix A

Let {z;} be the points of a uniform datagrid with meshsize h, and {y;} the points

of a uniform integration grid. Let @” denote the interpolation polynomial of degree

j
s — 1 in the interval [y;, yj4+1], where y; = z; if s is even, and y; = (2; +2j-1)/2if s
odd. The interpolation is done from s datagrid points zj; with s; < k < s2, where
s1 = —s/2 4+ 1 and sy = s/2 for s even, and s = —sy = (1 — 5)/2 for odd s. The

objective is to show that in the cases where it doesn’t vanish, i.e. for s — [ even,
(57) |Uhl| — |~h (1= 1)( J) ﬂ;l(l—l)(yj)l :2(72h)s—1+1|u(8)(yj)|+O(hs—l+2):

with 2 = 0.5.

Below this is shown in three steps. First we prove

(58) a;:(l—l)(yj)_u(l 1)( )+Csl 1}13 +1 (s y)+0 h.g l+2)

(59) a7 (y) = u V() — (<) Coumah® T () + OB TIH).

Finally we show that for practical values of s and [

(60) |Cy 1o |71 S 0.5,

LEmMma 1.
(61) '™V (yy) = D () + Co kT () + O(h 1)
Proof.

From standard numerical analysis, e.g. [11, 14], it is well known that the interpolation
error is given by:

2 u(®)
(62) i) — () = ") T[ - k) = w0

s!
k=s,

P(y)

where £ is a point in the interval [zj4,, zj45,] and 3 is a local normalized coordinate:
= (y—z;)/h. From (62) it follows that

B hs dl—l .
ﬂ;’(l U(y) — a7V (y) = sl dy-1 [U(S)(‘f)P(g)]

-1

(1—1- —
) ; s+1— 1t—t) < l t 1 )hs_tp(t)(g)uw_H)(&)
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where & € [2j4s,; Zj+s,), see [14]. Therefore |& — y| = O(h) and

s—I1+1
(64) @) —u () = S

S.

PUD(G)u (y) + O =2,

Substitution of y = y; then proves (61) with

P(l—l) 7
(65) Csio1 = 7'(%)
s!
where g; = 0 in the case of even s and y; = —% for odd s.
LEMMA 2.

(66) a7V (yy) = u D () = (—1) T Cum b T ) () 4+ O(RT )

Proof.
From Lemma 1, by symmetry (even s) or antisymmetry (odd s) around § = (2j4s, +

zj+52)/2'

Finally we have to show that for practical values of s and {

(67) |Come| =1 L 0.5.

(In principle we had to show (67) only for those cases where |U?’h| does not vanish,
i.e. for s — [ even.) Since C, ;1 can easily be computed, this is simply shown by a
table: see Table 17. We remark that for { < 2 if s is odd, and for [ < 3 if s is even, one
can rigorously prove that |Cy_1
the definition |Cy ;1 =1 = 0.5 for | = s. However, for other cases |C; ;-1
somewhat exceed 0.5, as the table shows.

= < 0.5. Furthermore, for any s, directly from

1
s—i1+41 may

TABLE 17

D .
|Csi—1|5=1FT as a function of s and | — 1.

s
2 3 4 5 6 7 8 9 10
0 040 0 041 0 0.42 0 0.43 0

050 020 044 026 044 030 045 032 045

050 029 0.47 032 047 035 047 0.37
0.50 035 050 037 0.49 039 0.49
0.50 041 053 041 052 042

050 046 0.55 045 0.54

0.50 050 0.57 0.48

0.50 0.54 0.59

0.50 0.58

0.50

|
_

O 00 IO Ok W~ O™
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Appendix B

Below we derive the optimal m and p for the case of the logarithmic kernel G =
In |y — #| from the minimization the incremental work per gridpoint p + 4m, under
the constraint that the incremental evaluation error does not exceed a discretization
error bound. In §2 the discretization error per unit length was given by:

(68) 7" < (rah)* 1)) |G,

with A standing for the mesh size on the finest grid. The incremental evaluation error,
i.e. the error introduced by transferring evaluation from grid H/2 to grid H, per unit
length is given by:

s— H S
(69) ] = ya(72h)* |Gy — IR 2 Gl (],

where Gl (z,y) — ﬂg/QGh(ﬁ, y) stands for the order-p interpolation error made with
the interpolation of Gﬂq from grid H to a point & or a point y, and |G§q — ][g/QGﬂLﬂ
is the average of its absolute value over the integration points y of the H/2 grid, for

any point z. Generally this error is bounded by:

(70) Gy — 177Gy < (3 H)P|GRP).

where |G;(Ip)| is the average of the absolute value of the p!” derivative of G;. Generally,
by (68) and (69), |ef| < |T*]| requires

(71) (32)° "Gy — I Gl < (n)* |G-

First we investigate whether m = 0, i.e. no softening at all, can be achieved for
sufficiently small H and h. If m = 0 and p = [ then G;(Ip) = G'7?, and from (69) and
(68) with H = O(h) it is clear that |7"| and |¢#| are both O(h*)|G]. In particular, for
Y1 &~ Y2 &~ 73 ~ 0.5 and H = 2h one can then show that |e#| ~ 2|7"|. This implies
that using grid 2h in the evaluation of the discrete transform S**! already introduces
an error of the same size as the error that would have been made if the entire integral
transform were discretized on grid 2 to begin with. Obviously therefore p = [ must be
rejected. Next consider any p > [. Due to the singularity in |G'7P(z,y)| o |y — z|"7?
at y = z, we have to distinguish two regions:

(i) |ly—x| < pH/2: The singularity is in the interpolation interval, hence (70) is
useless. However, due to the smallness of this region, its contribution to the integral
will also be small. Indeed, G' = O(|y — z|'log|y — z|) plus a polynomial of degree
lin (y — z). Consequently for p > [ and |y — z| = O(h) we obtain G' — Hg/QGl =
O(h'|log(h)]). Since the size of the region is just O(h), its entire contribution to the
left-hand side of (71) is just O(h|log(h)|), while the right-hand side of (71) is O(1).

(ii) |y—x| > pH/2: The singularity is outside the interpolation interval. In this
case we can use (70), hence the requirement (71) will be satisfied if for every z and y
in this region

(72) (72) " T (s H Y |y — 2|77 < (91) log |y — 2.



26 A. Brandt and C. H. Venner

For |y — «| = O(h) and H = O(h) the left-hand side is O(1) which, for sufficiently
small h, is much smaller than |log(h)|. For |y — @| > h, the left-hand side is o(1)
whereas the right-hand side is O(1).
From (i) and (ii) it is anticipated that m = 0 and any p > [+ 1 can indeed be used
on sufficiently fine grids.

Assuming p > [+ 1 to be satisfied, next consider m > 0, and an arbitrary H > h.
We again distinguish two regions:

(1) ly— x| < mH 4 pH/2. In this region the evaluation error per unit length is

bounded by (70), with G;I(p) attaining its maximum value at |y — | = mH. For the
polynomial given by (14) this maximum is approximately

(73) G (mH) ~ f(p)(mH)' "
with

p—1
(79) 0 = -2~ ()

as can be seen from Tables 1 and 2. Substituting (70), (73) and (74) in (71), and
taking into account that the size of the region is O(mH ) we obtain the requirement

(75) (m/ys)!P*' f(p) < g
where
(76) (Y

9= TH_sZiF1 i+l
73 75 H

Using Euler-Lagrange optimization, assuming equality in (75), and making minor

simplifications such as p’il__ll & 1 one obtains that p + 4m is minimized when:
(77) 8yse!/X = x
with
~(p—1-1)
78 X =
(7 (p—1—=1)+1n(g)

For 73 = 1/2, i.e. central interpolation operators, the solution of (77) is x = 4.9.
Summarizing we obtain that p should be taken the maximum of the lowest non-
negative integer satisfying:

(79) p>—083In(g)+!{+1

and [+ 1, and m the first integer that satisfies:

(80) m>123(p—1-1)
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(ii) |y — z| > mH + pH/2: Here, G = G' so again we need to satisfy (72).
For H = O(h) this is obtained by any p > [+ 1, as explained above. Generally for
p > 1+ 1, (72) will be satisfied for

o o
ly — x| > (7)

For |y—z| = O(1) and H = O(h?) (note that no larger H is needed in the algorithm)
this is obtained by any p > 2l. For |y — 2| = O(H) one can see that (72) will hold

1
except for a subregion of m = (%)"TI points. With H < O(h%) and p sufficiently
large (compared to [), in particular for the p and m as obtained from (i) either
m-+p/2 > m, or m—m—p/2is small, hence the contribution of this sub-region to the
total integral can be shown to be small, at most requiring p to be slightly increased
beyond (79).

The approximations made above are only crude estimates. In fact, there is no
need for very accurate approximations here, as practical limitations, such as m and p
being integers, will prevent us from obtaining the exact optimum anyway. Besides, as
explained in §5, the exact rates at which p and m increase can safely be increased, as
most of the work is anyway spent at the finest levels (with m = 0 and any convenient
p>1+1).



