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Abstract

Fast numerical evaluation of integral transforms on an adaptive grid, i.e. using
local grid refinement, requires an algorithm that relies on smoothness properties only
of the continuum kernel, independent of its discrete form. The basic outline of such
an algorithm was given in [6], where it was shown that already on a uniform grid this
algorithm was more efficient than earlier fast evaluation algorithms [4, 5]. In this
paper we outline its detailed formulation for the actual case of local grid refinements.
Numerical results are presented for a model problem with a singularity. First it is
shown that on a uniform grid this singularity dictates a much deteriorated relation
between work and accuracy in comparison with the regular case (where accuracy is
measured in terms of approximating the continuum transform, of course). Next we
demonstrate that with the presented fast evaluation algorithm on a non-uniform
grid one can restore the regular work to accuracy relation, i.e., obtain the same
efficiency as for the case without a singularity.



1 Introduction

In [6] we presented a new algorithm for the fast evaluation of integral transforms (multi-
integrals) of the type:

Gu(m)z/ﬁG(m,y)u(y)dy, € QcC R (1)

with u a given function, and G(z,y) a given kernel. This kernel G(x,y) is assumed to be
“asymptotically smooth”, i.e smooth at large |y — z|. (For more precise definitions, see
5))

Multilevel algorithms developed earlier for this task [4, 5] relied on the smoothness
properties of the discretized kernel (matrix). Consequently they depended on grid uni-
formity for their efficiency. However, in practical applications, e.g. in contact mechanics
[7. 8, 9], and in lubrication [10, 11], a substantial increase of efficiency may be obtained
by using non-uniform grids, since the solution is smooth in large parts of the domain, and
large gradients will occur only locally. It is only in these latter regions that a fine grid is
really needed. In such cases local grid refinement (grid adaptivity) can significantly reduce
computing times without loss of accuracy. Moreover, if u has some singularity, as indeed
is the case in [7] and for some of the problems discussed in [8], local grid refinements may
even be essential to maintain an efficient work-accuracy relationship.

The multilevel methodology in principle allows such local grid refinements in a very
natural way, e.g. see [1, 2, 3], but to implement these techniques for integral transforms,
a new algorithm for the fast evaluation had to be developed. This new algorithm only
relies on the smoothness of the continuum kernel for its efficiency. It thereby facilitates
the introduction of local refinements, wherever needed. Moreover, it is generally faster
than fast evaluation algorithms developed earlier [4, 5], as was demonstrated in [6] for a
model problem using uniform grids covering the entire domain. In the present report we
outline the formulation of the algorithm and its application to a situation with local grid
refinements.

As in [6], for simplicity we will restrict ourselves in the description to a one dimensional
problem with © = [a,b]. In the examples we will use a problem from contact mechanics
with the kernel G(z,y) = In |z — y|.

2 Composite grids

The discretization, e.g. of the function w, will use a sequence of uniform grids with
meshsizes ho, hy = ho/2,..., hxg = ho/2%. The coarsest meshsize hg is such that (b—a)/ho
is a small integer; hence, we may assume that a discretization of the integral transform
on it would yield a small matrix by which it is easy to multiply.

The grid with meshsize h; will have an origin ay. i.e., it will include points y such that

(y — ax)/hy is an integer. Often a9 = a3 = --- = ax = a, and so it is in all our tests, but



other cases, such as cell centered grids are often of interest.

We say that a certain grid hy (i.e., the grid with meshsize hy) covers a given interval
[a', ] if it includes all the points y € [a’, §'] such that (y — ax)/hy is an integer.

In the case of uniform discretizations, all the grids cover the entire problem domain
[a, b]. The purpose of having several grids that cover the same interval is to use the coarser
of them in multigrid algorithms to obtain a fast multi-integration, i.e. fast evaluation of
the many discrete integrals on the finest of the grids. As explained above, however,
in actual applications the desired (finest) grid may not actually be uniform. We shall
produce such non-uniformity by having some of the finer uniform grids covering not the
entire domain [a, b] but only those parts of the domain where such a refinement is desired.
Those parts will also be covered by coarser grids, for the purpose of multigrid processing.
Thus, generally, each uniform grid h; will cover all those subintervals of 2 where the
desired meshsize is hy or smaller. Denoting the closure of the union of these subintervals
by Pj. it is clear that

0 =Pxky1 CPk C-  CPey1 CPC Py Co-- CPy=la,b].

We denote by P* the set of all grid-h; points i.e., the set of points y € P, such that
(y — ax)/hi is an integer. A patch in P* is any mazimal (i.e., not strictly contained in
another) subsequence in P* with distance h; between its consecutive points, i.e., without
any gaps. Thus, each patch corresponds to one subinterval where the desired meshsize is
hy or smaller, and P* will generally be a union of such patches.

The composite grid Q) is defined as the set of uniform grids

A composite function u'¥) is a function defined on QU):
B = 0t ) (2)
i.e., it is a set of discrete functions where u* is defined on P*, (k =0,1,...,K).
In the special case of a uniform discretization, Py = Q = [a,b] for all k =0,1,.... K.

Often in that case ay = a and hy = (b — a)/(2FNy).

2.1 Data grid, integration grid, and evaluation grid

For the discretization of the integral transform we can distinguish three different grids;
a data grid of points {z;} on which u is given, an integration grid of points {y;} which
subdivides the domain into subintervals for piecewise integration, and an evaluation grid
of points {z;} at which the discrete transform is to be evaluated. In general these three
grids can be different. For example, data points may be midway between integration grid
points.



The above description of a composite grid can be considered as the definition of the
integration composite grid Q). For this grid however we need a; = a. Furthermore, the
end points of each patch of P* must coincide with points of P¥~1. A gridpoint of P* will
be denoted by yf = ay + J hy with 0 < 7 < ng, or when sufficiently clear simply by its
index j.

A similar description will apply to the data composite grid with points z;“, and to the
evaluation composite grid. This latter grid will be denoted by Q) = {P°, pt PK},
Its uniform subgrids P* will each consist of patches, each patch being a sequence of
gridpoints hy apart. A point of P* will be denoted z¥.

For simplicity one can think of the case where the evaluation and integration grids are
identical yf = ajf and P* = P* (k=0,1,...,K). However, even in that case it is still

useful to keep the separate notation, not just for generality but mainly for clarity, since
the grids have different roles in the algorithm.

3 Discretization

A composite (integration) grid as explained in the previous section effectively subdivides
the domain  into a sequence of say n closed integration intervals [y;,y;41], where a =
Yo < Y1 < ... < y, = b, with their length matching the meshsize of the locally finest grid
y;-“H — yf = hy, for ('yf, ny) C Py — Piy1. On the composite grid we define @(y) to be an
s—order polynomial interpolation from the values of u given on the data grid of points
{z:1}. That is, for any k and y € [‘yf,yfﬂ] such that (yf,yfﬂ) C P, — P41 we define

ik (y) = 2:: &y —yb) (3)

where the s coefficients cjt are such that ﬂf(zl) coincides with u(z;) on s of the data grid
points. Note that these s points need not themselves all belong to the interval, but they
must of course be in its neighborhood.

For any x, the contribution of an interval [yf, yf_i_l] C Py — P41 to the discrete integral

transform Gu®)(z) is now defined by:

- yk+1 .
Gju™(e) = /,f Gz, y)ul(y)dy. (4)
y.]
The local discretization error per unit length of integration, caused by the average
interpolation error is bounded by:

7] = (3h)*|ut|G ()

where h is a local bound on the datagrid meshsize, |u(*)| the maximum of the s derivative
of u in the interval used by the interpolation, and |G| the average of |G(xz,y)| over the



integration interval. v; & 0.5 if the length of the integration interval is also bounded by
h, and the s interpolation points are suitably chosen on both its sides.
Let G*(z,y) denote as in [6] the family of kernels defined by:

GO(z.y) = G(z,y)

Gl(a.y) = [ G m)dy. (6)

For example, for G(z,y) = In|y — z|:

1 |
Gl(w.y) = v =)y —al =3 5). (7)
! =
Integrating (4) by parts s times using (6) one obtains:
Gryu™() = (=117 V)G ) = 13 i) G e yfi). - (8)
=1 =1

Lk (l-1
where uj’( )

denotes the [ — 1 derivative of &f
Subsequently Gu®)(z) approximating Gu(z) is obtained by summing up over all inte-
gration intervals. Let P? denote the finest grid for which y§ = a € P,, and let P? be the

finest grid for which yZ_ = b € F;. By (3) and (8) we then obtain:

Gu(K)(I) — B(K)(m) + Z(—I)ZS(K)’Z(m), (9)
=1
where
B(K,)(Jj) _ Z(—l)l [ﬂg’(l_l)(a)Gl(x, Cl) - &;];q(l_—ll)(b)Gl(x b)] s (10)
=1
and
. K kyl
SEN() =3 3 Gl by UE, (11)
k=0 jc Pk
with
ki 0 fornyGOI’yf:b ‘
Uj _{ Af’l — B]’-“’l otherwise, (12)

7



where

AR — ’ﬂf’(l_l)('yf) if (yF. y¥+ ki) C€ Pe — Pop 13
j - (13)
0 otherwise,
I 0 otherwise.

In the case of a uniform discretization U]lk = 0 for all ¥ < K. hence in that case the
double summation in (11) reduces to a summation over PX as in [6], and the coarser
grids will only play a role in the fast evaluation; see Sec. 2.

Depending on the choice of the integration grid intervals relative to the datagrid inter-
vals there will be cancellations. i.e. Uf"l = 0 for some [, for nearly all points yf € Pk_ pkt1,
This for example holds for [ = 1 if the integration grid intervals coincide with the intervals
of the datagrid: cancellations occur (as explained in [6] for uniform grids) at all points
except for the internal boundaries (endpoints of the patches). Such cancellations also
occur for any s even and [ odd if the integration grid and datagrid coincide (as is natural
for s even), and for s odd and [ even if the data gridpoints are midpoints of the integration
grid (as is natural for s odd).

At interior points of P¥ — P*+1 where (12) does not vanish we have:

U] = 2092h)=H u(y)] + O(hE+2), (15)

with 72 ~ 0.5 due to the grid uniformity in such regions. This is no longer true for
internal boundary points. However, the total factor multiplying G(x,y) at such a point
(with nearly cancelling contributions from the two neighbouring patches) is still smaller
than the right hand side of (15), with v, = O(1) but possibly 72 > 1.

As noted in Sec. 2 we have to evaluate (9) for all points {x;} of a non-uniform evaluation
grid, i.e. for all z¥ € P* — P*¥*! of the composite evaluation grid. From a computational
point of view the main task then is the evaluation of the discrete subtransforms, i.e. (11),
for which the aforementioned cancellations do not occur. Restricting ourselves to a single
transform, the algorithm for the fast evaluation of such a transform is outlined in the
following sections.

4 Kernel softening

For the purpose of fast evaluation we will rewrite a given discrete transform into a softened
transform, i.e. the same discrete transform but with a softened kernel, and a correction.
This softened kernel is designed such that the softened transform can accurately be ob-
tained using coarser grids, and that the correction is a quantity that can be obtained by
local operations only. This procedure of kernel softening is described in [6], but for the
sake of completeness we briefly repeat it here.



We assume that the kernel G(x,y) is asymptotically smooth. By this we mean that
G/(z,y) is increasingly smooth for larger |y — x|, in such a way that for any given “allowed
error” € > 0 there exist nonnegative integers m and p for which a “softened kernel”
Gu(z,y) can be defined at any “softening scale” H > 0 with the properties:

(2) Locality of softening: Gy(x.y) = G(x,y) for |y — x| > mH.

(i1) Gu(x,y) is suitably smooth on the scale H. By this it is meant that, both as a
function of z for any fixed y and as a function of y for any fixed z, Gy (z,y) can
be approximated up to an error smaller than ¢ by a p-order interpolation from its
values on any uniform grid with meshsize H (or smaller). This translates into the
requirement that

(s H )P |G (. y)] < O(e)

for any (x,y), where Gg)(:c, y) stands for any p-order derivative of G with respect
to either = or y, and 73 is a constant depending on the interpolation geometry.,
~v3 = 1/2 for the usual central interpolations.

With the exception of oscillatory kernels treated in [2]., most kernels arising in physics
are smooth in a way that a “softening” satisfying (i) and (ii) can easily be provided with
m and p rising only slowly for decreasing ¢; e.g. for the family of kernels G'(z,y) defined
by (7) softened kernels with m = O(In 1) and p = O(In 1) are described in [6].

Let G (z,y) denote the softened kernel of G'(z,y) on the scale hz. By (ii), for any
y € Pp, the value of G (z,y) can be interpolated from the grid values G} (z,y%). In

particular, for any y]];‘"1 of grid PL*! there are interpolation weights 'wfj such that
1 L L ol L
GL(-T:‘!/]' +1) = Z ijGL(I:yJ) + O(e¢) (16)
JeplL

for all . The summation actually only extends over just p terms (e.g. the terms for which

|yf‘H — yk%| < phy/2 if even p and central interpolation are used). In the same way for
any point zF*! € PL*! there are interpolation weights wk such that
Grleity) = Y wiGr(er.y) + O(e). (17)
IePL

For smallest errors these p—order interpolations should preferably be central. Near
the boundaries (of the domain) non-central interpolations can be used such that all inter-
polation points are within the domain. However, usually G(z,y) is well defined beyond
the boundaries, and central interpolations can be used throughout. Note however that
to facilitate central interpolation, some patches should sometimes be slightly extended
to ensure that every point of PX*! (PL+1) is interior to a patch of PE (PL) and is at a
distance at least phr /2 from the patch endpoints.



5 Softened transform

We define the softened transform S](:K)’l by:

K-1
A)l ZZGL;vy] U“ Z ZGL;vy] U“—I— ZGL U]I” (18)
k=0 jepk k=0 jepk JEPK

By definition G} (z,y) is smooth with respect to y on scale hz. So for L < K, up to O(e):

K-1

PSP SCTENTT AN S SRR SICTEN i

k=0 jePk jeEPK JepK-1

By changing the order of ¥ cpx and X cpr-1 in the last double summation we obtain

) K-1 . -
SEM@) = Y X Gl Ul + Y Gilayl ) X el U,
k=0 jEPk JGPK—l jEPK

which can be rewritten as

K-2
(o)= 3 3 GilayhUf + 3 Gileyf O, (19)
k=0 ]EPk JGPI&'—l

where for any k < K and J € P* we recursively define

Skl gkl b oprkL .
Uy =U5"+ >, wiU;m, (20)
jepk+1
and U]I‘l = U]-K"l.

Notice that (19) is of the same form as (18). Therefore, if hx_1 < hy the procedure
of splitting off the top level and replacing its summation by a coarse grid summation can
be repeated. In fact it can be repeated as long as the meshsize of the finest grid in the
summation is smaller than hy. As a result, up to O(e) error:

L-1
=33 Gh(a.yf)UF + Y Gh(a gy UM, (21)

k=0 jepk jeprL

for any . This will serve as the composite grid approximation to (18). To evaluate
S,(:K)’l(:l:) fast for all 2 € PL notice that:

L-1

SEM@) =3 Y Gl yHU + Y Gio(ey)UP + MEL (2), (22)

k=0 jepk JEPL

10



where

Mf ll Z Z Gl $ y] Gl[/_l(!f:y‘?))U]k-,l (23)
k=0 jep*
+ Y (Ghleyh) — Gy (e gt U,
jepPL

By (16) with L — 1 instead of L, i.e. using the smoothness of G} _,(z,y) with respect to
y (on the scale hy_1), up to O(e ) error

L—2
= Z Z Gi:—l(fl/’:yf)Uf’l‘F Z GZL—I('Ity] )UL 1l‘|‘]w/: 1z ) (24)

k=0 jEPk jepL—l

Using (17) with L — 1 instead of L, i.e., using the smoothness with respect to « (on the
scale hy_1) of G% _,(z,y) in (24), we obtain for any z* € P~,

Sl = 30 @ s @) + M (eF) + O(e), (25)

IepL-1

where S](:If)l’l is the expression given in (21) (L — 1 replacing L).

Thus, for all zF € P we can obtain SLK (zF) by mterpolatmg SL 1( L) from the
coarser grid P~! followed by the addition of a local correction, ML 1( L. Notice that
both operations are local. For the interpolation this is obvious, i.e. the summation over
I € PL=1 extends over p terms only. However, also Mf_ll(xf) can be obtained by a small
amount of work, since in (23) all terms j for which |y§C — a2k > mhr_; are zero by the
definition of the softened kernel.

This procedure can of course be repeated recursively until a grid is reached where
straightforward evaluation using (21) can be done cheaply.

At this point it should be noted that the equations presented in this section are a
natural extension of those given in [6]. Indeed, for a uniform discretization Uf"l = 0 for
all k < K. and as a result the first terms in the right hand sides of equations (18), (19)
through (24) vanish.

6 Fast evaluation

For all points of the evaluation grid we will calculate the transforms in (9) by writing

SEM (Ghy = U by 4 MU el vl e PE— P (0 < L < K), (26)

k3

with S](:K)’l for any L < K defined by (25), and

11



MUy = Z S (Gl ayh) — G (2, yh) U (27)

k=0 jEPk

Thus the evaluation of the original multi-summation is replaced by the evaluation of a
softened transform followed by a correction. This correction, M}JK)’I(m{‘), can be obtained
by local operations since, by the definition of the softened kernel, it involves only those
terms j for which |zt — yf| < mhy, and since it needs to be evaluated only for zt €
PE — PL*L Therefore, by (25) and (23) the evaluation of (26) can be done using local
operations only.

We now introduce the following algorithm for the fast evaluation of (26) on a composite

grid (K):

(I) VL < K and = € PL evaluate S]g{)’l(ac)

This task is performed by the following recursive algorithm:

(i) Anterpolation from PX to PX=1: calculate 0].1(_1’1 for all y]I.(_1 € PE-1 by (20).
(ii) Coarse grid evaluation:

VL < K —1 and z € P! evaluate S](:K)’I(J:).
(iii) Interpolation from grid PX=' to grid P¥ to obtain S}f_)ll(r) for all z € PX.
(iv) Grid PX correction:

Vz € P add ME',(z) as defined by (23) to obtain S}g{)’l(:ﬂ).

Step (¢i2) and (iv) together are described by (25) above (K replacing L) Notice the
recursion involved in step (ii): It can be done using the same algorithm (I) but with
L < K—1instead of L < K. This recursion can be repeated until a (coarse) grid L is
reached where (ii) can be performed more cheaply by straightforward evaluation(s).

(II) VL < K and = € PL — PL+! evaluate S®)(z) by computing MIEK)’l(x) as defined
by (27) and adding it to S,(:K)’l(mf).

For a uniform discretization this algorithm reduces to the one described in [6]. Indeed,
in that case PX*!'— PL = ) for L < K, hence the corrections in (II) need only be computed
for L = K, and can then be combined with the corrections of step (iv) for L = K into a

single correction Mf(gi)l’l(:ﬂ) :

12



7 Parameter optimization

The values of the parameters p and m on a given grid h; are determined in the same
way as in [6] for a uniform grid, i.e. by minimizing the computational work under the
constraint that the incremental evaluation error is smaller than an estimate for the original
fine-grid discretization error.

For any x the discretization error per unit length of integration, see Sec. 3. is bounded

by:

7 < (nah)*[u] G, (28)

Due to (15) and (16), the incremental evaluation error resulting from the transfer of (part
of) an evaluation from grid hz41 to grid Ay (0 < L < K — 1), e.g. the error that results
from replacing (22) by (24), per unit length, is given by:

S— h 1 S [
] = 72(q2h)* |G — L G| |u®), (29)

where G (z,y) — ][}};LL“GE(J:, y) stands for the order p interpolation error made with the
interpolation of G, from grid ky, to a point z or a point y of grid Az, and |GY —ﬂ:LL“GH
is the average of its absolute value over the integration points y. Generally this error is

bounded by

|G — I GY| < (k)| G, (30)

where |G2(p)| stands for the average of the absolute value of the p'* derivative of G, and

~v3 depends on the geometry of the interpolation, i.e., v3 = 1/2 for central interpolation.
Generally, by (28), (29) |et| < |7"| requires:

(72)° RN GY — I G| < (n)® |G, (31)

Under this constraint we want to minimize the incremental work per grid hryy point
W = O(p +4m) related to transferring (part of) an evaluation from grid hz4q to grid hy.
This work estimate was obtained as follows. Taking an operation to mean a combination
of one multiplication and one addition, the number of operations in the computation of
ULl on grid hy is p/2 per grid hy4q point (since d = 1, for half of the values the transfer
is trivial). Similarly p/2 operations per grid hz4; point are used to interpolate S](:K)’l from
grid hz to grid hyyq. Finally the corrections are added which involve summations over
roughly 4m grid hyyq, points.

Due to the use of integrated kernels it will usually be possible to employ m = 0 and
a certain minimal p (derived from (31) and depending only on [) for several of the finest
coarsening hy, ( provided the basic meshsize h is sufficiently small). At large hy, (i.e., after
several coarsening stages), m and p will start to rise, reaching finally the typical size (e.g.

O(In 1)).

13



For the case G = In |y — 2| this optimization, see [6] yielded that p should be taken the
maximum of the first non-negative integer satistying

p>—083In(g)+1+ 1, (32)
and [ 4 1. and m the first integer satistying

m>123(p—1-1), (33)

where r
gi .
= Gl. 34
I hlL“' | (34

From (34) it can be seen that:

In(g) =¢ + 1 In(h) — (I +1)In(hr), (35)

with ¢; some constant depending on the geometry of the interpolation. order of discretiza-
tion, and [. From (32), (33), and (35) it follows that, for a given finest grid mesh size h,
m and p will increase logarithmically with increasing coarse grid mesh size. On the other
hand, with decreasing hz, both m and p decrease. and for hy = h they reach the limits
m=0and p>1[+1.

For the case of a uniform finest grid (32) and (33) can simply be used with h being
the finest grid mesh size. However, in the case of a composite grid h is a local quantity.
For simplity of implementation p and m should be constant on a given coarse grid. We
therefore propose the use of Eq. (35) with h = hg, the mesh size of the finest mesh,
i.e. we determine p and m by the accuracy needed in the interpolation to the finest grid
patches present. For additional considerations see Sec. 11.1.

8 Mesh optimization

In [1, 2, 3] a framework of multigrid techniques for the solution of singular partial differen-
tial problems by adaptable discretization is presented. The same analysis and techniques
can be applied to the evaluation of an integral transform in the case of a singularity in u.
The relevant theory is extensively explained in [1].

In general the choice of discretization parameters should be guided by the objective to
minimize the work invested to obtain a given accuracy, or, in other words, minimizing the
error obtained in a given amount of (computational) work. In principle one can optimize
both the order of approximation and the meshsize. However, here we’ll restrict ourselves
to meshsize adaptation.

The work invested to obtain the integral transform is roughly given by

w
I/I/ = —d’ .
/Q pa Y (36)

14



where d is the dimension of the problem’s domain, e.g. d = 1 for the problem considered
here, h = h(y) is the meshsize of the integration grid, and w is the work per gridpoint.
More precisely, w is the sum of the anterpolation (step (i) in Sec. 6) work per integra-
tion gridpoint and the interpolation (step (iii)) and correction (step (iv) and (II)) per
evaluation grid point. (We assume here the same meshsize distribution h = h(z) = h(y)
for both the integration and evaluation grids.) Since the work of anterpolation and of
interpolation per gridpoint is proportional to the interpolation order p. and the correction
work per gridpoint is proportional to the softening parameter m, we have w = wym + wyp
with constant w; and ws,.
For any x the discretization error in the discrete integral transform can be given by:

E= /Qf(y)dy (37)

with 7 from (5). The value of |G| in (5) depends on z, the evaluation point of interest.
However, assuming we are equally interested in accuracy at all evaluation points, |G| in
(5) may be considered to be just a constant, which can be absorbed into the error unit,
hence, omitted. The Euler differential equation for optimizing A by minimizing £ under

fixed W (or minimizing W under fixed F) is:

or ow

on(y) T ahty) (38)

or, by (36) and (37)
ar

— = Awh™ 39

Oh ’ (39)
where A is a constant independent of y expressing the marginal rate of exchanging optimal
accuracy for work, i.e. A = —dFE,,;,/dW. Referred to as the exchange rate, it will serve

as the chief control parameter specifying the cost at which additional accuracy can be

afforded.

9 Model problem: Singularity in u(y)

As a model problem we take the evaluation of

1
Gu(z) = /_1 u(y)In |z —y|dy (40)
with
1 - (i)2 for ‘i‘ <1
uly) = %) for fa] < (1)
0 otherwise,

15



For a given ry < 1.

The problem is symmetric, i.e. there are two singularities, at y = £rg. Because they
have the same (polluting) effect on the solution they need not be discussed separately. In
the following we will therefore just consider the singularity at y = —rg. Let r denote the
distance from this singularity for points —rg <y < 0;i.e. r = y+ro. From (41) it follows
that

W] = O(r77*). (42)

Consequently, if the integral transform is computed using a uniform integration grid
(without local refinement), it follows from (5) that:

E~ /R° 7(r)dr = O(h* + h3/?) (43)
O(h)

with Ry = O(1). From (36) with d = 1 it follows that W = O(1/h), hence, F =
O(W=2 4+ W~2/2), For s > 2 this behaviour is much worse than the regular behaviour (if
|u®(y)| is bounded) where £ = O(h*) = O(W~*). The objective now is to introduce local
refinements (around the singularities at y = +rg) in such a way that the regular relation
between W and E, where a higher order discretization yields a more accurate solution for
the same work, is restored.

For the local discretization error given by (5), Eq. (39) gives:

h = O(\FTraean), (44)

As we are only interested in a relatively crude approximation for now we neglect depen-
dance of m and p on z (see Sec. 11.1). With the non-uniform meshsize (44) we then

obtain from (36)

R | .
% N/O g = 00, (45)
and from (37)
Ry .
E~ / rdr = O(\51), (46)
0

hence, by choosing a refinement pattern according to (44) we anticipate to restore W =
O(E~*), as in the regular case.

Eq. (44) will be used to determine the gross refinement pattern around the singularities
at y = +ro. However, instead of creating a non-uniform grid by using (44) to determine
the local meshsize, (44) will be used inversely, i.e. to determine the distance r from
the singularity (in the direction of the origin y = 0) to which a patch of grid P* with

2(s+1) 2

meshsize h = hy, should extend, namely r(h) = O(h™2=T A”2%-T). The size of the patch on
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the other side of the singularity is trivial: only the s/2 points needed for the definition of
the interpolation polynomial @(y).

For any fixed A, Eq. (44) then fully defines a composite grid. Note that the maximum
number of grids (K) thus created is always finite (natural stopping): r(h) = 0(h?) with
B > 1, hence, for sufficiently small & the radius to which this grid should extend will be
smaller than hj, which means that the grid is empty.

10 Numerical tests

Below we present results of numerical tests for the model problem. To demonstrate the
need for local grid refinement we first present results obtained using a uniform discretiza-
tion. Subsequently in Sec. 10.2 the mesh refinement required to restore the optimal
work-accuracy efficiency is tested.

10.1 Uniform grids

The integration grid, datagrid. and evaluation grid were chosen to be the same uniform
grid with meshsize h. For s = 2, i.e. discretization using a piecewise linear polynomial,
Eq. (9) reduces to:

Ghul(x;) = B () + S (xy), (47)
where
o1
SH (i) = Y G (wi g U (48)
=1
with
Uit = %(u?_l — 2uf 4 ufyy), (49)
and

Bh(aji) = uZGl(aji,yn) — ugGl(xi,yo) +
Loy,

(k= ub) G2 (2 o) -

To get a clear picture of the discretization error, the discrete transform (48) has been
computed by simple summation. We will present results for a sequence of grids with
meshsizes H, H/2, etc. These grids are numbered, starting with the coarsest grid that
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will be called level 0, the next finer grid being level 1, etc. The number of gridpoints on
grid k is n = ok+3 4 1, i.e. its meshsize is h;, = k=2
To monitor the discretization error we calculated:

B = %Z (Greul () — Gua)|. (51)
i=1

Table 1 shows E" as a function of the grid level k for three values of ry, i.e. ro = 1

(singularity at the boundary), ro = 0.5 (singularity at an interior gridpoint), and ro = 0.6

(singularity at an arbitrary location, not coinciding with a gridpoint).

For a given rq the ratio between the values of £ obtained for k and k+ 1 shows the rate
of convergence to the exact continuum solution with decreasing meshsize. If the second
derivative of u were bounded. this ratio would be 22 = 4. However, as can be verified from
the table, for the present problem we only obtain a factor of about 2.8, which confirms
the analysis presented in Sec. 9 where a factor 23/2 = 2.83 is predicted.

With an (additional) evaluation error that is small compared to this discretization
error, the discrete integrals can be computed using the fast evaluation algorithm outlined
in [3]. In that case the total work per gridpoint would tend to 2p 4+ 1 where, for the
present problem and for second order discretization, p = 4, and the total work to obtain
all integrals (on the uniform grid) is W = O(1/h).

So, each time the grid is refined (uniformly) the computational work increases by a
factor of 2 and the error decreases by a factor of 2v/2. Thus, as predicted in Sec. 9, we
have £ o W~2/? instead of the regular relation £ oc W2,

10.2 Local refinement

We again use s = 2, i.e. on the non-uniform grid too u(y) is approximated by a piecewise
linear function. The coarsest grid, denoted by level 0 will extend over the entire domain
[—1,1] with meshsize hg = 1/4, i.e. it has (8 + 1) points. Subsequent finer grids with
meshsizes h* = 27%h; are created using the control parameter X in the following way. For
a given A the distance from the singularity to which the local patch with meshsize hy
should extend is given by:

2(s+1

Ry = A7 p, 2 (52)
with the requirement that Ry > 2h;_;. For s = 2 we obtain:

Ry = \72h2 (53)

where A = \'/3,

If Ry > ro then grid Py consists of a single patch extending over [max(—1.0, —rg —
s hy/2), min(ro + s hi/2,1.0)]. Otherwise grid P* consists of two grid patches. The
first patch covering [max(—1, —r¢g — s hx/2), —ro + Ri]. and the second, its mirror image,
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covering [ro — R, min(rg + s hx/2,1)]. The boundaries of the patches will be rounded in
such a way that they coincide with points of the next coarser grid P*~!. For any given A
we thus obtain a composite grid. The maximum number of grids is always limited by the
natural stopping explained in Sec. 9, i.e. K is the largest integer k satisfying Ry > 2hy_1,

or.
ln(h?o)
k< 22 54
~ In(2) (54)
~ We present the results for a sequence of A values Ao > Ay > Ay > ---. chosen by
Ai = Ai—1/2. To monitor the error we define
4 1 & .
EE) = NZ |Gu(z;) — G ()] (55)
=1

where the summation is done over all points {z;} of the non-uniform evaluation grid, i.e.
over the points zf € P* — P! for every 0 < k < K.

In Tables 2. 3, and 4 the results are presented for 1o = 0, rq = 0.5 and ro = 0.6,
respectively. Three columns contain data related to the composite grid that is created,
i.e. the number of gridlevels K, the index K of the finest grid that still consists of only
one patch, and the total number N of gridpoints =¥ € P* — P*1 (0 < k < K). The
next column of each of the tables gives E5) as obtained by straightforward evaluation
of the transform on the non-uniform grid, i.e. evaluation of (11) by straightforward
summation, using O(N) operations per gridpoint. Then this column displays the L,

norm of the discretization error on the non-uniform grid. For all three values of rq the
2

results confirm the analysis of Sec. 9: With s = 2 we should have E() = O(A5) = O(\?)
and N = O()\_lg) = O(\7!). Thus, each time we halve A the number of nodes N should
increase by a factor of 2, and the average error should decrease by a factor 4, as indeed
the results clearly show.

The next columns of Table 2, 3 and 4 display results obtained when the evaluation of
(11) is replaced by the evaluation of (26) as described in Sec. 6. The following data is
presented: The error £, the direct evaluation grid K, i.e. the value of L for which
step (ii) of part (I) of the fast evaluation algorithm is performed using direct evaluation,
and the average number of operations per gridpoint invested to obtain the result. For a
given composite grid (K') the values of the parameters p and m to be used on each of the
grids hy, (0 < k < K) were obtained from (32) and (33) with [ =2, ¢, =0, and p < 20.

The error E5) of the fast evaluation turns out to be practically the same as in the direct
evaluation. This means that the error introduced by the fast evaluation is substantially
smaller than the discretization error (and even much more so when A gets smaller, i.e.
when better accuracy is sought).

The fast evaluation work per gridpoint (W/N) can be seen in the tables to increase
logarithmically as function of the accuracy (1/E®)). This follows directly from the choice
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of h = hg in using (32) and (33). For the case of a uniform grid with meshsize h we
obtained m = 0 and p = pin > [+ 1 on the finest grids. As a result the total work per
gridpoint tends to a small constant number, see [6]. In the present case of local refinement
the work to obtain the integral transform is not the same for each gridpoint, i.e. it is
wip+wem but with m and p depending on hx and x (the locally finest (evaluation) grid).
For sufficiently small A substituting h = hx and H = hy in (34) results in m = 0 and
P = Pmin on several of the finest patches and. indeed, we obtain the integral transform
for these points in the same small amount of work as for a uniform grid. However, for a
given A (and thereby given K), we have m = O(In(1/h)) on a number of coarser grids.
Some of these grids may just be auxilliary. i.e. only serve for fast evaluation purposes, but
generally they may contain evaluation points. i.e. cover part of the domain not covered
by the next finer grid. In that case it will be the cost of the evaluation on these grids that
determines the average work per gridpoint.

Let’s for example consider the work per gridpoint invested to obtain the integral trans-
form in the points of the level Ky, i.e. the evaluation points z; € PKo — PKotl = [et
Ny denote the number of evaluation points on this grid level. One can show straightfor-
wardly that the ratio Ng/N does not depend on A. Now, from Table 2, 3, and 4 it can
be seen that each time A decreases by a factor of 2, K increases by 2 and K; increases
by 1. So hx decreases faster than hg,. Thus p and m used on Ky are proportional to
O(In(1/hx)) = O(In(1/X)), see Table 5. Therefore, the work per gridpoint to obtain the
integral transform on PKo — PEotl s (;p 4 wom) = O(In(1/X)). With Ny/N constant,
the overall average work per gridpoint must also be O(In(1/))).

Summarizing, with the fast evaluation algorithm as presented here we obtain for the
model problem:

E = O()\?) = O(A7) (56)

and

W =0\ 1In(1/X)) = O(A~7 In(1/A)) (57)

where the factor In(1/)) results from the dependence of m and p on the meshsize, i.e. the
local meshsize on the evaluation grid, that was neglected in our original estimate (36).
Thus, with the non-uniform grid and the fast evaluation algorithm we have restored the
regular situation, where the accuracy of the discrete integral transform follows from the
(second) order of the discretization error, rather than depending on the singularity in
u. Also for s = 2 we showed that, up to a factor In(W), the algorithm has the regular
work-accuracy relation £ ~ W~* (see Sec. 11.1).
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11 Advanced insights

11.1 Spatially varying m and p.

To obtain the numerical results presented in Sec. 10.2, for a given A the values of m
and p used on a coarser grid h; depend only on hji, not on z. They are determined by
the accuracy needed in the interpolation to the finest grid patches present. In fact, the
discretization is adaptive, but the fast evaluation process is not. It can be made adaptive
too in the following way. On a given grid hy a high accuracy is in fact only needed in
the region from which these grid hx patches, via the intermediate grids. actually receive
values. In regions further away, e.g. in regions were the locally finest patch is much coarser
than hg., this may not be necessary. One should therefore be able to further increase the
efficiency of the algorithm by introducing m = m(x) and p = p(z). This option would
give the full work-to-accuracy relation £ = O(W~*). Practically, however, it does not
seem advisable to use this option, since it very substantially complicates the algorithm,
for quite a marginal gain. The current, simpler algorithm yields only £ = O(W~° In(W)),
but it will both be simpler and more profitable to improve this relation by increasing s,
rather than using spatially varying m and p.

11.2 Refinement strategy

In the model problem considered here the behavior of u near the singularity is known a
priori, and thus can be used to create the required local refinement. However, in general
this may not be the case, e.g. when the evaluation is part of solving for v an integral or
integro-differential equation containing Gu(z). In that case the relative local truncation
error 72" (the defect correction of the approximate solution on the current grid A to similar
discrete equations on a coarser grid 2h; see [1] or [3]) should be used instead of 7 in (39) for
controlling the refinement. (The values of 77" are anyway calculated in multigrid solvers
of the equations.)

This refinement strategy is even more natural if our purpose is indeed the solution of
u. The composite grids created by our sequence of A values would then each serve to
obtain a first approximation for the solution process on the next composite grid. This is

the so-called A\ FMG algorithm; see [1, 3].

12 Conclusion

In [6] we presented a new algorithm for the fast evaluation of integral transforms. The
novelty of the algorithm was that for its efficiency it only relied on the smoothnes of
the kernel. Thereby it facilitates local grid refinement wherever needed. This has been
demonstrated in the present paper. First we have presented the formulation of the al-
gorithm for the case of adaptive grids or local refinement. The non-uniform resolution
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is effected in the natural way characteristic for multilevel algorithms, i.e. by means of
uniform finer grids extending over smaller and smaller parts of the domain.

Subsequently numerical results were presented for a problem from contact mechanics
where u(y) has a singularity. When evaluated on a uniform grid the accuracy of the result
is dictated by the singularity instead of by the order of discretization. unlike regular case
(when the derivatives of u are bounded). To restore the regular relation between work and
accuracy local grid refinement is needed. It was explained how the required refinement
can be derived. Subsequently we demonstrated that with the presented fast evaluation
algorithm on a non-uniform grid one can essentially restore the regular behavior, i.e.
obtain the integral transform with a work to accuracy efficiency as for the case without a
singularity.
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T():l

g = 0.5

To = 0.6

3.876 1072

8.164 1072

2.327 1072

1.272 1072

3.073 1072

1.008 10~2

4.084 1072

1.116 1072

1.357 107

1.318 1072

3.991 1072

1.204 1073

4.318 1074

1.416 10~

4.616 1074

1.440 1074

5.012 10~*

1.583 10~*

4.877 1077

1.771 1074

1.667 10~°

1.672 10~°

6.259 1077

2.021 107

5.786 107°

2.211 107°

7.533 107°

QO[O0 || U =W N — O &

2.016 107°

7.813 107°

2.426 107°

Table 1: L; norm of the discretization error E" as a function of the grid level (meshsize)
for a uniform discretization (s = 2).

grid data Simple evaluation Fast Evaluation
A K | Kq N EX) EX) s | W/N
273 20 1 21 6.766 1072 7.221 1073 0 20
274 41 2 45 1.311 1073 2.057 1073 1 29
P 6| 3 93 2.740 1074 5.867 1071 2 36
276 8| 4 189 6.106 10~° 1.027 1074 2 45
277 10 5 381 1.426 107° 2.171 107 3 52
278 12| 6 765 3.435 107° 5.620 107° 3 60
279 14| 7 1533 8.419 107 1.134 107° 3 70
2710016 | 8 3069 2.083 1077 2.651 1077 3 75
27118 9 6141 5.181 1078 6.796 10® 3 84
271020 | 10 | 12285 1.292 107® 1.517 107® 4 93
27130122 1 11 | 24573 3.226 107 3.671 107 4 101
271024 1 12 | 49149 8.053 10710 9.372 1071 4 107
2715026 | 13| 98301 2.395 10710 4 116
2716128 | 14 | 196605 6.013 10~ 4 125

Table 2: Non uniform grid results for ro = 1.0 as a function of the control parameter

A=\ (s =2).
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grid data Simple evaluation Fast Evaluation
A K | K N EE) EE) Ks | W/N
273 20 1 17 1.596 10~2 2.356 1072 0 18
274 41 2 33 3.167 1072 4.369 1073 1 31
272 6| 3 65 6.637 10~ 9.812 10~* 2 44
276 8| 4 129 1.476 1071 1.955 10~* 3 56
277 110 5 257 3.439 1075 4.192 1073 3 60
278 112 6 513 8.267 107° 9.774 107° 3 69
279 14 7 1025 2.024 107° 2.243 107° 3 76
2710016 | 8 2049 5.007 1077 5.316 1077 3 79
27118 9 4097 1.245 1077 1.305 1077 4 84
2712120 | 10 8193 3.104 1078 3.190 107® 4 91
27130122 1 11 | 16385 7.870 107? 4 95
27124 1 12 | 32769 1.962 107 4 102
2715026 | 13| 65537 4.864 10719 4 110
271611 28 | 14 | 131073 1.243 10719 4 118
Table 3: Non uniform grid results for ro = 0.5 as a function of the control parameter
A=\ (s =2).
grid data Simple evaluation Fast Evaluation
A K | K N EX) EX) Ks | W/N
273 20 1 21 2.350 1072 1.375 1072 0 17
274 410 2 41 6.913 10~* 1.035 10~ 1 31
272 6| 3 79 2.873 10~ 5.271 10~* 2 42
276 8| 4 153 7.818 1077 1.336 10~* 3 55
277 110 5 297 2.383 1077 2.511 1077 3 61
278 112 6 581 6.166 107° 7.103 107° 3 70
279 14 7 1147 1.618 10~° 1.808 10~° 3 78
2710016 | 8 2277 4.078 1077 4.122 1077 3 82
271181 9 4533 1.032 1077 1.066 10~7 4 88
2712020 | 10 9041 2.587 1078 2.659 107® 4 94
27131122 1 11 | 18055 6.490 10~? 6.506 10~? 4 100
27124 | 12| 36081 1.636 10~ 4 106
2711126 | 13| 72129 4.075 10710 4 115
27161 28 | 14 | 144221 1.031 10710 4 123

Table 4: Non uniform grid results for ro = 0.6 as a function of the control parameter

A=\ (s =2).

24




A K | Ky PKy, | MK,
273 2 1 4 0
2-1 4 2 4 0
2-5 6 3 4 1
26 8 4 4 1
2-7 | 10 5 6 2
2-8 12 6 6 2
279 14 7 6 4
27101116 8 6 4
2118 9 8 )
2712120 | 10 8 6
27131122 | 11 8 6
27124 1 121 10 7
27150126 | 13| 10 7
2161198 | 14 | 10 9

Table 5: p and m used on grid Ky as a function of the control parameter A = \'/3, for
the results shown in Table 2. (s = 2, ro = 1.0).
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