An O(N?log N) Multilevel Backprojection Method

Achi Brandt
Jordan Mann
Matvel Brodski
Weizmann Institute of Science
Rehovot, Israel

Abstract

A number of imaging technologies reconstruct an image function from its Radon
projection using the convolution backprojection method. The convolution is an
O(N?log N) algorithm, where the image consists of N x N pixels, while the backpro-
jection is an O(N?3) algorithm, thus constituting the major computational burden of
the convolution backprojection method. An O(N?log N) multilevel backprojection
method is presented here. When implemented with a Fourier-domain postprocessing
technique, also presented here, the resulting image quality is similar to or superior
than the image quality of the classical backprojection technique.

1 Background

Reconstruction of a function of two or three variables from its Radon transform has proven vital
in computed tomography (CT), nuclear magnetic resonance imaging, astronomy, geophysics, and
a number of other fields[3]. One of the best known reconstruction algorithms is the convolution
backprojection method (CB), which is widely used in commercial CT devices[3] (with rebinning for
divergent-beam projections[6]). Recently, it has been applied to spotlight-mode synthetic aperture
radar image reconstruction[4], in which the conventional method is the direct Fourier method (DF),
i.e., Fourier-domain interpolation followed by 2-D FFT[9].

Originally, CB was preferred to DF since the former provided better images[6, 8]. However,
since the backprojection part of CB raises the computational complexity of the method to O(N?),
while DF’s complexity is O(N?log N), there has been interest in finding effective implementation
of DF[1, 5, 7, 11, 12, 13, 14, 15]. We present here an O(N?log N) backprojection algorithm, based
on a multiscale approach, which, when used as the second half of CB, reduces the complexity of CB
to O(N?log N). Empirical results indicate that the multiscale backprojection, together with the
postprocessing step described in the second half of this paper, produces images of quality equal to
or better than that of of the classical backprojection algorithm and better than the quality of DF.
Furthermore, multilevel methods can generally be applied under weaker regularity requirements
than Fourier methods can. For example, the algorithm presented here could be adjusted to provide
different resolutions for different parts of the reconstruction, even if the Radon data are equally
spaced.

The multilevel approach described here is structurally similar to the fast Radon transform
described in [2].

2 Mathematical Preliminaries

Let f be an absolutely integrable function of two variables. P;f(¢), the Radon transform of the
function at angle 6. is then defined by

Pyf(t) :/ f(tcos@ — Tsin b, tsinf + 7cos 8) dr. (1)

This is the integral of f along the line
xcosh+ ysinf =t

in the z-y plane. (See Figure 1). In many imaging technologies, such as CT, the challenge is to
compute f, or an approximation to it, given samples of Py f(¢) for finitely many values of § and .

To understand CB, which is meant to solve this problem, we will need the Fourier transform.
For f € L'(R?), the Fourier transform f of f is defined by

flu)= —

(W) = Gyi7E Jga /(&) € e

for all u € R?. We note that for any 8, f € L'(R?) implies that P;f is well defined and belongs to
LY(R), and thus the Fourier transform of Py f is also well defined. Many methods for reconstructing
a function from its Radon transform, including CB, rely on the Radon Slice Theorem [6], which
states that

Pyf(p) =27 f(pcos, psin). (2)

Thus, if f(z,y) is the image function, the 2-D Fourier transform of the image can be sampled by
sampling the Fourier transform of the Radon transform of the image for different values of p and 6.

3 Convolution Backprojection method

3.1 Theory

One way to reconstruct f from its Radon transform is to compute f using (2) for as many values
of p and 6 as possible and then perform a 2-D inverse Fourier transform. Algorithms based on
this idea are called direct Fourier methods (DF). CB, however, uses the following approach. The
Fourier transform inversion formula [3] can be written in polar coordinates as

1 T poc . .
f(x,y):g/o/_ f(pcos&psin@)elp(xcose+y51n€)|p|dpd@.

By the Radon Slice Theorem (2), this equals

1 T oS R .
(27)372 /0 / Py f(p) etecostrvsind)|p| dp d.

2

/ X cos® + y sn6O =t

|

y

Figure 1: The Radon transform of f at angle # and position ¢, denoted Py f(1).
This is the integral of f on the line z cos + ysin 8 = {.

In most applications, values of Pyf or JSJf are obtained from the physical data. Using the ﬁ;f
values, we may compute a function P, f, defined by

Pof(w) = [~ Fal(p) ™ lol dp. (3)
and then) -
flz,y) = W/O ng(xCOSH—I—ysinO) dé, (4)

which means that f(z,y) can be reconstructed from the Py f values, given these values for all 6.

3.2 Implementation and computational complexity

Of course, in actual applications, Py f(¢) is known for only a finite number of values of # and ¢,
and f is to be computed at a finite set of points, or pixels, (z,y). We will assume here that the
pixels (z;,y;) to be computed lie inside a circle inscribed in an N x N square grid, with a distance
d between adjacent pixel centers in both the horizontal and vertical directions, that there are @)
angles @; at which Pyf is known, and that at each such angle 8;, Py f({) is known at N evenly
spaced values t; of ¢, the difference between consecutive values {x,%r1 being d as well. Since we
limit the region of reconstruction to the inscribed circle, N samples of the Radon transform in any
direction are enough to cover the region. We will further assume that) is a power of 2, though
the algorithm can clearly be generalized to the case of arbitrary Q).

Computation of Psf is called the convolution step because multiplying two functions together
in the Fourier domain and taking the inverse Fourier transform of the result is associated with

convolution [3]. The Fourier transform and inverse Fourier transform required in (3) for this step
are approximated in practice using the discrete Fourier transform (DFT) and its inverse. Since
there are N values of Pyf(t) for each value of 6, the computation of Py f for a single value of 6
is O(Nlog N) using the Fast Fourier Transform (FFT), and since there are @ values of 6, the
entire convolution step is O(QN log N). If, as is usually assumed,) =~ N, then the order of the
convolution step is N2log N.

The integral with respect to 6 in (4) is replaced in practice by summation over all available
values of 6. Since there are O(N?) pixels at which summation is required, and @ values of 6,
this final step of computing the right side of (4) is clearly O(QN?), or, if @ ~ N, O(N?). Since
the contribution of Pyf to a pixel (z,y) depends only on the quantity zcos@ + ysin#, ng(u)
is said to be “smeared” or “backprojected” along the line x cos@ + ysinf = wu for each value of
u. That is, it is added to every pixel lying on that line. Therefore, this final step is called the
backprojection step. Although the concept of backprojection suggests an algorithm with a different
loop structure than the one suggested by (4) — namely, (4) suggests an outer loop to go through
all the pixels and an inner loop to go through the values of 8. whereas the backprojection concept
suggests the reverse — the backprojection concept does not change the computational complexity.
Although DF is O(N?log N), commercial CT scanners have traditionally used CB, despite its higher
computational complexity, in part because of the superior quality of the images it produces[6].

4 Multiscale Backprojection

It follows from the analysis in subsection (3.2) that an O(N?2log N) implementation of the back-
projection step of CB would lower the complexity of the entire CB algorithm to O(N?log N). Such
an implementation is presented here.

4.1 Basic concept

The multilevel backprojection method relies on the following reasoning. In the standard backprojec-
tion algorithm, a single N X N grid is used to sum the appropriate values of ngf, forj=1,....0Q.
for each pixel. One can, however, start with ¢ grids g?, 7=1,...,Q, and for each j project P@]f
only onto g;. Later, the) different grids can be added together pixelwise to produce the final
image. This approach can be used to save computation in the following way.

In what follows, for all 7 and 7, f; will be a function of two continuous variables, and g;: will be
a “grid” containing a finite set of samples of f; For all 7, let

fjo(xy) = P@Jf(x cosf + ysin).

Le., fjo is the function of two variables resulting from the backprojection of Pg]f along the lines
x cos @ + ysin 0 = ¢, for different values of ¢, in the z-y plane. Clearly, fJO does not vary along such
lines, and therefore, when collecting samples of f]0 to form the grid g?, it is sufficient to compute
and store one point value in the grid for each of the N values of ¢ at which P@Jf(t) has been
computed, rather than computing and storing N? point values. See Figure 2. In fact, g? is merely
a 1-D array containing all the computed values of]39] f, and is compiled by the convolution part
of the CB algorithm. Thus, although we are beginning the backprojection with ¢ grids instead

Figure 2: Construction of the zeroth-level grid g?, which contains the results of a single backpro-
jection, that of ngf. Although g? is meant to contain the samples of the function fjo defined on
a disk in the plane, and the disk contains O(N?) pixels, shown in the figure as the intersections of
dotted lines, it is sufficient to compute and store in g? samples of fJO taken at only O(N) points,
shown in the figure as black dots, since fjo only varies in the direction (cos#;,sin#;).

of one, the total number of point values stored is O(N Q). The distance between adjacent sample
points of fJO for any j is d, the distance between adjacent sample points of Pg]f.

Eventually, the various initial functions fJO must be added together to form the final image.
As addition is commutative and associative, they may be added together in any order, and our
method chooses an order that reduces the number of necessary computations. Since @) is even by
assumption, our first level of grid merges will consist of adding together pairs of functions fJQ, Ti
whose corresponding values of # are close to each other, and thus the direction in which f]0 is
constant is close to the direction in which f{ is constant. The sum of these two functions, f}, will
vary slowly in a certain direction, and thus it will only be necessary to store samples of f} in g} at
a handful of widely-spaced points along each line parallel to the “slow” direction in the z-y plane.

Specifically, we may assume without loss of generality that 0 < 6; < 7 for all j and that the 6;
are ordered in such a way that §; < 8,4, forall j =1,....0 — 1. Forall j =1,....0Q, let 0? =0;.
For all k from 1 to Q/2, we will add together the functions f3, , and fJ, to obtain f}. Since for
any j, fjo does not vary in the direction (—sin 6;, cos;), it follows that f, | and [, vary slowly in
the direction (— sin 0,19, cos 0,16), where H}C is the average of 0351 and 63;. Therefore f,% varies slowly
in the (—sin @}, cos@}) direction, and when forming g{, it is only necessary to store samples of f}
at a few widely-spaced points along each line in that direction. The spacing between sample points
in the fast direction, i.e., (cos@},sin8}), will again be d. The samples are computed from g9,
and g9, by interpolation.

By similar reasoning, for l =1, ..., @ /4, we may add f], , and f3, together to obtain f? in such

a way that f# varies slowly in the direction (—sin 67, cos6?), where 67 is the average of 6}, | and
03;, and consequently, when computing and storing samples of f7 to form g7, it is only necessary
to store values of f? at a few widely-spaced points in the direction (—sin#?, cos#?). The spacing
between sample points in the fast direction will again be d. f? will not vary as slowly in its “slow”
direction as fj, varies in its “slow” direction, and therefore g7 will require more sample points
in its slow direction than g3, requires in its slow direction. Nevertheless, there are half as many
second-level grids g7 as there are first-level grids g}, and as we will show, the total number of point
values that must be computed and stored for all the grids at any one level of merges is O(N?). See
Figure 3. Samples of f# to be stored in g7 are computed from g3, ; and g3, by interpolation.
Continuing in this way, we may construct a sequence of levels of grids and functions. The
functions at the ¢-th level are constructed from pairs of functions at the (¢ — 1)-th level in such
a way that each i-th level functions varies slowly in a certain direction and only a few samples
along lines in that direction need to be stored in the function’s grid. At the log, @-th level, there
is only one grid, and this grid represents the sum of all the original grids ¢°, that is, the sum
of all the backprojections of the ngf. This grid is therefore the resulting reconstruction. Since
O(N?) operations are needed to build the grids at each level, the overall cost of the algorithm is

O(N?log Q).

4.2 Computing sample point spacing in the “slow” direction

As explained in subsection 4.1, the low computational complexity of the algorithm depends on the
judicious choice of sample point spacing, and hence, the number of sample points, in a grid’s slow
direction. This spacing is chosen based on the following reasoning.

Since at every merge level 7, two consecutive functions f;;il and f;;l from the previous level are
merged to form f}C it follows that 2¢ consecutive original functions fjo were merged and remerged
to obtain fi. We will refer to these 2¢ original functions as the merged original functions. We note
that the slow directions of any two consecutive original functions fjo and f?+1 (actually, since these
are original functions, these are not just slow directions but constand directions) differ by 7/Q
radians, and it follows from this that the slow directions of the first and last of the merged original
functions differ by (2° — 1)7/@Q radians. It is trivial to show that the slow direction of f}C is halfway
between the slow directions of the first and last merged original functions, and thus it differs by no
more than (2° — 1)7/(2Q) from the slow direction of any of the merged original functions.

For any f;C the fast direction is perpendicular to the slow direction and the spacing in the fast
direction is d. We wish to choose spacing in the slow direction of the function f}c in such a way
that interpolating a value of f}C between two sample points A and B adjacent to each other in the
slow direction would incur an error no greater than the error incurred by interpolating a value of
any of the merged original functions between A and B. The spacing in the slow direction should
therefore be such that if one selects a coordinate axis in the fast direction of any of the merged
original functions, then the distance along this coordinate axis between A and B will be no more
than d. It can be seen from Figure 4 that the desired distance between adjacent points in the slow
direction of f}g is

d
sin((28 — 1)7/(2Q))

(5)

ng— 1

Figure 3: Merge of gék_l and gék to form gz‘H. The slow directions of fék_l,fék, and fé"’l are
(—siny,_;,cos8y;, 1), (—sinb;, cosly,), and (—sin 0§C+1,cos 0?1) respectively, where H}C‘H is the
average of 0§k_1 and Oék- Sample points are represented in the diagrams by black dots. g}C'H
contains more samples in its slow direction than g5, , and g5, do in theirs. The distance between
samples in the fast direction, indicated in the diagrams by the distance between adjacent solid lines,

is always d.

n/(2Q)

2" - 1) ©/(2Q)
B
d-/A A
0
. faStf] A

§

fastfjo

Figure 4: Choice of spacing in slow direction. The difference between the slow direction (vertical
lines) of the function f}C currently being formed, and the slow direction (solid diagonal lines) of
any of the merged original functions is never greater than (2! — 1)7/(2Q). The fast direction of
the merged original function is perpendicular to its slow one and its spacing in that direction is d.
The distance in that direction between adjacent sample points A and B of f;C should not exceed d.
Left, first merge level. Right, arbitrary merge level i.

4.3 Computational complexity

Since the diameter of the support of the reconstruction is Nd, the number of points necessary along
a single line of f; in its slow direction is Nd divided by the sampling interval, or

Nsin((2' — 1)7/(2Q)).

We will assume that if this number is not an integer then the lowest integer greater than this
number will be used. Since the sample spacing in the fast direction is always d, it follows that for
any ¢ and j. there are N lines parallel to the slow direction along which f; will be sampled, so the
total number of points in g;: is

N[Nsin((2° — 1)7/(2Q))].
Also, there are Q/Q’ different grids g;« to be computed (i.e., at the ith level of merges, j takes the

values 1,.. Q/QZ) It follows from this that the total number of samples to be computed and
stored at the ¢th level of merges is

[N sin <(22 _ 1)%)-‘ (*N;ZQ) < (N sin (zg) + 1) <A;ZQ)

2t NQ T o, NQ
<<2Q+)<22) TR

The sum of this for all levels of merges, i.e., for e =1,....log, @, is less than

gJVQIOgQ O+ NQ.
If, as is normally assumed, () ~ N, then the order of the backprojection is N?log N.

4.4 Practical considerations

Fori=1,...,log, @, samples of ff are computed from gél__ll and gél_l by interpolation, but there
will generally be some points where f; is to be sampled that are not surrounded by sampling points
of f;l__ll or of fél_l and extrapolation must be performed there instead of interpolation. Computing
a few samples of ff just outside the disk in which the image is to be reconstructed will reduce the
number of points at which extrapolation is necessary at the (¢4 1)-th level, but will in itself require
extrapolation unless a sufficient number of points outside the disk were computed at the (i — 1)-th
level. A scheme with the same computational complexity is conceivable in which at each level of
grid merging, sample points outside the disk are chosen in such a way that extrapolation is never
required, but we did not use such a scheme in our implementation.

In our implementation, we used one more than the

[N sin((2° — 1)7/2Q))]

points per line in the slow direction prescribed in subsection 4.3 so that the first and last sampling
points on each line would be at or beyond the boundary of the disk supporting the reconstruction.
This does not change the computational complexity.

We have found empirically that image quality can be improved by doubling the number of
samples per Radon projection by interpolation, or by doubling the number of projections (i.e., the
number of angles at which projections are computed) by interpolation. A cheaper way to improve
image quality is to sample f7 for all ¢ and j at no fewer than 5 points in the slow direction, although
Formula 5 may imply that fewer points are necessary in the slow directions in the first few levels of
merges. In any case, neither of these adjustments are necessary when the postprocessing correction
method described below is applied.

5 Postprocessing

Images resulting from the multiscale backprojection algortihm as described up to this point are
somewhat blurred due to the many interpolations necessary. The point spread function of the algo-
rithm is wider than that of the classical backprojection. In this section, we describe an O(N?log N)
Fourier domain correction of the image which greatly reduces the width of the point spread func-
tion of the multiscale backprojection and enhances the resulting images. A similar correction can
be performed after the classical backprojection, but with less of an improvement, and images pro-
duced by the multiscale method with Fourier domain correction are as good qualitatively as those
produced using the classical backprojection with Fourier domain correction.

5.1 Basic concept

If the point spread function of a given backprojection method were shift invariant, then the obvious
correction would be to divide the Fourier transform of the reconstruction by that of the point
spread function and to take the inverse Fourier transform of the result. However, the point spread
functions of both the classical and multiscale backprojection methods vary slightly over the image.
Our postprocessing correction consists of dividing the Fourier transform of the image by a Gaussian
which approximates the Fourier transforms of the point spread functions obtained at various points
in the image. The width of the Gaussian is chosen in such a way as to optimize this approximation.
As we will show, this technique is more effective for the multiscale backprojection than for the
classical one, as the point spread functions obtained for the multiscale method can be more closely
approximated by a Gaussian.

5.2 Determination of Gaussian width o

For each of the two methods under consideration (the classical and multiscale backprojection meth-
ods), we wished to find the 2-D Gaussian that in some sense fit a selection of point responses better
than any other 2-D Gaussian. The 2-D Gaussians are of the form

6_($2+y2)/027

where the width ¢ > 0 of the Gaussian may be chosen arbitrarily. In our context, z and y may be
regarded as pixel coordinates (i.e., the coordinates of horizontally adjacent pixels differ by 1, and
the y coordinates of vertically adjacent pixels differ by 1), and the goal was to choose the value og
of o for which the resulting Gaussian best fit a selection of point responses in the following sense.

10

300

250

200

Figure 5: Eight-fold symmetry of the operations.
A point response of the Radon transform-CB sequence is identical, up to rotation and reflection,
to as many as seven other point responses.

The point responses were all represented by real-valued matrices. From each such matrix, the
7 X 7 submatrix whith the peak of the point response at its center was extracted. Let A be the
normalized sum of these submatrices. Let the indices ¢ and j of A run from —3 to 3. Let

mij(o) = e EHA/,

For each method, og is defined as the value of ¢ which minimizes

3

> (A —mij(0))

5.3 Selection of point responses for computation of oy

We assume that backprojection is performed on a square grid of pixels, or on a circular central
region of this square. The computation of the Radon projections of the image to be represented
by this grid, and the convolution and backprojection of the Radon projections onto the grid, can
be perfomed in such a way that the entire sequence of operations is symmetric with regard to the
horizontal and vertical axes of the grid and its two diagonals. In such a case, a point response
anywhere in the grid is identical, up to rotation and reflection, to as many as seven other point
responses, whose positions are obtained from the position of the original point response by reflection
across one or more of the axes of symmetry of the operations. See Figure 5. It follows that when
selecting positions on the grid at which to compute point responses for the purpose of computing
0p, one may restrict the positions to a single octant of the grid and compute the point responses
at those positions, and then the point responses at the corresponding positions in the other seven
octants can be obtained by rotating and reflecting the computed point responses.

11

In our research, point responses were computed at 15 randomly selected points in a single
octant, and the point responses at the corresponding points in the remaining octants were obtained
by rotation and reflection of the original 15 point responses, as explained above.

Point responses and the resulting value of og depend on the process by which the Radon
projections are obtained. In our research, Radon projection data were computed in software, but
an apparatus implementing the method described here might obtain the projection data from
physical measurements. In any case, for any such apparatus, og should be computed from point
responses generated by Radon data obtained from the source from which the apparatus will obtain
the Radon data in practice. The eight-fold symmetry exploited for the purpose of our research may
not hold for all systems.

5.4 Results

The figures on Page A indicate the optimal value og of o, and the degree to which the resulting
Gaussian fits the point responses, for the classical backprojections and several variants of the
multiscale backprojection. Over each point response grayscale image is displayed a pair of numbers.
The first is the optimal value og of ¢ for the method, and the second is the error ¢ given by

€= max |A;; — my;(00)].

It can be seen that while g is greater for the multiscale backprojection than for the classical
backprojection, implying that multiscale backprojection without postprocessing has a wider point
response and therefore produces blurrier images, the multiscale method point responses can be
approximated better by a Gaussian, and therefore the multiscale backprojection with postprocessing
can produce sharper images than the classical backprojection with postprocessing.

On Page B are shown surface plots of point spread functions for the classical and multiscale
backprojection methods and surface plots of their Fourier tranforms. It can be seen from these
figures that although the uncorrected multiscale backprojection produces a wider point spread than
the classical method, the Fourier transform of the multiscale point spread function more closely
resembles a Gaussian than the Fourier transform of the classical point spread function. It follows
that the multiscale method lends itself to postprocessing correction described here than does the
classical method.

Page C shows an image from which Radon data were computed for the purpose of testing
different variations of CB. Page D shows the results of CB with classical backprojection. Page E
shows the results of CB with multiscale backprojection without postprocessing. Page F shows the
results of CB with multiscale backprojection, without postprocessing but with doubling of the data
by means of interpolation. Page G shows the results of CB with multiscale backprojection, without
doubling of the data but with postprocessing.

References

[1] S. Alliney, S. Matej, I. Bajla, “On the possibility of direct Fourier reconstruction from
divergent-beam projections,” IFEF Transactions on Medical Imaging, vol. 12, no. 2, June
1993, pp. 173-181.

12

[2]
3]

[4]

[8]
[9]
[10]

[11]

A. Brandt, J. Dym, “Fast Calculation of Multiple Line Integrals,” in preparation.

S.R. Deans, The Radon Transform and Some of ils Applications. New York: John Wiley and
Sons, 1983.

M.D. Desai, W.K. Jenkins, “Convolution backprojection image reconstruction for spotlight
mode synthetic aperture radar,” IEFE Transaclions on Image Processing, vol. 1, no. 4, Oct.
1992, pp. 505-517.

H. Fan, J. Sanz, “Comments on ‘Direct Fourier reconstruction in computer tomography,” ”,
IEFFE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-33, pp. 446-449,
April 1985.

G. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized To-
mography. New York: Academic Press, 1980.

S. Matej, I. Bajla, “A high-speed reconstruction from projections using direct Fourier method
with optimized parameters — an experimental analysis,” IEFFE Transactions on Medical Imag-
ing, vol. 9, no. 4, Dec. 1990, pp. 421-429.

R. Mersereau and A. Oppenheim, “Digital reconstruction of multidimensional signals from
their projections,” Proceedings of the IFEF, vol. 62, no. 10, Oct. 1974, pp. 1319-1338.

D.C. Munson, Jr., J.D. O’Brien, W.K. Jenkins, “A tomographic formulation of spotlight-mode
synthetic aperture radar,” Proceedings of the IEFE, vol. 71, no. 8, Aug. 1983, pp. 917-925.

A.V. Oppenheim, R.W. Schafer, Digital Signal Processing. Fnglewood Cliffs: Prentice-Hall,
1975.

S5.X. Pan, A. Kak, “A computational study of reconstruction algorithms for diffraction to-
mography: interpolation versus filtered backpropagation,” IEFE Transactions on Acoustics,
Speech, and Signal Processing, vol. ASSP-31, no. 5., Oct. 1983, pp. 1262-1275.

H. Peng, H. Stark, “Direct Fourier reconstruction in fan-beam tomography,” IFEFE Transac-
tions on Medical Imaging, vol MI-6, no. 3, Sept. 1987, pp. 209-219.

H. Stark, M. Wengrovitz, “Comments and corrections on the use of polar sampling theorems
in CT,” IEFFE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-31, pp.
1329-1331. Oct. 1983.

H. Stark, J.W. Woods, “Authors’ reply to ‘Comments on “Direct fourier reconstruction in com-
puter tomography” °.” IFEF IEEE Transaclions on Acoustics, Speech, and Signal Processing,
vol. ASSP-34. no. 2, April 1986, pp. 379-380.

H. Stark, J. Woods. 1. Paul, R. Hingorani, “Direct Fourier reconstruction in computer tomog-
raphy,” IFEF Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-29, pp.
237-245, Apr. 1981.

13

