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0. Introduction

The Carl F. Gauss Center for Scientific Computation was established in 1993
jointly by the Minerva Stiftung Gesellschaft fur die Forschung m.b.H., Germany,
and by the Weizmann Institute of Science, Rehovot, Israel. Its mission is the de-
velopment of new fundamental computational approaches in physics, chemistry,
applied mathematics and engineering, focusing in particular on advanced multi-
scale (“multi-resolution”, “multilevel”, “multigrid”, etc.) methods.

0.1 Multiscale computation: general

It 1s well known that some of the major bottlenecks in science and engineer-
ing are computational in nature. The detailed understanding and design of large
molecules, condensed matter and chemical processes, for example, could in prin-
ciple be achieved just by computation. since the underlying equations are fully
known; except that our computing capabilities are inadequate for such tasks. The
same is true for the calculation of elementary particle properties from first princi-
ples, or for the design of fusion reactors or airplane maneuvers, and for many other
engineering and scientific endeavors. All would be greatly facilitated if unlimited
computing power were available—or if much better algorithms could be devised.

Indeed, just building ever faster machines will not do. With current compu-
tational methods the needed amount of computer processing often increases too
steeply with the rise in problem size, so that no conceivable computer will be
adequate. Completely new mathematical approaches are needed.

Most computational super-problems in science and engineering share some
common features. For example, all of them involve a multitude of variables lo-
cated in a low dimensional space (e.g., the four dimensional physical space-time).
Closer examination reveals that the computational complexity of these problems
results directly from this spatial nature, in several general ways that come up
again and again, in different disciplines and in all kinds of guises. Past studies
have demonstrated that such complexities can be effectively overcome, or drasti-
cally reduced, by multiscale algorithms.

Indeed, any many-variable problem defined in physical space can have an ap-
proximate description at any given length scale of that space: a continuum problem
can be discretized at any given resolution; collective motions of a many-body sys-
tem can be organized at any given characteristic length: etc. The multiscale algo-
rithm recursively constructs a sequence of such descriptions at increasingly larger
(coarser) scales, and combines local processing (relaxation of equations, simula-
tion of statistical relations, etc.) at each scale with various inter-scale interactions.
Typically, the evolving solution on each scale recursively dictates the equations (or
the Hamiltonian) on coarser scales and modifies the solution (or configuration) on
finer scales. In this way large-scale changes are effectively performed on coarse
grids, based on information previously gathered from finer grids.
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As a result of such multilevel interactions, the fine scales of the problem can
be employed very sparingly, and sometimes only at special and/or representative
small regions. Moreover, the inter-scale interactions can eliminate various kinds
of difficulties, such as: slow convergence (in minimization processes, PDE solvers,
etc.); critical slowing down (in statistical physics); ill-posedness (e.g., of inverse
problems); large-scale attraction basin traps (in global optimization and statistical
simulations); conflicts between small-scale and large-scale representations (e.g., in
wave problems); numerousness of interactions (in many body problems or integral
equations); the need to produce many fine-level solutions (e.g., in optimal control)
or very many fine-level independent samples (in statistical physics); etc. Also, the
multiscale interactions tend to bring out the large-scale dynamics, or the macro-
scopic equations, of the physical system, which is often the very objective of the
entire calculation.

Since the local processing (relaxation, etc.) in each scale can be done in
parallel at all parts of the domain (e.g., at all cells of a given lattice), the multiscale
algorithms, based on such processing, are ideal for implementation on massively
parallel computers. Indeed, many problems cannot be efficiently solved by such
computers without employing a multiscale procedure.

0.2 Current research directions at the Gauss Center

Over the last three years, the research at the Gauss Center has involved the
following directions.

1.  New multigrid methods for steady-state fluid dynamics at all Mach and Rey-
nolds numbers, and other non-elliptic stationary PDE systems.

2. Multilevel approaches to time-dependent partial-differential equations, em-
phasizing applications to oceanic and atmospheric flows.

3. Direct multigrid solvers for inverse problems, including system identification
(e.g., impedance tomography) and data assimilation (in atmospheric simula-
tions).

4.  Optimal control: Feedback control via very fast updating of open-loop solu-
tions, based on their multiscale representations.

5. Optimal location of singularities of PDE systems (e.g., location of the nucleons
in electronic structure calculations), integrated into the multigrid PDE solver.

6. New multilevel algorithms for highly indefinite (e.g., standing wave) problems.
7. Multigrid solvers for the Dirac equations arising in quantum field theory.

8. Compact multiresolution representation of the inverse matrix of a discretized
differential operator; fast updating of the inverse matrix and of the value of
the determinant upon changing an arbitrary term in the matrix itself; with
application to the QCD fermionic interaction.
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9. Collective multiscale representation and fast calculation of many eigenfunc-
tions of a differential operator, e.g., the Schrodinger operator in condensed-
matter electronic-structures calculations.

10. Multiscale Monte-Carlo algorithms for eliminating both the critical slowing
down and the volume factor in increasingly advanced models of statistical

physics.
11. Multigrid Monte-Carlo approaches for solving the high-dimensional (several-

particle) Schroedinger equation by real-time path integrals.

12. Introducing multiscale computations to many-particle calculations, including
fast evaluation of forces, fast convergence to local and global ground states,
fast equilibration, and large time steps. with application to molecular me-
chanics; a new approach to molecular dynamics, based on stochastic implicit
time steps.

13. Multigrid methods for integro-differential equations, on adaptable grids, with
applications to tribology.

14. Multiscale methods for the fast evaluation and inversion of the Radon trans-
form; applications to X-ray tomography and airplane and satellite radar re-
construction.

15. Multiscale algorithms for early vision tasks such as surface reconstruction,
edge and fiber detection, segmentation, and meaningful picture coarsening.

16. Rigorous quantitative theory for predicting the performance of multigrid sol-

vers (see [65]).

A survey of current developments and future perspectives in these various
directions is given in the following sections.

1. Computational Fluid Dynamics

(with Dr. John Ruge (supported by NASA) and with Ph.D. student Boris Diskin)

1.1 Background and objectives

An efficient multigrid algorithm for steady-state incompressible viscous flows
in two dimensions appeared already in 1972 [62], a relatively efficient multigrid
solver for a compressible inviscid transonic flow was already demonstrated in 1975
[63], and a fully efficient solver for a system of several coupled differential equa-
tions, characteristic to CFD, was presented already in 1978 [64]. However, in the
decades that followed, the development in this area has not been really satisfac-
tory. In particular, the efficiency of solvers for non-elliptic steady-state systems
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(such as Euler and high-Reynolds Navier-Stokes equations) has lagged several or-
ders of magnitude behind the ideal efficiency that had been attained for general
elliptic systems. Although the main reasons for this inefficiency have also been
understood for a long time (see for example [9]), the recommended cures seemed
complicated, and code developers opted for partial efficiency. The leading method
has been based on multi-stage pseudo-time-stepping relaxation schemes [39], [53].
Although such schemes can be optimized to damp high-frequency errors [51], the
resulting algorithms are still relatively slow, because some intermediate (neither
high-frequency nor very smooth) “characteristic components” cannot adequately
be reduced by coarse grids (cf. [9], [25]). Other multigrid solvers were based on in-
complete LU decomposition (ILU) and related relaxation schemes [53], [50], [49].
While such schemes give excellent results in some cases, they cannot cure the
aforementioned trouble of characteristic components in general transonic flows,
especially in three dimensions. (Also, much of the efficiency of ILU schemes de-
pends on their sequential marching, hence the performance on massively parallel
machines will drastically diminish.) The same is true for other methods (e.g.,
based on defect corrections) which seem not even to identify that basic trouble.

More generally, all these attempted solution methods have failed to decompose
the solution process into separate treatments of each factor of the PDE principal
determinant, and therefore did not identify, let alone treat, the separate difficulties
associated with each such factor. In fact, in CFD. each of these factors may have
different ellipticity measures (some are uniformly elliptic, others are non-elliptic
at some or all of the relevant scales) and/or different set of characteristic surfaces,
requiring different relaxation/coarsening procedures.

The objective of our recent work has been to develop and demonstrate meth-
ods that solve non-elliptic steady-state problems in general, and high-Reynolds sta-
tionary flow problems in particular, at the same “textbook multigrid efficiency”
typically attained for uniformly elliptic systems. The methods, again as in the
elliptic case, will allow local refinements and high degree of parallel processing.

Solvers for time-dependent flow problems are in principle simpler to develop
than their steady-state counterparts. Using semi implicit or fully implicit dis-
cretizations, large and adaptable time steps can be used, and parallel processing
across space and time is feasible [10]. The resulting system of equations (i.e., the
system to be solved at each time step) is much easier than the steady-state system
because it has better ellipticity measures (due to the time term), it does not in-
volve the difficulties associated with recirculation, and it comes with a good first
approximation (from the previous time step). A simple multigrid “F cycle” at
each time step should solve the equations much below incremental discretization
errors (the errors added in the current time step) [18]. It is thus believed that fully
efficient multigrid methods for the steady-state equations will also easily yield fully
efficient and parallelizable methods for time-accurate integrations.
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1.2 Solution methods and current development

As shown in the past (see [5], [11] and [25]), to obtain the “textbook” multigrid
efficiency for any discretized partial differential system of equations (PDE), it is
necessary and usually (with proper boundary treatment) also sufficient to attain
that efficiency for each factor of the PDE principal determinant. Each such factor
is a scalar differential operator of first or second order, so its efficient solution is a
vastly simplified task. The way for separating the factors is by a distributed (and
possibly also weighted ) relaxation scheme in which to each factor there corresponds
a “ghost” discrete function. The latter can be directly relaxed for its corresponding
factor, dictating a resulting pattern of changes to be distributed to the actual
discrete functions (see details in Sec. 3.7 of [5] and also in [55]). To obtain the
top efficiency, the relaxation of each ghost function should incorporate an essential
part of an efficient multigrid solver for its corresponding operator: sometimes this
is just the relaxation part of that solver, sometimes this may even be the entire
solver (applied at some proper subdomain).

For the incompressible Euler and Navier-Stokes equations, the relevant fac-
tors are the Laplace and the convection (or convection-diffusion) operators. The
former’s multigrid solver is classical; the latter’s can be based on downstream re-
laxation [25], with additional special procedures for recirculation flows [26], [56].
Indeed. we have shown that incorporating such procedures into the relaxation
schemes for the appropriate ghost functions yields very efficient solvers for incom-
pressible flows even at high Reynolds numbers and at second-order accuracy [25].
The same procedures will also yield efficient solvers for compressible flows at low
Mach numbers, where the relevant factors are similar.

The only remaining factor of flow systems for which no general adequate
multigrid solver has previously been developed is the “full potential” operator

(udy + v0y + w0, ) — d®A (1.1)

where (u, v, w) is the flow velocity vector and a is the speed of sound. This operator
appears as a factor in the principal determinant of the 3-D compressible Euler
equations.

In the deep subsonic case (u? + v? 4+ w? < .5d2, say) the operator (1.1) is
uniformly elliptic, hence a usual multigrid V-cycle, employing red/black Gauss-
Seidel relaxation at all levels, yields top-efficiency solvers. In the deep supersonic
case (u?4v? +w? > 1.5a2) the full potential operator is uniformly hyperbolic (with
the stream direction serving as the time-like direction), and an eficient solver can
be obtained using downstream relaxation (marching in the time-like direction. If
the equations are of higher-order and not strictly upstream, a predictor-corrector
marching can provide the same approximation order, hence fast convergence of
smooth components.)

The most difficult situation for solving the full potential operator is the near
sonic regime (u? 4+ v? 4+ w? & a2), especially in the (usual) case of non-alignment

- 6 —



with the grid (e.g., when the grid is cartesian and no velocity component is con-
sistently much smaller than the others). No previous multigrid approach would
attain good efficiency in this case.

We have developed a new approach for this case, based on a piecewise semi-
coarsening and some rules for adding artificial dissipation at the coarser levels.
The resulting algorithm can fully exploit massively parallel processing. It can
be extended to other non-elliptic operators, including the convection operator.
(The aforementioned approach for the convection operator, based on downstream
relaxation, is not fully efficient on massively parallel machines.)

Extensive numerical tests have been performed with the linear full-potential
equation: first in 2D. then in 3D, starting with constant-coefficients, then vari-
able. Simple boundary conditions were chosen in a box: Dirichlet conditions on
two opposite faces and periodic on the others. In 2D we have also carried out
comprehensive half-space FMG mode analyses. Following certain algorithmic ad-
justments (e.g., employing a certain line relaxation on some of the coarsest semi-
coarsened levels), all the results (e.g., those already reported in [12] and in [66])
show that the algorithm always attains the “textbook” efficiency.

1.3 Future plans: The road map

The first task ahead is to extend the solver from these Mach-1 model cases
to a general solver for the full potential operator in the entire near-sonic regime.
The second—to incorporate the latter multigrid solver as one of the relazation
steps (relaxing the ghost function corresponding to the full potential factor) in an
outer multigrid solver for the entire Euler system. Then the next task would be
to generalize to the Navier-Stokes equations.

This is an ambitious and expensive program, but we are not alone in it.
A group at NASA /Langley last year has launched a multi-year program aimed
at achieving “textbook” multigrid efficiency for flows at all Mach and Reynolds
numbers, using the general approach described above, in cooperation with us and
others. As a road map we are developing a detailed table called “Barriers to
Achieving Textbook Multigrid Efficiency in CFD”. It lists every foreseen kind of
computational difficulty for achieving that goal. together with the possible ways
for resolving the difficulty and their current state of development. A first, partial

draft is available [67].

1.4 Atmospheric time-dependent flows

In collaboration with Drs. J.R. Bates and L. Yong from NASA/Goddard we

have finished developing multigrid solvers for the system of equations arising at
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each time step of shallow-water models of atmospheric flows on the entire globe
(3], [43]. These solvers allow implicit discretization of nonlinear terms as well as
linear, resulting in much more stable simulations.

We are now working on solvers for the full three dimensional flow on the
sphere.

2.  Atmospheric Data Assimilation

(with post-doc fellow Leonid Zaslavsky)

2.1 Background and objectives

A major difficulty in weather prediction is the need to assimilate into the
solution of the atmospheric flow equations a continuously incoming stream of data
from measurements carried out around the globe by a variety of devices, with
highly varying accuracy, frequency, and resolution. Current assimilation methods
require much more computer resources than the direct solution of the atmospheric
equations. The reason is the full 4-D coupling: Any measurement, at any place
and time, should in principle affect the solution at any other place and time, thus
creating a dense NgN; X NgN;y matrix of influence, where Ny is the huge number
of gridpoints representing the 3-D atmosphere and Ny is the large number of time
steps spanning the full period over which large-scale atmospheric patterns are
correlated. As a result, not only are current assimilation methods very slow, but
they are also based on highly questionable compromises, such as: ignoring the
all-important spatially or temporally remote correlations of large-scale averages;
limiting control to only the initial value of the flow at some arbitrarily chosen initial
time, instead of controlling the numerical equations at all times; and assimilating
only the data from one time interval at a time, without fully correlating with other
intervals.

Our objective is to develop multiscale methods that can avoid all of these
compromises, and can assimilate the data into the multigrid solver of the direct
flow equations at small extra cost, i.e., using extra computer time smaller than
that required by the direct solver by itself.

We consider this to be possible because: (1) Large scale averages can inexpen-
sively be assimilated on the correspondingly coarse levels of the multigrid solver
(coarse in both space and time). (2) Deviations from any large-scale average must
be assimilated on some finer scale, but their correlation on that scale is local. (3)
The measurements (with their representativeness errors) are generally less accu-
rate and in most regions less resolved than the numerical flow itself, hence their
assimilation should not be done at the finest numerical level.
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Multiscale methods can contribute to data assimilation processes in a variety
of other ways, a survey of which is reported in Sec. 2.4 below.

2.2 Preliminary work: fast Kalman filtering

We have collaborated with a group headed by Dr. Steve Cohn of the Data
Assimilation Office, NASA /Goddard Space Flight Center, in a preliminary work
for demonstrating the potential of multiscale atmospheric data assimilation. The
main result has been a fast multi-resolution algorithm to solve the dense-matrix
equations arising at each time step in a Kalman filtering formulation of the as-
similation problem [27], [28], [29]. The methods used are related to those in [§]
and [19], but with an innovation demonstrating that such methods can deal with
scattered data, having highly variable resolution.

2.3 Future plans: Multiscale 4D assimilation

The development will not be limited to the Kalman filtering formulation. We
mainly intend to advance the multiscale capabilities with respect to the direct 4-D
(space and time) best fitting of the scattered data. This problem involves full 4D
couplings. both forward and backward in time. It is thus proposed to use one
full-multigrid (FMG) algorithm for the entire 4D problem (but possibly with the
storage-saving windowing described below). This algorithm would be like a usual
FMG solver for the direct 4D atmospheric equations, except that at each stage,
on each level excluding the finest ones, the relaxation of the solution variable will
be accompanied by relaxation of the control variables o(x) at that level (see the
nature of o(z) below). Thus, in essence, large-scale averages of the solution will
be assimilated on correspondingly coarse grids (coarse in both space and time).

The levels at which o(x) will be adjusted will depend on the local density of
the measurements, their accuracy and their distance from regions where details of
the solution are of interest.

Windowing. Should the 4D solution require too much storage, it is possible
to reorganize it in multiscale windows, marching in time, without much loss of
efficiency. That is, only a certain window (time-slice) of the finest grid need be
kept in memory at a time. Having relaxed over it, residuals are then transferred
from this window to the coarser grids. On returning from the coarser grids more
relaxation is made on the finest grid, now in a somewhat advanced window (shifted
forward in time, but partly overlapping its predecessor) and so on. On increasingly
coarser grids, increasingly wider (but still poorer in gridpoints) windows are kept
and advanced in a similar manner. The domain covered by each coarse-grid window
always strictly contains all the finer ones. The coarsest windows extend very far
in time, especially into the past; as far indeed as there exist data whose large-scale
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averages are still relevant to the solution at the time of the current finest window.
At times where a coarse window exists while the next finer one has already been
removed, the coarse-level equations can still retain the FAS-multigrid fine-to-coarse
(1) corrections (static or modified), thus still maintaining the fine-level accuracy
of coarse-level features (cf. the “frozen 77 technique in [68, §15]).

Some of the finest windows may be local not only in time but also in space,
effecting local refinements at regions of greater human interest and/or regions
requiring higher resolution for physical reasons (sea straits, islands, mountains,
ete.).

2.4 Multiple benefits of multiscale techniques

Multiscale computational methods can contribute to data assimilation prob-
lems in several different ways, listed below.

1. Implicit time steps. At the level of the underlying direct CFD equations,
fast multigrid solvers make it possible to use implicit-time-step discretizations at
full efficiency (see the general approach to time dependent problems in [9], and
methods for the shallow water equations in [71], [70], [3] and [43]). This entails not
only unconditional linear stability. but also avoidance of bad effects associated with
linearized time steps (in which one would use fully implicit equations, but based
on linearization around the previous-time-step solution) [3]. The unconditional
stability is important for the multiscale data assimilation processes, enabling work
on various temporal and spatial scales, unconstrained by various Courant numbers.

2. Local refinements are well known to be greatly facilitated by the multigrid
algorithm, as also hinted in the algorithm description above. The multiscale envi-
ronment simultaneously provides convenient flexible structures, refinement criteria
and one-shot self-adaptive solvers; see [68, §9].

3. Space + time parallel processing. Still at the level of the direct CFD
equations (but similarly also at the level of the inverse (data assimilation) prob-
lem), multiscaling is a necessary vehicle to obtain parallel processing not only
across space at each time step, but also across time. In other words, unnatural
though it may seem, sequential marching in time can be avoided by using multi-
scale procedures. (This was first pointed out in [72, §3.10], and more appears in
[10, §11] and [74].) This of course makes it possible to use efficiently (at a given
arithmetic to communication ratio) a larger number of parallel processors.

4. Omne-shot solution of inverse problems. Normally, inverse problems are
solved by a sequence of direct solutions (e.g., direct multigrid solutions), through
which an iterative adjustment is made to the control parameters (the inverse-
problem unknowns). For example, in the adjoint method for atmospheric data
assimilation, a direct solver of the flow equations (marching forward in time) is
followed by an adjoint solution (backward in time) that gauges the first derivatives

~ 10 -



of the data-fitness functional with respect to the initial values (the flow variables
at the initial time). These derivatives then drive some adjustments of the initial
values, from which another direct flow solution is next calculated, and so on. Many
iterations are needed for this process to converge. In multigrid solvers, by contrast,
one can integrate the adjustment of the inverse parameters into the appropriate
stages of only one direct-problem solver (see Sec. 4 above. This general approach
has been described in [68, §13], with more details in [10, §8.2] and full development
in [73]).

5. One-shot continuation. The assimilation problem is highly nonlinear,
hence a good starting guess for the solution is important. A general way to obtain
such an initial guess is by continuation (embedding), in which the problem is
embedded in a sequence of problems, each requiring another application of the
solver. In multigrid solvers, however, the continuation can often be integrated into
just one FMG solver. For example, at the coarser stages of the FMG algorithm
more artificial viscosity (and/or more regularization, and/or a smaller coefficient
of Dy in the continuity equation) can be used, then gradually be taken out as the
algorithm proceeds to finer levels. This makes the solution much easier in the first
stages, from which it is then continuously dragged into the desired neighborhood.
Such FMG continuation devices are often natural. For example, larger artificial
viscosity would quite naturally be introduced on coarse grids, even without aiming
at continuation. A natural continuation is also supplied by the inverse covariance
matrix S (see below), which would be smaller on coarser FMG levels due to larger
discretization-error estimates.

6. Full flow control. In most data assimilation approaches (such as the ad-
joint method described above), the control parameters (the parameters that can
be changed to obtain fitness of solution to observations) are only the initial values
of the solution. This makes it impossible to benefit from the details (the oscillating
components) of the observations at time far removed from the initial time, because
those details at those times are ill-determined by the initial values. Instead of con-
trolling just initial values, one should really control the entire numerical solution.
Namely, the control parameters o(x) is a vector-valued grid function that at each
point x gives the deviations in satisfying the set of flow equations. The objective
function (the error functional that should be minimized) has the general form

E=0'So+d"'wWd.

where o = (0’(13)) is the vector of all control parameters, d = (d(y)) is the vector of
deviations of the solution u from the observation u? (i.e., d(y) = (P%u)(y) —u’(y),
where PY is a projection from the solution space () to the observation space (y)).
and S and W are (positive-definite) weight matrices. In a crude approximation,
one can take these matrices to be diagonal, where the diagonal inverse S(z, )~ is
(a very rough estimate of ) the expected square error in the equation at x, which is
the sum of the local discretization error (conveniently estimated by the “7 correc-
tion” of the multigrid solver) and the local modeling errors (errors in the physical
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assumptions embodied in the equations). The diagonal inverse VV(y,y)_1 is (a
very rough estimate of) the expected square error in the measurement uo(y), in-
cluding in particular the representativeness error. More precisely, S and W should
be corresponding general (not necessarily diagonal) inverse covariance matrices.

So extensive control parameters can only be handled by a multiscale treat-
ment. Moreover, using the methods described above the solution is expected not to
be expensive, especially since the control parameters o(z) need not be controlled
at the finest computational levels; on such levels o(x) can simply be interpolated
from the coarser levels and kept unchanged during the relaxation.

7. Unlimited correlation range. In conventional assimilation methods, each
control value interacts with a limited range of measurements: measurements at a
restricted (e.g., 6 hours) time interval and sometimes only at confined distances.
However, it is clear that large-scale averages of the dynamic variables interact
at much larger ranges. Multiscale data assimilation makes it possible to corre-
late solution and measurements at any desired distance in space and time, since
correlations at increasingly larger distances are calculated on increasingly coarser
grids.

8. Efficient representation of direct and inverse covariance.  There are a
number of ways to derive or estimate covariance matrices and various simplifica-
tion assumptions are made. However, the real covariance matrices (especially the
model error covariance) are actually dense (not sparse), and thus involve huge (8
dimensional, in principle) amounts of information. Even when the matrix is sparse,
its inverse, used in the formulation of the objective function, is certainly dense.
The only efficient way of representing, let alone computing, such huge dense ma-
trices and their inverses is a multiscale representation, based on their asymptotic
smoothness. It is similar to the methods introduced in [68, §8.6], [69, App. A],
[19], [8]. [23] and [24] for calculating integral transforms, many-body interactions
and solutions to integro-differential equations, all involving n x n dense matrices
whose complexity (the amount of computer operations required to perform a mul-
tiplication by either the matrix or its inverse) is reduced to O(n) by multiscale
techniques.

9. Improved regularization. First, the multiscale solver described above is
likely to require much less regularization than conventional solvers since the main
ill-posedness in the problem is the long term and long range influence of fine-
scale oscillations, while the multiscale large-scale interactions are mediated by
coarse grids, omitting these oscillations. Secondly, attractive regularization devices
are offered by the multiscale processing. For example. statistical theories of the
atmospheric equations yield the relative expected energy at different scales. In
a multiscale processing this can be used to properly penalize any excessive local
energy at every scale, yielding an excellent regularization scheme (which could not
even be formulated in uni-scale processing).

10. Fast assimilation of new data. Normally, new observation data keep
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arriving and need to be assimilated into an already partly existing approximate
solution; i.e., the new data should usually both modify the previous solution and
extend it into a new time interval. The multiscale solver is particularly suitable
for the task: The new data normally does not affect the details of the solution in
much older times; also, these details are normally no longer of interest. Hence, in-
creasingly older times can participate in the new processing on increasingly coarser
levels (still maintaining the fine-to-coarse 7 corrections previously computed for
them). This exactly fits into the windowing algorithm above (Sec. 4). The re-
sulting ease of assimilating new pieces of data may well facilitate a continuous
asstmilation policy, with new data being assimilated much more often than today.

11. Multiscale organization of observation data. Either for the purposes
of the multiscale assimilation procedure, or for a variety of other procedures, it
is very useful to organize the observation data in a multiscale structure. This
may simply mean pointers from a multiscale hierarchy of uniform grids into the
set of data, with finer uniform levels introduced only where there are still more
than a couple of observations per grid cell. Such data structures are commonly
used to facilitate regional computations of all kinds. Beyond this. it is possible
to replace many observations by their average at some larger scale, serving as a
kind of macro-obseration, its associated error estimate being of course reduced
by standard rules of statistics. This can be repeated, to obtain still-larger-scale
representations. Such structures may save much storage, and provide directly the
needs of the multiscale assimilation algorithms.

3. PDE Solvers on Unbounded Domains
(with post-doc fellow Jeffrey S. Danowitz)

As pointed out already in [4, §7.1], problems in unbounded domains can be
solved by a multigrid structure employing increasingly coarser grids on increasingly
larger domains, using an FAS multigrid solver. We have embarked on a detailed
study of how this should be done: At what rate should the domains increase with
increased meshsize? What is the largest needed domain? What interpolation is
needed at interior boundaries (boundaries of a grid h embedded in a larger domain
covered by grid 2h)? What multigrid algorithm should be applied?

For the Poisson equation we have developed theoretical answers to these ques-
tions, then tested them numerically. We have found for example that if the domain
of interest has diameter dg and it is covered by a grid with meshsize hg, then each
coarser grid h (h = 2hg,4hy,...) should cover a domain with diameter d(h) which
satisfies d(h) > do(h/hg)?/? and d(h) > d(h/2) + Chlog hy. Without loss of ac-
curacy one can in this manner cover a domain (the coarsest-grid domain) with
diameter R, spending only O(log R) gridpoints, so R can easily be taken so large
as to admit small enough boundary-condition error. Employing a suitable version

- 18 —



of the A-FMG algorithm [5, §9.6], it has been shown that the accuracy-to-work
relation typical to multigrid solvers of bounded-domain problems can in this way
be obtained for the unbounded domain, where accuracy is in terms of approaching
the differential solution.

The next plan would be to extend this study to non-elliptic equations, in-
cluding high-Reynolds flows, in unbounded domains. However, the continuation
of this project is in doubt, since Dr. Danowitz has left.

4. Standing Waves

(with post-doctoral fellow Ira Livshits)

The aim is to develop advanced and general numerical tools for computing
wave propagation on scales much larger than the wavelength, when there may
also exist interactions with special smaller-scale inhomogeneities where ray rep-
resentations (geometrical optics) would break down. Such tools can revolutionize
important computations, such as: radar cross sections; wave propagation through
dispersive media; seismic wave characteristics resulting from various types of explo-
sion zones; generation and control of acoustic noise; electronic waves in condensed
matter; etc.

We have developed two basic approaches relevant to the problem. One is a
general multiscale solver for integral equations with oscillatory kernels [8], which is
a very efficient way to solve wave propagation in homogeneous (and some piecewise
homogeneous) media (e.g., by replacing the differential equations with boundary
integral equations). Multiscale ray representations first appeared in this work.

The other approach is a fast multigrid solver for the highly indefinite differ-
ential equations of stationary waves in a domain containing many wavelengths,
with radiation boundary conditions.

The model equation we used is the Helmholtz equation
Au(z) + ku(z) = f(z). (4.1)
Traditional multigrid solvers are not effective for this problem, because some “char-
acteristic” components (i.e., those with wavelength close to 2x/k) are non-local

(their size is determined by conditions many meshsizes away) exactly on all those
grids fine enough to approximate such components.

On each of its levels, the new solver represents the solution as

u(e) = 3 4;(2) expliv; (). (4.2)
J
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At the highest level this sum includes just one term and ¢;(z) = 0. so the repre-
sentation includes just one function—the desired solution—and the equation for
it is the usual discretization of (4.1). Increasingly lower levels of the solver employ
on the one hand increasingly coarser grids of z to discretize each amplitude A;(z)
and each eikonal ¢;(z). and, on the other hand, correspondingly finer sets of “mo-
menta” (i.e., more terms j in the above sum). The interaction between these levels
has been shown to yield a solver (for the discrete equations given at the highest
level) which is as efficient as the best traditional multigrid solvers for definite el-
liptic systems. The radiation boundary conditions are naturally enforced at the
lowest level, where the representation essentially coincides with geometrical optics
(ray representation, appropriate for scales much larger than the wavelength).

Details of the one dimensional solver and the first version of the two-dimen-
sional solver are given in [40]. Further improvements of the two dimensional solver
have been worked out over the last year, and are summarized in [60]. They in-
clude: the use of increasingly larger domains at lower levels (for problems given
in unbounded domains; cf. Sec. 3 above): aligning the grid for each A;(z) with
the propagation direction of the corresponding eikonal. its meshsize growing faster
in that direction than in the perpendicular directions; adding a cycle on several
usual coarser levels (i.e., employing direct discretization of (4.1), not of (4.2)), up
to meshsizes about 4k~!; and several other technical corrections.

The plan for the next years is to develop the solver for the variable-coefficient
case k = k(z), and to advance a new setting where only geometrical optics is used
in most of the domain, while the wave equations, as well as intermediate levels
with representations of the type (4.2), are just introduced at special restricted
subdomains where geometrical optic breaks down.

The proposed approach is to use such a multilevel scheme in the local-refine-
ment FAS manner described in [5]. Namely, most of the problem domain is covered
only with lower-level discretization (coarser grids, hence essentially describing rays
of geometrical optics), with nested local refinement (increasingly finer levels, on in-
creasingly narrower subdomains, using eventually the underlying wave equations)
confined to small regions having some small-scale features for which geometrical
optics is inappropriate. In the case of definite elliptic equations, such schemes
have been shown to yield a very efficient structure for local refinement as well as
a fast multigrid solver for the resulting equations. The same could be shown for
the indefinite wave equations. Effectively this will produce ray dynamics in the
large, with relations between rays modified by the finer grids in the small special
regions (e.g., the region of the radar target, diffraction edges, etc.)
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5. Many Eigenfunction Problems: Ab-Initio Quantum Chemistry

(with Ph.D. student Oren Livne and former Ph.D. student Ron Kaminsky)

Some important scientific problems involve the computation of a large number
of eigenfunctions of a partial differential operator. In ab-initio condensed-matter
calculations, for example, a large number of eigenfunctions of the Schrodinger
operator —A + V should be calculated to determine the electron density function
p. Moreover, this particular problem is in fact nonlinear, since the “self-consistent”
potential function V' depends on p, and is also non-local, since V in fact depends
on integrals involving p.

Fast multigrid eigenproblem solvers have been developed long ago [59], but the
ab-initio problem includes new traits and difficulties that call for new multiscale
techniques, such as in the following list.

(1) Singularities. The nuclear potential energy harbors a singularity at each
atomic nucleus (if pseudo-potential is not used). The multigrid solver (unlike
Fourier methods) allows local refinements that would remove the global inaccura-
cies associated with such singularities [4], [5]. [2]. Needs to be studied: high-order
conservative discretization schemes at the boundaries of such local refinements;
procedures to gradually abandon the local refinements as the discretization pro-
ceeds to higher eigenfunctions (outer electrons); etc.

(2) Unbounded or very-large-scale domains can efficiently be treated by multi-
grid solvers which employ increasingly coarser grids at increasingly larger distances
from the region(s) of interest [4], [5].

(3) Self-consistency. The dependence of the potential function V on the total
electronic charge distribution p introduces a nonlinearity into the problems, which
usually requires many iterative applications of a linear solver. Multigrid proce-
dures can directly solve nonlinear problems. as efficiently as solving their linear
counterparts [5]. The development of such one-shot solvers for the Schrédinger op-
erator depends on the ability to update the self-consistent potential as the solution
changes on the coarse grids. This is also related to the following issue.

(4) Multi-integrations are required in calculating the potential (e.g., the Har-
tree potential). This can be performed fast by solving auxiliary Poisson equations.
Solving them by multigrid would facilitate the needed interaction between the
coarse-level moves of this Poisson solver and the coarse-grid updates to the self-
consistent potential in the eigenproblem solver (see #3 above).

(5) External optimization. Whereas in solving the electronic problem the
nuclei are assumed fixed (the Born-Oppenheimer approximation), one actually
needs to find the nuclei positions for which the electronic-solution energy together
with the inter-nucleus potential yield the minimal total energy. This external
optimization would normally be done iteratively, requiring solving the electronic
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eigenproblem many times over. Again, a one-shot multigrid solver 4+ optimizer
can and should be developed, incorporating suitable nucleus moves into each of
the levels of the multigrid electronic solver.

(6) Multitude of eigenfunctions. Even with a multigrid solver, the cost of
calculating a large number N of eigenfunctions (N being the number of electrons
in the system) may grow proportionally to N3 (employing discretizations with
O(N) degrees of freedom), since each eigenfunction is represented separately and
may need to be orthogonalized with respect to all others to ensure their distinction.
A theoretical study of a model problem indicates that it may be possible to reduce
the complexity to O(N log N), by employing a multiscale collective representation
of the eigenmodes.

(7) Multiscale representations may also offer improved expressions for the
exchange correlation potential.

Of all the scaling difficulties listed above, several (those numbered 1,2.3.4,
and partly also #5) have been dealt with in other contexts (similar difficulties in
other fields). So, once multigrid solvers are introduced, the technique for treating
these difficulties will already be at hand.

We therefore focus our research mainly on #6: developing a new multiscale
collective representation and collective calculation of many eigenfunctions. We
have started with the easier, one-dimensional case with linear and periodic poten-
tial function V. without singularities. The eigenfunctions between two energies
are represented by expressions similar to (4.2) above, with increasing separation
between eigenfunctions described on increasingly coarser grids.

We have also developed for a 2D model case. with two nuclei far from each
other and only one eigenfunction, an example of how to perform the external opti-
mization (#5 above) within the multigrid solver. (This work has been discontinued
at this stage, due to the premature departure of Kaminsky.)

In the coming years we plan: (1) to complete the 1D multi-eigenfunction
solver described above; (2) to move to the much more difficult two dimensional
case (similarly to the manner in which the work on standing waves (Sec. 4 above)
has proceeded); (3) to extend the work on external optimization to multi-nucleus
multi-eigenfunction cases (if suitable collaboration, a student or a researcher, join
this effort); (4) to explore the possibilities offered by the multiscale representation
of the eigenspace for efficient discretization of the exchange correlation potential
(#7 above); (5) join forces with others to demonstrate the capability of multiscale
techniques to overcome other obstacles (e.g., #1.2.3 and 4 above).
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6. Fast Evaluation of Integral Transforms on Adaptive Grids

(with post-doctoral fellow Kees Venner)

Multilevel algorithms previously developed for the fast evaluation of integral
transforms such as:

Gu(z) = [ Gla.yuly)dy

(and for the solution of the corresponding integral and integro-differential equa-
tions; see e.g. [19], [8]. [52]) rely for their efficiency on the (asymptotic) smoothness
of the discrete kernel (the matrix) and thereby on grid uniformity. However, in
actual applications, e.g. in contact mechanics, in many cases large solution gra-
dients as well as singularities occur only locally. and consequently a substantial
increase of efficiency can be obtained using nonuniform grids.

A new discretization and evaluation algorithm has been developed which re-
lies on the (asymptotic) smoothness of the continuum kernel only, independent
of the grid configuration. (Asymptotic smoothness roughly means that G(z,y) is
smooth except possibly near @ = y.) This will facilitate the introduction of local
refinements, wherever needed. Also, the new algorithm is faster: for a d dimen-
sional problem only O(sd'H) operations per gridpoint are needed, where s is the
order of discretization and d is the dimension. (Multigrid algorithms with only
O(ds) operations per gridpoint are available for potential-type kernels, yielding
faster evaluations at higher d and s; see §8 in [23].)

The algorithm has been tested using a one dimensional model problem with
logarithmic kernel. For testing purposes, and to compare with results obtained
with the “old” algorithms, uniform grids covering the entire domain were consid-
ered first, see [23]. Next the algorithm was implemented for the actual case of
local grid refinements [24]. Numerical results were obtained for a model problem
where u has a singularity where its derivative is unbounded. First it is shown that
on a uniform grid this singularity “pollutes” the entire approximation. dictating a
much deteriorated relation between work and accuracy in comparison with the reg-
ular case (where accuracy is measured in terms of approximating the continuum
transform, of course). Next we have demonstrated that with the new fast evalua-
tion algorithm on a non-uniform grid one can restore the regular work to accuracy
relation, i.e., obtain the same efficiency as for the case without a singularity.

In the next couple of years the plan is to develop a multigrid solver for integro-
differential equations discretized on adaptive grid, based on the new discretization
and evaluation algorithm. As explained [19], it will again be attempted to show
that the cost of the solver need not be more than a fraction above the cost of
our fast evaluator of the involved integral transform. As previously developed for
PDE systems [4]. [2], [5], self-adaptation criteria based on the local fine-to-course
defect corrections (7) are planned, as well as full integration of the grid adaptation
process into the solver (like the \-FMG algorithm in [5]).
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Future applications with our collaboration are expected in tribology and in
ab-initio electronic structure calculations.

7. Dirac Solvers

(with Ph.D. student Michael Rozantsev)

A major part of lattice field calculations is invested in the inversion of the
discretized Dirac operator Mh appearing in the fermionic action. Solutions of
systems of the form M"¢y" = f are many times called for, either for calculat-
ing propagators or for the fast update of det M (see Sec. 8). These systems,
despite their linearity and good ellipticity measures, are very challenging, due to
their topology-induced singular (or nearly singular) eigenmodes and their disor-
dered and non-commutative coefficients (the gauge field). Our approach, based
on pre-coarsening gauge smoothing and on multiscale iterant recombination, had
previously been applied to the two-dimensional quenched U(1) model (see general
description in [7], our previous summary in [58] and full account in [42]). In the
last 20 months we have been working on the U(1) and SU(2) gauge models in 4D.

For the 4D-U(1) gauge model, general conditions have been formulated under
which the gauge field can be smoothed globally by gauge transformations, hence
a fully efficient multigrid solver can, and has been, constructed. These conditions
are not satisfied. however, in two kinds of topological situations. In the first kind,
the total topological charge over the domain does not vanish. In this case the field
can be smoothed everywhere except for a certain local neighborhood which can
easily be shifted away to any other place by gauge transformations, so that good
intergrid transfers can be formulated locally. This is enough for obtaining nearly
top multigrid efficiency.

The second topological case is more severe. It features gauge-field disconti-
nuity along some non-local path (called “string”) in the domain. This string can
be shifted by gauge transformations. except for its ends. So we have at least two
local discontinuities which cannot be shifted away. If not treated they lead to
critical slowing down (CSD) of the solver. The number of slowly converging com-
ponents introduced by the string is small, however, so they can be eliminated by
recombining iterants [42], [21] together with local relaxation passes added around
discontinuities. With these devices the convergence is still slower than in the ab-
sence of a string, but it seems free of CSD. We suspect that with wider regions
of local relaxation the full efficiency may be restored; unfortunately, our domains
were not wide enough for testing this.

Indeed. a severe problem in our entire work on these 4D models is the huge
amount of computer time needed to produce reasonably sized, well equilibrated
gauge fields on which to test our solvers.
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In the case of the 4D-SU(2) model, it is not yet clear what the best gauge-
smoothing gauge fixing is. We have found a fast algorithm for Landau fixing, but
the resulting gauge field is not always smooth. Although the topological nature of
the remaining discontinuities is not yet clear, it seems that the above techniques
(iterant recombination and local relaxation passes) eliminate CSD here too.

In the next two years we plan to continue working on the above models and
to investigate also the 4D-SU(3) model.

8. Fast Inverse-Matrix and Determinant Updates

(with programmer Ruth Golubev and Ph.D. student Michael Rozantsev)

In parallel to the development of the multigrid fast Dirac solvers (Sec. 7),
work has been progressed on methods for using multigrid solvers for constructing
an inexpensive structures of the inverse Dirac matrix, allowing fast self-updating
upon each change in the matrix itself (each gauge update). This will allow fast
updating of the fermion propagators and the associated determinant (needed for
the action of the unquenched Monte Carlo simulations). The general approach
was first described in Sec. 12 of [61].

For a large lattice with N sites and meshsize h. the storage of the Dirac
inverse matrix (M")~! would require O(N?) memory and O(N?) calculations,
even for fully efficient multigrid solvers. Using the following multigrid structure,
both can be reduced to O((I + 5_1/l)dN), where ¢ is the relative error allowed in
the calculations and [ is the interpolation order below.

Denoting the propagator from gridpoint z to gridpoint y by ((.7\/[}1)_1);,;&7
for sufficiently smooth M" the I-th “derivatives” (difference quotients) of this
propagator, with respect to either x or y, decay as O(|z — y|_1_l). Therefore, an
[-order interpolation of the propagator from grid 2h to grid h will have at most
O(R!(|x — y| — 1h/2)7") relative error, which will be smaller than & in the region

2 —y|/h>K=Ce Y 412,

where C is a (small) constant. Hence, propagators with |z —y| > K& need be stored
on grid 2h only, except that, for a similar reason, those of them with |z —y| > 2Kh
need actually be stored only on grid 4h; and so on.

This structure can be immediately updated upon changes in the gauge field.
Changes in propagators described on grid 2k (associated with relaxing the smooth
changes in the gauge field) affect those described on grid h through a FAS-like
interpolation (it means correcting é" by Iélh(qﬁwl — I}%h th), where II{{ denote in-
terpolation from grid h to grid H; except that here one interpolates both in = and
in y). The cost per update is O(1), i.e., independent of lattice size.
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With (jWh)_l thus monitored, one can inexpensively calculate changes in
log det M". For a small change §M" in the gauge field

Slogdet M = Tr((M")~LoM™), (8.1)

which can be computed locally, based on ((lwh)_l)w, y for neighboring (z,y). For
larger changes one can locally integrate (8.1), since the local processing also gives
the dependence of (lWh)_l on §M". Again, the amount of calculations per update
does not depend on the lattice size.

Simplified model. The approach described above was first developed for model
matrices with a simplified structure: matrices M”" arising from discretizing on a
lattice with meshsize h the random diffusion equations Lu = f, where

Lu(e.y) = glote. ) 5ou(e ] + e y) 5 ute.y)]

and the discrete analogs of the diffusion coeflicients a(x, y) and b(z, y) have random
values, uniformly distributed in (0, 1).

In the methods developed, “central” terms of the inverse matrix (lwh)_l,
together with similar central terms of (1W2h)_1, (1\l4h)_1, ... are calculated and
stored; where a central term of the matrix (MT)~1 is a term ((*MH)_l)z’j for
which 7 and j are neighboring sites on lattice H. It has been shown that this
structure can update itself, upon changing one of the terms of JMh, in just O(1)

operations, i.e., amount of work independent of the lattice size.

The exact number of operations depends on the number of central terms
(i.e., number of neighbors for each given site) kept in the system, which in turn
depends on the accuracy at which one needs the most central (nearest neighbor)
terms. Actually, for the purpose of fast determinant updates, important is the
accuracy at which certain differences of the most central terms are calculated.
The relation between this accuracy and the number of terms to be kept in the
system has been thoroughly studied by us.

Having clarified these issues for the model problems. we are in the process of
studying them for the 2D-U(1) Dirac equations.

9. Monte Carlo Methods in Statistical Physics

(with Ph.D. students Meirav Galun and Serges Shmulyian and with part-time re-
searcher Dr. Dorit Ron)

The goal is the systematic development of advanced multigrid Monte-Carlo
methods in statistical mechanics, quantum mechanics and quantum field theory.
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The research has been done in collaboration with groups headed by Prof. Gerhard
Mack (Hamburg University), Prof. Sorin Solomon (Hebrew University), Dr. Klaus
Pinn (Minster University) and Dr. Martin Hasenbusch (CERN, Geneva). The
main objective is to overcome, for increasingly more interesting models, the basic
complexity factors plaguing these fields: the critical slowing down (CSD) and the
volume factor (as well as the factors arising from propagator calculations and
fermionic interactions. a separate research for which is described in Secs. 7-8
above). For this purpose we methodically learn how to construct increasingly
coarser Hamiltonians, with bounded complexity per coarse-level degree of freedom
and such that allow the full physical mobility at the corresponding scales. If fully
successful in eliminating the CSD and the volume factors, such Hamiltonians may
also directly yield the macroscopic dynamics of the system.

The elimination of both the volume factor and the CSD factor means that a
thermodynamic limit can be calculated to an accuracy € in only

O(0?e™?)

computer operations (where o is the standard deviation of the observable in ques-
tion), independently of the lattice size (“the volume”) required to obtain the e
accuracy. Such a performance we call “ideal MC performance”, since this is just
the same order of complexity as needed to calculate, by statistical trials, any simple
“pointwise” average. such as the frequency of “heads” in coin tossing.

Ideal performance has first been demonstrated for Gaussian models with con-
stant coefficients [34], [17]. It has been shown there, for the one-dimensional Gaus-
sian model, that the susceptibility can be calculated to accuracy € in about 402¢~2
random number generations, while the average energy per degree of freedom re-
quires 302¢™2
the algorithmic flow (as determined by the multigrid cycle index) should gener-
ally depend on the observable being calculated. In the two-dimensional Gaussian
model, the susceptibility can be measured to accuracy € in about 2002¢ 2
number generations. In the one-dimensional massive Gaussian model, the sus-
ceptibility can be calculated in less than 8c2e?2
independently of the mass size, although the algorithm flow may change with that

size [15].

€~ “ such generations for a similar accuracy. It has also been found that

random

random generations, essentially

Recently, the multigrid algorithms were extended, using new analysis meth-
ods, so that they would have the ability to eliminate the volume factor in more
advanced models.

For the variable-coupling Gaussian models, we have shown that in order to
reach ideal performance, the algorithm should employ during the multigrid cy-
cle weighted interpolation and variable sampling (the Monte Carlo process should
sample more frequently regions with smaller coupling values). Such algorithms
have been implemented for strongly discontinuous cases in one and two dimen-
sions. (“Strongly” means that the couplings may change by orders of magnitude
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between adjacent regions.) For the one dimensional variable-coupling Gaussian
model, the susceptibility is calculated to accuracy e in less than 80%e 2
number generations. In the two-dimensional variable-coupling Gaussian model,
the susceptibility can be measured in less than 2002¢~2 random generations [16].
These results are independent of the maximal ratio between strong and weak
couplings. unlike the severe extra slowness that large such ratios can inflict on

random

pointwise Monte Carlo.

The development of an optimal algorithm for the variable-coupling Gaus-
sian model provides an important tool for general non-linear models, where non-
constant couplings stochastically emerge at coarser levels of the multigrid Monte
Carlo processing.

Doubts have been raised whether ideal MC performance can be obtained
for non-linear models, where large-scale fluctuations are highly correlated with
small-scale fluctuations. By applying the new analysis methods to the nonlinear
anharmonic crystal model we have shown, and confirmed by actual simulations,
that, upto a certain (small) €, performance similar to that of the Gaussian models
can still be obtained, although it requires careful choice of the multigrid cycling
parameters [33]. Such performance is realizable because the large-scale fluctuations
depend only on some averages of the small-scale fluctuations, and these averages
are approximated well enough at any single fine-level configuration.

For a sufficiently small e, however, and for models sufficiently dominated by
the anharmonic term, both the anlaysis and the numerical tests show that ideal
performance can no longer be obtained by a multigrid process which employs our
weighted linear interpolation. Instead we have tried a minimization interpolation.

This interpolation is best defined in terms of the Full Approximation Scheme
(FAS; cf. Sec. 7.1 in [22]), where the coarse-grid variables represent the full current
configuration (i.e., the sum of a coarsened representation of the current fine-grid
configuration and the current coarse-grid correction) instead of just the current
coarse-grid correction. To define a value ug at a fine-grid point based on coarse-
grid values (u7,us,...), the minimization interpolation method is first to calculate
Uo(uy,uz,...), defined as the value of ug that would be obtained by some, exact
or approximate, local Hamiltonian minimization with the value of (uy,us,...)
being held fixed. Then, to retain statistical detailed balance, the minimization-
interpolation value is defined by

ug = Ug(uy,ug.,...)+ @ — Up(ty,ds,...). (9.1)

where the @; were the values of the variables at coarsening, i.e., at the last transi-
tion from the fine level to the current coarse one.

Two-level unigrid experiments with the anharmonic crystal model have shown
that the volume factor. along with the CSD. can be completely eliminated with
an eract minimization interpolation. However, this interpolation creates a com-
plicated coarse-level Hamiltonian, so we now examine simple approzimate mini-
mization interpolations.
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The situation is even less convenient where topological structures are present,
because large-scale topologies may be correlated to specific fine-scale features,
such as vortex centers. Also, linear-like interpolation of spinors is problematic.
Various types of attempts to attain ideal performance for two dimensional non-
linear o models (several of which are described in [47]) have failed. Nevertheless,
we have developed a variety of new stochastic coarsening procedures by which
partial elimination of the volume factor can be achieved. These procedures in-
clude: a way to associate the introduction of linear (or linear-like) interpolation
with a certain probability of reducing adjacent coupling strength; smart choice
of the interpolation in a neighborhood depending on local features at coarsening;
stochastic simplification of the derived coarse-grid Hamiltonian; and introduction
of less restrictive stochastic interpolations [47]. Most of the developed schemes are
applicable to specific cases of XY and Manton’s models, while some are universal
for any O(N) model. (A partial elimination of the volume factor for Ising models
was previously obtained by the three-spin coarsening technique [7], [17]).

Specially devised two-grid numerical experiments have demonstrated that the
designed techniques are capable of eliminating the volume factor almost completely
at low temperatures of the XY and Manton’s model, and partially in the O(4)
model as well as in the critical region of the XY model. The non-optimality of
the latter results have been attributed to the insufficient accuracy in representing
and sampling some of the statistically important features by means of currently
employed interpolation and stochastic coarsening procedures.

In the next years we will not abandon our drive to attain ideal performance
(leading to macroscopic processing) for advanced nonlinear models. We will pursue
various lessons learned from our past failures, including in particular the need to
introduce new types of coarse-level variables and to have the coarse-grid Hamilto-
nian depending not only on the current fine-grid configuration, but also on certain
statistics accumulated over all previous cycles.

10. Molecular Mechanics

(with Dr. Dov Bai (partly supported by the US Awr Force), past Ph.D. student
Gershon Hochman and post-doc fellow Leonid Zaslavsky)

10.1 Background and objectives

Molecular mechanics (or dynamics) is becoming a major tool of theoreti-
cal chemistry, with immense practical potential in medicine, material design and
biotechnology. The Born-Oppenheimer approximation to the potential energy
E(r) as function of the n atomic positions r = (r1,72,...,rn) can be imagined
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as the objective functional of these calculations, the electrons being implicit. Ex-
plicit approximation to E(r) as sum of various few-atom interactions is derived
by accumulated computational experience, compared with finer-scale calculations
(e.g., “ab-initio” quantum chemistry) and with molecular measurement data (crys-
tal structure geometries, vibrational spectroscopy, heats of formation, etc.). The
most common few-atom interactions are of the following two kinds: (1) The bond
interactions between chemically-bonded atoms, including three types: length (dis-
tance) interaction between 2 atoms, angle interaction between 3 atoms and torsion
interaction between 4 atoms. The first is much stronger than the second, which
in turn is much stronger than the third. (2) Non-bond interaction, including the
short-range Lennard-Jones and hydrogen-bond terms and the long-range Coulom-
bic potential.

The aim of the calculations is usually either statics (finding the configura-
tion r which minimizes E), or dynamics (calculating trajectories r(¢) which sat-
isfy Newton law —VE(r) = M7 where M is the diagonal matrix of masses),
or equilibrium statistics (average properties under the probability distribution
P(r) ~ exp(—E(r)/kgT)). where kg is the Boltzmann constant and T is the
absolute temperature).

The computing cost of current molecular dynamics algorithms rises very
steeply with problem size, restricting the modeling efforts to relatively small
molecular ensembles and to time intervals many orders of magnitude smaller than
needed. Model studies have indicated that this steep rise in cost can be radically
reduced by combining several types of multiscale approaches. Our research ob-
jective is to develop these approaches and demonstrate their ability to perform
the above computational tasks in computing times that rise only linearly with
the number n of atoms in the system. Moreover. the long term aim is to blend
statistical approaches in the small (for the high-frequency molecular oscillations)
with deterministic dynamics or statics in the large (see Sec. 10.6 below), and to
derive macroscopic equations at increasingly larger scales, leading eventually to
continuum-level processing.

10.2 Research steps

The computational-complexity factors arising in molecular mechanics, and
the multiscale approach for dealing with each of them. were already specified in
[58]. The outlined multiscale techniques included: fast (O(n)) summation of all
electrostatic interactions; increasingly coarser molecular motions (corresponding
to collective atomic motions at increasingly larger scales), either for energy min-
imization or in Monte-Carlo simulations; multiscale annealing (similar to that
developed in [22] for spin glasses); and multiscale eigen-bases for normal-mode
analyses.

To investigate in detail each of these techniques, a systematic study of model
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problems has been undertaken. Unlike the common methodology of starting a re-
search on molecular algorithms with small molecules and advancing to increasingly
larger ones, the development of multiscale techniques necessarily employs at each
stage molecules of variable size n. starting with very simple potential functionals
and advancing to increasingly more complicated ones, progressing also from simple
geometries (e.g., stretched homogeneous chains, then simple helics) to increasingly
more realistic ones. At each stage just one new type of difficulty should be added,
and the study objective is to still obtain the linear (O(n)) complexity. This re-
search strategy is necessary since linear complexity and large-scale processing are
indeed our ultimate aims. and since at small molecular systems the advantages of
multiscaling cannot be observed.

10.3 Fast summation of forces

Direct summation of all the electrostatic interactions between N particles
costs CN? computer operations, where C is around 10. Instead, several methods
exist to sum the forces in just C1 N operations (see, e.g., survey [35]). although note
that in three dimensions C; > 10%, so these methods become advantageous only
for N > 103. A multiscale method for fast summation, suggested in [8] (based on
an idea described earlier in [68], [61] and [19], and related to the methods discussed
in Sec. 6 above), is being used by us. It is based on a decomposition of the two-
particle potential into a local part and a smooth part. the latter being evaluated
at larger scales (interpolated from coarser grids), where a similar decomposition
is being recursively used. One advantage of this approach is that it gives the
kind of multiscale description of the force fields which is needed for the efficient
multiscaling of atomic motions (cf. the use of this decomposition in Secs. 3.2, 3.5

and 3.7 of [6]).

Numerical experience with applying this approach to particle problems has
been gathered by our Ph.D. student G. Hochman a couple of years ago, but to
date, unfortunately, it has not been properly summarized. (Hochman left before
finishing writing his thesis. )

10.4 Fast macromolecular energy minimization

Energy minimization serves here two somewhat different objectives: one in
statics, the other in dynamics. In statics, the objective is to calculate the lowest
energy E(r), yielding the most stable conformations of the molecular structure.
In dynamics, the objective is the solution of the system of equations arising at
each time step of smplicit dynamics simulations. “Implicit” refers to the method
which evaluates the forces —VE(r) at each time step (partly or wholly) in terms
of the particle arrival positions, i.e., positions r at the end of the step. This
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method ensures stability of very large time steps, but it does not yield the arrival
positions explicitly. Instead, they should be calculated by solving a large system
of equations. (Also, this method damp molecular vibrations at scales not resolved
by the large time step; we return to this point below.) Solving the implicit system
of equations is equivalent to minimizing an augmented energy functional, identical
to E(r) except for an additional quadratic kinetic term (cf., e.g., [41] or the more
sophisticated functional H in Sec. 10.6 below). For large time steps this additional
term is locally very small, but its large-scale effect is still profound.

Our first stage of developing multiscale molecular energy minimizers has been
described in [6], along with details of future plans. Starting with a two-dimensional
model having only bond-length and bond-angle interactions, we constructed linear-
time (O(n)) minimizers, assuming a reasonably good first approximation. We
also showed that conventional atom-by-atom minimizers would instead require
0(7136_1) operations, where € is the weak-to-strong ratio of the two kinds of in-
teractions, properly scaled. (In real 3D models, the bond-torsion interactions are
weaker by a factor € ~ 1073 compared with the bond-length.)

Some general rules have been learned at this stage that continue to guide our
work with more advanced models. The most important rule is a general procedure
for deriving numerically the coarse-to-fine interpolation of displacements. This
procedure is based on a local set of atoms around the region where interpolation is
to be defined. The interpolation expresses approximate relations satisfied by the
minimal-energy configurations of this set, written as functions of the positions of
the subset of atoms chosen to belong to the coarse level.

The model we are currently studying in detail is a three-dimensional helical
chain of atoms featuring all the three bond interactions. The rules previously
learned had to be updated and supplemented, mainly because of the strong effects
of nonlinearity coupled with the great disparities of interaction strengths. the most
important general lessons are the following.

Relazation should be such that it converges fast all the stronger (bond-length
and bond angle) interactions. One can test this property by running cases where all
other interactions are set to zero. To achieve this property, simultaneous relaxation
steps of several (e.g., 3) neighboring atoms at a time is required, and each step
should be done in a certain hierarchical manner.

Coarse-to-fine interpolation must freeze all the strongest (bond-length) inter-
action, and all but smooth variations of the next-stronger (bond-angle) interac-
tions. This rule dictates an upper bound to the number of degrees of freedoms
that can be employed at the coarser level.

The coarse-level energy functional should be written in terms of internal co-
ordinates (distances, angles, etc.—similar to the original fine level energy) and
not directly in Cartesian coordinates. This yields much larger ranges at which
force linearizations remain valid. The resulting coarse-level functional again has
stronger and weaker interactions, which should be exploited in the next coarsening
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step.

Role of temperature is critical. Even when all except for three atoms are fixed,
there may exist several local energy minima. The stochasticity introduced by, e.g.,
room temperature, makes the transition between these minima trivial. This is one
of the main motivations for a new approach, described below (Sec. 10.6).

10.5 Monte-Carlo methods at equilibrium

To calculate equilibrium statistics, an atom-by-atom Monte-Carlo process is
usually performed. In this process, each atom in its turn changes position stochas-
tically, according to the probability density distribution P(r). Making repeated
sweeps of this process, one can calculate the desired statistics on the sequence of
produced configurations.

To calculate accurate averages of some observable, however, an extremely long
sequence of configurations is needed. There are two basic reasons for this com-
plexity: (1) Due to the local nature of the Monte-Carlo process, only very slowly
it affects large-scale conformational features, hence extremely many Monte-Carlo
sweeps are needed to produce each new, statistically independent configuration.
(2) Many such independent samples are needed to average out the deviation ob-
served at each of them.

For some very simple model problems, multigrid Monte-Carlo algorithms were
developed which overcome both these complexity reasons (see [7], [17], [15], [16] and
[33]). The algorithms are similar to the multiscale energy-minimization algorithms
discussed above, with the following three modifications.

(a) The Gauss-Seidel relaxation (atom-by-atom minimization) sweeps should
be replaced by atom-by-atom Monte-Carlo sweeps.

(b) The approximation of the Hamiltonian (energy functional) E in the coars-
ening process should be done in a stochastic manner, to retain the statistical fi-
delity (the “detailed balance”). Methods to achieve this are highly nontrivial, and
may require careful research and development. However, in view of the approxi-
mate nature of the molecular-mechanics Hamiltonian to begin with, exact detailed
balance may not be required, as long as statistical fidelity is retained in the limit
of very smooth fluctuations. This can be achieved more easily.

(¢) The multiscale cycle should switch many times back and forth between
coarse levels, before returning to finer levels. In this way many samples of large-
scale features can be averaged over. Not so many passes are needed at the finer
scales, because many fine-scale features are already present, and hence averaged
over, in any one configuration.
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10.6 Small-scale statistics with large-scale dynamics

The multiscale structure allows the combination of statistical simulations at
small scales with time-accurate dynamics at large scales. For this purpose the
multiscale minimizer discussed above should be modified in two ways.

First, the time-step discretization should be such that it gives accurate (non-
damping, energy conserving) approximations for all scales whose time-accurate
dynamics need be simulated.

Secondly, at all finer scales (finer levels of the multiscale solver), the Gauss-
Seidel relaxation sweeps should be replaced with Monte-Carlo sweeps. for example
in the following manner.

Stochastic implicit time stepping. A first-order implicit discretization
to Newtonian Dynamics, leading from old positions r¥ = r(t) and old velocities
v? = v(t) to new positions ' = r(t + ¢t) and new velocities v! = v(t +6t), is given
by vl = (r! —#0)/6t and M(v! —v°)/6t = —VE(r!). This set of equations in r!
and v! is equivalent to the minimization of the functional

1
H(rl,vl) = E(r) + wl Muw + Z(v1 — 'UO)TJW(vl — ’UO)

where w = (vl +v%)/2 — (#1 —+9)/6t. In our stochastic dynamics, instead of
minimizing H at each time step, we perform a Monte Carlo simulation with the
probability distribution

P(Tl,‘vl) _ e—ﬁH(rl,Ul)

On the finer scales of the multiscale cycle we take g = (kBT)_l, where T is the
real temperature of the system. At increasingly coarser scales 3 increases. leading
to practically deterministic large-scale dynamics.

This approach yields two benefits in performing very large time steps: first, it
allows much easier handling of local minima (see Sec. 10.4). Secondly it avoids the
killing of highly-oscillatory modes (the unresolved vibrations), which would occur
if the implicit equations of a large time step were imposed at all scales. Instead,
these modes assume stochastic amplitudes, nearly according to their equilibrium
probability distribution. The desired temperature is introduced very directly in
this way (the fast atomic vibrations serve as a natural heat bath), getting around
the need for fabricating Langevin stochastic forces.

Tests with this scheme on model problems with quadratic potential show the
expected behavior, except that the stochastic treatment at fine levels gradually
introduces deviation from deterministic evolution also at large scales. We learned
how to control this deviation by “distributive Monte Carlo” (similar to distributive
relaxation [5]), forcing fine-scale moves to be as nearly orthogonal to large-scale
moves as desired.

The testing and development of this technique has not yet been properly
concluded, nor summarized, due to the premature leave of Dr. Zaslavsky.
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10.7 Next plans

We intend to further develop the stochastic implicit time stepping and inves-
tigate its properties on the same sequence of model problems for which we have
developed coarsening techniques.

To our three-dimensional models with bonding interactions we will next add
Lennard-Jones terms, using long-chain alkane models, where comparisons with
measurements are already available [48]. We will try to demonstrate time steps on
the order of 107'2 seconds (instead of the current state-of-the-art 10715 seconds).
Later, by adding further levels of coarsening, even larger time steps will be studied.

To climb the scales successfully, at each level of coarsening a specific study
will be needed to answer the same type of questions: how to represent the energy
functional, which are the stronger interactions. which are the weaker, etc. This
will require new levels of collaboration with professional computational chemists.

11. Early-Vision Algorithms

(with former Ph.D. student Jonathan Dym, M.Sc. student Eitan Sharon and in
collaboration with Weizmann Institute Senior Scientist Ronen Basri)

Over the past several years, fast multiscale approaches for some early vision
tasks, such as edge detection and surface reconstruction from sparse, noisy or
blurred data, have been developed at the Weizmann Institute [32]. In particular,
multiscale methods for enhancing and detecting straight features (straight edges or
straight fibers) have been demonstrated [13], [14]: They detect all such features,
of all widths and lengths, in just O(N log N) operations, where N is the number
of pixels in the picture.

For detecting curved features (edges or fibers), a variety of approaches have
been proposed. One good example is the completion fields. In this approach,
each pair of straight features, one called “source”, the other “sink”. induces a
“completion field”, based on the “energy” of cubic splines between them. The
field is three dimensional; i.e., it is the function of the (two dimensional) location
and the orientation (at each location). It is roughly the product of the field of
the source times that of the sink, where each of these factor fields is likewise three
dimensional, qualitatively similar to the field of a magnetic dipole. It is shown
in [54] that such completion fields are biologically plausible, and give eye-pleasing
curves. They are particularly powerful in completing curves partly occluded by
large objects. The method however has several severe shortcomings. which can be
overcome by multiscaling.

Indeed, multiscale methods can contribute to the process in two fundamental
ways. First, the method as described in [54] would require O(m*n?) computer
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operations for the completion of a full field with m xm locations and n orientations,
reaching trillions ops/picture; multiscale methods, resembling those of [8], will do
the same job in O(an) operations, while retaining the same (very high) degree
of computational parallelism.

Secondly, still with this low cost, the multiscale processing can produce much
better completion fields, due to the following three factors.

(1) Multiscale control. For each scale, the multiscale processing can choose
different field-of-influence parameters (e.g., the parameter of field attenuation as
function of distance from the source), thus overcoming basic scaling flaws in the
previous, uni-scale algorithms. Indeed, the field produced by a long source should
be very different from (farther reaching and more orientation-specific than) the
sum of the fields of shorter sources composing it.

(ii) Multiscale input. For each scale, the multiscale algorithm can use different
sources and sinks. Thus, for large-scale completions, the sources and sinks should
be longer and with better orientational resolution than for small-scales. This kind
of multi-resolution is exactly the kind resulting from our straight-feature algorithm
[14], [13]. The multiscale input is expected to give more suitable completion fields
and further cost reductions. (On fine levels, only low orientational resolution will
be, and logically need be, used. Thus the value of m?n mentioned above will be
radically reduced.)

(iii) Multiscale output. The multiscale structure of the orientational brightness
field produced by the multiscale algorithm is a very desirable structure to interact
with the higher vision processes of labeling and segmentation, whether or not the
latter are themselves multiscaled.

A detailed study of multiscale completion fields, their parameterization and
fast implementation is summarized in [45].

The plan is to test the resulting multiscale algorithms on a variety of pictures,
and then to investigate intriguing possibilities of combining these algorithms in a
variety of ways, such as:

(1) Iterating a multiscale algorithm, with the output of the first iteration (e.g.,
the sum of the completion fields) being used in forming the input (e.g., the sources
and sinks) for the next iteration. This can be done in various manners: linear,
nonlinear, with or without thresholding.

(2) Using the output from one scale in forming the input for the next coarser
scale.

(3) Using the output of one kind of multiscale algorithm in forming the input
to another.

(4) Thresholding after the previous iteration, one can use in the next iteration
several different algorithms, due to the smaller set of data. Furthermore, one can
afford at this stage more specialized algorithms, such as circle and corner detection.
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The latter can and should also be multiscaled.

Also planned is the development of multiscale picture segmentation. The
currently leading idea is to block pixels in small-scale aggregates. which will then be
blocked in larger-scale aggregates, then still larger, etc. At each scale, the criteria
for blocking will include similarity in color levels and textures (being defined at
coarser scales as statistical properties of finer scales), as well as avoidance from
blocking based on the existence of edges of that same scale. This will directly
benefit from the multiscale structure of edges that results form the aforementioned
multiscale edge-detection algorithms.

12.  Tomography: Medical Imaging and Radar

(with post-doctoral fellow Jordan Mann and M.Sc. students Matthew Brodsky and
Faina Shmulyian)

To develop multiscale computational methods for tomography, we have started
by working on the two mathematically extreme cases: X-ray tomography, requiring
the inversion of the sharp radon transform, and impedance tomography. requiring
inversion of a very diffusive process.

Reconstruction of a function of two or three variables from its Radon trans-
form has proven vital in computed tomography (CT), nuclear magnetic resonance
(NMR) imaging, astronomy, geophysics, and a number of other fields [31]. One
of the best known reconstruction algorithms is the convolution backprojection
method (CB), which is widely used in commercial medical CT devices [31] (with
“rebinning” for divergent-beam projection [37]). Recently, it has been applied
to spotlight-mode synthetic aperture radar (SPSAR) image reconstruction [37].
While CB provides good reconstruction relatively efficiently, it is still too slow for
some purposes, requiring large computational resources and limiting the ability of
CT machines to produce real-time 3-D images or video. A faster technique, based
on direct Fourier method yields images of much poorer quality.

For other medical imaging and radar problems, where the Radon transform
is inapplicable, the performance of existing algorithms is still worse. This includes
the Positron Emission Tomography (PET), impedance tomography, ultrasound
and similar medical imaging techniques which suffer from high image blurring
(see, e.g., [36]). The same is true for general types of Synthetic Aperture Radar
(SAR) reconstructions.

A new multi-level approach to the inverse Radon transform (X-ray tomog-
raphy) was developed by us several years ago. While the backprojection of the
conventional CB raises the computational complexity of the method to O(N3)
for an N x N images, we have developed a novel O(N? log N) backprojection al-
gorithm, based on a multiscale approach. and an accompanying post-processing
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procedure [20]. Empirical results show that the combined method produce better
images than those produced by classical CB. in far less time.

Less advanced is our research program in multiscale approaches to diffuse
tomography. The work, summarized in an M.Sec. thesis [46], is a first step in
developing a fast multigrid solver to the impedance tomography problem.

This is an inverse partial differential problem. where the variable electrical
conductivity in a body is to be found from a sequence of measurements on its sur-
face (or on some part of it). Each measurement gives the potential over the surface
generated by a given distribution of input currents. This inverse-conduction prob-
lem, first described by Calderon [30], is notoriously ill-posed, requiring some kind
of regularization [1]. In [46], the problem, its regularization and its discretization
are described in detail, together with a fast multigrid solver for the direct discrete
problem and for some special cases of the inverse problem. It has been shown for
these cases that the inverse problem can be solved in the same (high, multigrid)
speed of the direct solver.

Research plans. As mentioned, for the inverse Radon transform. a very ef-
ficient approach has already been developed [20]. Its improvement, including in
particular an adjustment of the post-processing part to concrete CT machines,
belongs already to commercial implementations.

On the other hand. the development of a similar fast method for general
SAR reconstructions, especially for those where the antenna motion (in airplane
or satellite) cannot be neglected (bringing Doppler shifts and nonlinearity into the
problem), are far from trivial extensions, and require a new approach, which we
have started to investigate.

We also plan to resume our development of an impedance-tomography solver,
with a new M.Sc. student (Rima Gendlin).
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