Statistically Optimal Multigrid Algorithms
for the Anharmonic Crystal Model

A. Brandt & M. Galun

Dept. of Applied Mathematics & Computer Science
The Weizmann Institute of Science

Rehovot 76100, Israel

Abstract

Two types of multigrid algorithms for the one dimensional anhar-
monic crystal model are presented. The first type applies linear in-
terpolation operators and the second type applies nonlinear interpo-
lation operators with approximate Hamiltonians on coarse grids. For
both algorithms, the question of eliminating the “volume” complexity
factor is examined, i.e.. the feasibility of the algorithm to remove the
need to produce many independent fine-grid configurations for aver-
aging out their statistical deviations, so that thermodynamic limits
can be calculated to relative accuracy e, in just 0(5;2) computer
operations, where ¢, is the error relative to the standard deviation
of the observable. The main difficulty arising in the nonlinear anhar-
monic crystal model is the coupling between different scales. In this
paper, it is shown by analysis and numerical tests that the multigrid
algorithm with the linear interpolation operators can eliminate the
volume factor only partially, i.e., upto a certain accuracy. A multigrid
algorithm with nonlinear interpolation operators that can eliminate
the volume factor completely is described in details and tested exper-
imentally.

KEY WORDS: multigrid; Monte Carlo; critical slowing down; volume
factor; statistically optimal algorithm; thermodynamic limit; anhar-
monic crystal model; approximate minimization interpolation opera-
tor.



1. Introduction

One of the aims in statistical physics is to calculate various average properties
of configurations governed by the Boltzmann distribution. This is usually done
by measuring these averages over a sequence of Monte Carlo iterations. Unfortu-
nately, such processes tend to suffer from several independent inefficiency factors
that multiply each other and thus produce very expensive computations.

The best known of these inefficiency factors is the critical slowing down (CSD).
This is the phenomenon, typical to critical systems, that with the increase in lat-
tice size there also comes an increase in the number of full Monte Carlo passes over
the lattice needed to produce a new configuration which is statistically “useful”,
i.e., substantially independent of, or only weakly correlated to, a former config-
uration. More precisely, the process requires O(N?) Monte Carlo sweeps, hence
O(Nd+z) computer operations, to create a new independent configuration, where
N is the linear lattice size, d is the dimension and z > 0 is the CSD exponent (typ-
ically z & 2). Considerable efforts have been devoted to reduce the critical slowing
down. For simple cases with real variables, classical multigrid methods (6,13.19)
can eliminate the CSD (i.e., obtain z = 0). For more complicated models, (e.g. ot
nonlinear o-models or discrete models) more recent publications report on simu-
lation techniques that partially (7.8,9,13,20.21,22.24) ;. completely (1,14,15,16.18,25)
eliminate the CSD. This means that the computer work to produce an independent

configuration is proportional to the number of gridpoints, i.e., O(Nd) operations.

In addition to the CSD factor N?. there is another, no less important factor of
slowness: namely, the above N factor, called the volume factor. Indeed. to cal-
culate a thermodynamic quantity to a certain relative accuracy ¢,, one needs to
produce 0(5;2) essentially independent configurations to average out the devia-
tion exhibited by each of them, where the relative accuracy &, is the error relative
to o, the standard deviation of the observable in question. Also, the size N? of the
grid must increase as some positive power of 1. Thus, even if the CSD has been
completely eliminated, the overall work increases as O(e;QNd). An important
advantage of the multigrid approach is that it can drastically reduce the volume
factor N? as well, by averaging over many samples produced on coarse levels of
the multigrid cycle. Actually, although there exists a coupling between different
scales, we will show below that by suitable cycling and interpolation procedures
one can completely remove both the volume factor and the CSD.

The simultaneous elimination of the volume factor and the CSD factor means that
a thermodynamic limit can be calculated to an accuracy of +e in “statistically
optimal time”, 1.e. in only 0(5;2) = 0(025_2) computer operations. This is
just the same order of complexity as needed to calculate, by statistical trials,
any simple “pointwise” average, such as the frequency of “heads” in coin tossing.
An algorithm that can calculate a thermodynamic limit to an accuracy of +e
in statistically optimal time is called “statistically optimal algorithm”. In other
words, a statistically optimal algorithm effectively produces an independent sample
in just O(1) computer operations. By contrast, both the volume and the CSD
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factors multiply the statistical factor (025_2) in the operation count of conventional
algorithms.

The elimination of the volume factor has first been demonstrated (2511 for the
Gaussian model with constant coefficients. It has been shown there, for the one-
dimensional Gaussian model, that the susceptibility can be calculated to accuracy
& in about 4¢ 2 random number generations, while the average energy per de-
gree of freedom requires 3¢ 2 such generations for a similar accuracy. In the
two-dimensional Gaussian model. the susceptibility can be measured to accuracy
&y in about 20,2 random number generations. Then, we have shown for the one
dimensional massive Gaussian model (3) that the susceptibility is calculated to
relative accuracy &, in less than 85;2 random generations, essentially indepen-
dently of the mass size, although the algorithm flow does change with that size.
Moreover. results as good as those previously obtained (2.3.5.11) fo1 constant co-
efficients, were attained (4) for the non-constant coupling Gaussian models with
strongly discontinuous cases in one and two dimensions. For the one dimensional
variable-coupling Gaussian model, the susceptibility is calculated to accuracy e,
in less than 8¢, ? random number generations. In the two-dimensional variable-
coupling Gaussian model, the susceptibility can be measured in less than 202
random generations. These results are independent of the maximal ratio between
the values of the coupling. unlike the severe extra slowness that large such ratios
can inflict on conventional Monte Carlo (4).

The present paper treats the one dimensional enharmonic crystal model. The
Hamiltonian of the anharmonic crystal model is a fourth order polynomial, unlike
the quadratic polynomial Hamiltonians we have treated so far (4.3.5.11)  Ag a
result of the nonlinearity of the anharmonic crystal model, a new major difficulty
is presented: coupling between different scales. This difficulty is common to all
advanced models, e.g. O(N) and SU(N ) models. However, the anharmonic crystal
model is simpler than the later. since it has no topologies. Therefore, the new
problem of coupling between different scales can be studied without struggling
with other new difficulties, such as the appearence of topologies on various scales.

While Fourier expansions were used for analyzing the constant-coefficient Gaussian
model and the massive Gaussian model, they could no longer serve the variable-
coupling Gaussian model, neither for exact calculations of continuum and discrete
averages, nor for analyzing the multigrid Monte-Carlo simulations. Therefore, we
developed a new approximate analysis that helped us to construct a statistically
optimal multigrid algorithm for the variable-coupling Gaussian models. This novel
analysis (with a certain improvement introduced in the present paper) provides
us with an important tool for understanding the nonlinear anharmonic crystal
model, where non-constant couplings stochastically emerge at coarser levels of
the multigrid Monte Carlo processing. It is shown by this analysis, as well as
experimentally that multigrid algorithms with linear interpolation operators can
eliminate the volume factor partially (upto a certain accuracy) in measuring the
susceptibility. However, in order to obtain truly statistically optimal multigrid
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algorithm in the one dimensional anharmonic crystal model, one should apply ap-
propriate nonlinear interpolation operators, which clearly demand approzimations
to the Hamiltonians on coarse grids. The way to construct a multigrid algorithm
with the nonlinear interpolation operators, so that the volume factor is completely
eliminated, is described in details, in Secs. 6 and 7. below, and numerical tests are
reported in Sec. 8.

2. Continuum and discrete model

The continuous Hamiltonian of the one-dimensional anharmonic crystal model is

L
M = [ Ol + e 1)

where u = u(z) is defined for € [0, L], subscripts stand for derivatives, and A > 0.
Boundary conditions u(0) = u(L) = 0 are assumed. The simple Gaussian model
is obtained when A = 0. The first term in the Hamiltonian is the anharmonic
oscillator and the second term is the harmonic oscillator.

Discrete approximations will be calculated by placing a grid of points x; = th over
the domain [0, L], where 1 = 0,1,..., N and h = L/N being the meshsize. The
value of the discrete configuration u” at the point z; will be denoted uf or u; and
ug = uy = 0 will express the boundary conditions. The discrete Hamiltonian of
the one dimensional anharmonic crystal model will be given by

N N
A 1
Hh(uh) =13 g (u; — Uz’—l)4 + 7 g (u; — ui_l)Q. (2)

The probability density of the configurations in the continuous case is the Boltz-
mann distribution

1
P(u) =  exp” /T (3)

where T is the temperature and Z is a normalization factor (the partition function)
derived from the condition fu P(u)du = 1. In the discrete case, the probability

distribution is given again by (3), with Hj,(u®) replacing H(u).
Usually, the discrete magnetization is defined as

Miw)= 7

2

where the summation is over all internal sites. As the density function (3) is
given, average properties of interest are the average discrete magnetization (M) =

Mp(u u)du and the discrete susceptibility
M P(u)d d the di ibili
X = (M) — (My)*.

,4,



Clearly, in the case of the sign-symmetric Hamiltonian (2) and the homogeneous
boundary conditions, (M) = 0.

We will see later that, with this conventional definition of the discrete suscepti-
bility, its thermodynamic limit vanishes, i.e., x, — 0 as h — 0. Therefore, a
proper scaling should be introduced. Henceforth. one of the problems is to find
an appropriate scaling factor ]}%—Z such that, upon re-defining

a

My (u) = % Zuz (4)

)

and

h?a .
Xp = (M7 (u)) = L-j((z u;)?) (5)
1
the thermodynamic limit for the susceptibility (5) would neither vanish nor diverge
as h — 0.

3. The multigrid algorithm with linear interpolation operators

In this section, we describe a multigrid algorithm whose interpolation operators
are linear (see definition below). Later on, by applying the multilevel approximate
analysis method that we have introduced firstly for the variable-coupling Gaussian
model (4), we explain (Sec. 4.1), and confirm by actual simulations, that upto a
certain accuracy, performance similar to that of the Gaussian model can still be
obtained for the anharmonic model (see Ex. 3 in Sec. 8), although this requires a
careful choice of the multigrid cycling parameters (Sec. 5). Beyond that accuracy
we will need a more advanced interpolation (Sec. 6).

For recursive purposes we will consider a somewhat generalized anharmonic crystal
model in the interval [0, L], whose Hamiltonian Hy,(u") on a grid with meshsize
h = L/N = L/2* includes non-constant couplings:

1V AV
Hp(u) =Y ai(ui —uioy +0)" + > eiui —uiy +d;)?. (6)

On the finest grid we will assume that the special form (2) is given, i.e., a; = h%’

bi:(),cz':%anddi:()(lﬁigj\f).

3.1. Coarse grid displacement

The coarse grid with meshsize H = 2h is constructed by taking every other grid-

point. The coarse-grid function uff = (uOH e ,u?, e ,u%/?) is interpreted as



a displacement of the fine grid function ul = (ug,...,uj ..., uy), updating the

latter through interpolation and addition:

ult = gh + IIhqu, (7)

h is the previous fine grid configuration, i.e., the one existing just before

where 4
switching to the coarse grid, and II}; denotes a linear interpolation operator from

grid H to grid h, having the general form

N/2-1
(Igufhyy= > wiuf’  (i=1,....N-1).
I=1

By calling this interpolation linear we mean that each weight w;; can be a function
only of " (which is fixed throughout the simulation on level H), but not a function
of the coarse grid configuration uff. The choice of w;; will usually be such that

?;/f_l w;r = 1forany ¢ = 1,...,N — 1, and part (usually most) of them will

be equal to zero. When the non-zero weights are not equal to each other, we say
that the linear interpolation operator is a weighted linear interpolation operator.

Here. we applied the following weighted linear interpolation operator from grid H

to grid h:
ul if 1 =21
(I%uﬂ> =3 .y 0o (8)
; wiuy + wipiuyy ife=2I+1,
where
W \/E‘F C; Wit v @41 1+1 (9)

Y@ e+ AT +cipr] V@ + ¢+ a1 + cigl
(see Sec 3.3 for the reason behind this choice of weights).

The updated fine-grid Hamiltonian can be separated into two parts as follows:

Hy (" + Tfpu™!) = Hy (i) + Hp (u")

where Hj,(a") is given by (6) and the coarse grid Hamiltonian Hp(ufl) is given
by
N/2 N/2
H H, H H H H, H H H
Hpg(u™) = Z ap (uph —ui'y + 07 + Z of (uf —ug"y +df')? (10)
with
a? = aiw;-l_l + ai_l'w;-l, (11)



3 . 3/~ .
il — a;wi_y (U — ;1 + b;) + ajqwi(t;_1 — Uj—2 + b¢—1)7 (12)

ot . and
a;w;_q + a;—1w;

0 6a;_1a;w? jw?(wi(i; — @—1 +b;) — wi—1(T;—1 — U9 + b;_1))?

c7 =
1 ai'w?_l + ai_l'w? (13)
+ cz"w?_l + ci_lwg
and
1 - - . -
dit = ﬁ(‘laz"wz’—l(uz’ — i1+ b)) + da_qwi(di_y — @i_g + bi1)°
I

+ 2cjwi 1 (U — -1 + d;) + 2¢;-1wi(Ui—1 — Ui—2 + di-1) (14)
Aazwd | (T; — @j—1 + b)) + ajw) (di—1 — i + bj_1))?

o 4 4)2 >’

(a;wi_| +a;_qw;

for (I =¢/2=1,....N/2—1).

The coarse-grid couplings a? and c? and the coarse “field” terms b? and d?
are calculated from the fine-grid couplings and from the fine-grid configuration at
coarsening and are fixed throughout the processing on the coarser level. Thus, a
long Monte Carlo process can be done on the coarser level, with the Hamiltonian
Hyr. without explicitly updating uh by (7). The variables of the coarse grid u?
are initially set to zero, i.e., no displacement.

The process of calculating af, b, ¢ and d¥, then simulating HH(uH) by a
Monte Carlo process on the coarse level, then interpolating the resulting uf to
the fine grid and changing ul by (7), is called a coarse grid displacement.

Since the coarse grid Hamiltonian, HH(uH), has the same general structure (10)
as the fine grid Hamiltonian Hh(uh), its Monte Carlo process can itself include
a coarser grid (grid 2H) displacements. Thus, the coarsening can be employed
recursively, using increasingly coarser grids (see Sec. 3.4)

The interpolation from any level k to the the next-finer level £ — 1, denoted I,f_l,
is defined by (8) and (9), where H is substituted with hg, h with hj_q1 and the
couplings a; and ¢; are those of level £ — 1. Note that due to the specific form
of the finest grid Hamiltonian (2), it turns out that I{) is a pure (non-weighted)
linear interpolation, i.e., all the weights are equal to 1/2.
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3.2. Heat-bath relaxation

For simulating the generalized anharmonic crystal Hamiltonian on any level, a
heat-bath relaxation is used. To implement the heat-bath simulation at any point,
we need (12) a subroutine that generates a random variable X from the probability
distribution with density proportional to

f(:l?) — e—a4:(:4—a3:c'3—a21:2—a11;
where a4 > 0 and a1, a9, ag are arbitrary. By a shift in z it can be assumed that
ag = 0.

A von Neumann rejection algorithm is used (17), given a Gaussian density function
g(z) > f(x), a random variable X with density proportional to ¢g(z) is generated
and then accepted with probability f(X)/g(X). keeping trying until success. The
acceptance fraction is

J oo fla)da

o 9(a)da

and the expected number of trials is A71.

A=

In our case the Gaussian distribution
2 ,
g(x) — 6—0421 — X1 —Qp 012 > 0
is used, its parameters chosen subject to the constraint g(z) > f(x) so as to max-

N2
imize the acceptance fraction A. It turns out that a; = a7 and ag = M
where a9 is the unique solution of a cubic equation, which can be solved easﬂy by
a few iterations of Newton’s method.

Another possible approach of course is to use the Metropolis relaxation (23) (see

Sec. 6.2).

3.3. Weighted interpolation

If one would like to apply a linear interpolation operator, then in order to produce
probable configurations effectively, suitably weighted interpolation must be used,
similarly to the weighted interpolation in the variable-coupling Gaussian models

(4), Here, the weight on bond : should be proportional to w/a? + c?, for the
following reason.

Given any neighboring values uh

some fine grid site ¢ = 27 + 1 (not belonging to the coarse grid) is that Wthh
minimizes (6), satisfying

1 and ul i+1. the most probable value for u at

OHy, (i
7/151“) = 4az'(u? — u?_l -+ bi)3 -+ QCZ'(‘U? — u?_l +d;)
Ou; (15)

- 4az'+1('“?+1 - u? +bit1)° - 20i+1('u?+1 - u? +dit1) = 0.
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Therefore, when the displacements in u?_l and u?+1 are 0;_1 = uF and 6,41 =

uﬁ_l, respectively, then in order to keep equation (15) unchanged the most likely

displacement ¢; in u? should satisfy

6ai(uf — uf_y + ;)% (6 — 6i-1) + ci(é; — ;1)

h h 2 (16)

—6a;1(ujpy —ui + bip1)"(0i41 — 6;) — ¢ip1(0i41 — 6;) =0
where higher-order displacement differences are neglected since we should mainly
be interested in smooth coarse-grid displacements.

If on bonds ¢ and ¢ + 1 the anharmonic part in (6) dominates then statistically
ai(ugZ — u?_l +0;)? Va; and ai+1('u§l+1 - uf +bi41)% \/@i+1, hence according
to (16) the most likely displacement ¢; in uf is given by (8) and (9). If on bonds
¢ and ¢ + 1 the Gaussian part in (6) dominates then as in the variable-coupling
Gaussian models w; should be proportional to ¢;. Practically, the weights which
are given in (9) would cover both cases.

Since on the finest grid the couplings a? and c? are positive, according to (11) and
(13) the coarse grid couplings a? and CF are also positive. Thus, the interpolation

weights (9) are well defined and positive.

3.4. The compound multigrid cycle

The entire algorithm can be described as a sequence of multigrid cycles for the
finest level, where a cycle for any given ( "current”) level is recursively defined by
the following five stages.

1. v1 Monte Carlo sweeps are first made on the current level.

2. If the current level is the coarsest, goto 5. Otherwise, the next coarser level is
created from the current one by determining its couplings (11) and (13) and

field terms (12) and (14).

3. 7 multigrid cycles for the coarse level are performed. The “cycle index” v
may change from one current level to another and need not be an integer (see

below).

4.  Update the current level by performing the weighted interpolation (7) from
the coarse level.

5.  Additional v9 Monte Carlo sweeps are finally made on the current level.

Let 44 be the cycle index for level k (k = 0,...,1 = logs(N/2)). To implement
cycle indices which are not integers, the approximate maintenance of the following
condition is used to determine whether to make an additional cycle from any

intermediate level k:
ne(k = k+ 1)~ -ne(k—1—k)
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where ne(j — j + 1) counts the total number of transitions that have been made
so far from a fine grid j to the next coarser grid j + 1.

Since the weighted interpolation is a linear operator, the magnetization M}, (and
hence the susceptibility) can be evaluated on any level, without going back to
finer levels (plug (7) into M}, to obtain an expression of My as an explicit linear
function of uwg). Thus, with negligible extra work, many measurements of jW}QZ
can be made within a cycle, and their average can be used as an estimate for
the discrete susceptibility <JM}?>. Practically, measurements are taken only on the
coarsest level, after each relaxation sweep there, because only there substantial
changes in M}, are introduced.

Now, in order to choose the optimal multigrid cycling parameters (v1,v9 and 7),
it 1s first necessary to analyze the coupling between different scales in the suscep-
tibility. This is done in the following section (Sec. 4). Then, we explain why the
multigrid algorithm with linear interpolation operators cannot achieve statistical
optimality at too-high levels of accuracy. as a certain amount of coarsening bias
is introduced into the susceptibility estimation (Sec. 4.1). Thereafter, we describe
the optimal choice of the multigrid cycling parameters (Sec. 5).

4. Analysis of the coupling between different scales in the suscepti-
bility

In the anharmonic crystal model, as in the simple Gaussian model () and in
the massive Gaussian model (3711), the susceptibility is still dominated by the
smoothest component. Unlike the Gaussian models, however, the size of this
component is strongly affected here by other components, especially by the high-
frequency ones. In this section, we estimate the amplitudes of typical fluctuations
at various scales and the effect of the small-scale fluctuations on the susceptibility.

In order to understand the model multiscale characteristics, we use the multilevel
approximate analysis method introduced earlier for the variable-coupling Gaussian
model (4), with a certain improvement introduced in the present work. Level k
(k= 0,1,....1 = logo(N/2)) is associated with a grid with meshsize hj, = 2¥h.
Let the number of internal sites at level k be denoted by v}, = N/Qk' — 1, and let
Vj, denote the set {1,2.....v;} and V}, = {1.2,....v.v; + 1}. The variable at
"cf = thy, (site ¢ on level k) is denoted by uf = uk("cf) The coarsest level (k =1)
includes only one internal variable ull (v; =1).

The interpolation from any level k to the next finer level £ — 1, denoted by I,f_l,
is the above weighted linear interpolation operator (see Sec. 3.1).

We use for our analysis (following Ref. 4) a multiscale set of basis functions. Each
level k is associated with v} é—functions {6Z’k}ievk defined on that level by

skak) =65 (€W
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Our set of basis functions are then defined as the fine-grid functions
CRS (R T

0

Each fine-grid configuration u"” can be represented as

l
@) =" dptE)) (G ew) (17)

k=0ieV}
where the coefficients {cf}fez‘?kl are uniquely determined by requiring
k=0  (k=0,...,1—1) (18)

i.e., on any level k each even-index coefficient is zero. Note that in Ref. 4we have
used a different requirement. based on orthogonality relations between any finer
level (k — 1) and the next coarser level (k). The requirement (18) can also be
expressed as an orthogonality condition, but with respect to the dot product

(. 0) =Y wilug — ui—1)(v; — vio1)

]
which yields more convenient relations.

This representation enables us to understand the role of each step in the multigrid
cycle. A level-k relaxation step at $§i+1 changes only CéH—l' A level-k relaxation

step at xéz of course would not change CIQ“Z- = 0, but the coarser level coefficient

cf—H would be affected, if 7 is odd, and a still-coarser level value will be affected if
¢ 1s even. However, those coarser level values are mainly sampled by relaxation at
their level. Actually, a relaxation sweep on level k effectively samples all c§j+1, the

stochastic coeflicients of that level, its effect on any other ¢3;, | completely vanishes
for m < k, while for m > k it is only 0(4_(m_k)) relative to the typical variation
of that coefficient. Therefore, each stochastic variable Céci—i-l can be regarded as a

local amplitude at site 2i + 1 on level k. Moreover, the representation of u’ by
(17) allows us to express the magnetization as a linear combination of stochastic

the next main contributions being from {cg_l}ievl_l, ete.

Having defined the local amplitudes {cf}f;?kl as above, it will be natural to

define a local slope sf on level k (k=0,...,1) by



Note that due to (18)

8152'_1:—8]52' k:()l

By introducing u" (as represented in (17)) into the Hamiltonian (2) we will now
obtain estimations for the local amplitudes and for the local slopes.

First we show that large-scale levels, being smoother, contribute less to Hp(u).
For that purpose, we express the Hamiltonian (2) in local slope terms. One can
show that for the above weighted linear interpolation operator, it can be assumed
that

B8 () = B4 (G _1) = 027 (€ Th) (19)
forany £ =0...., [ and i € V. (Note that for k = 0,1 the right-hand-side of (19)

is £27% or 0). By plugging the fine-grid configuration representation (17) into (2),
and by using the local slope definition and the estimation in (19), one would obtain
the Hamiltonian in slope terms. It can be easily shown that the Hamiltonian in
slope terms should contain terms of the form /\hk.(sf)4 and hk(sf)Q Therefore,

statistically,
max[hy(sf )%, Arg(s§)H] < O(T),

yielding
sF < O(min[T/2p 2 AT VAL YY)y (r=0,. D). (20)
For k = 0 we must actually have equality, i.e.,
& = O(aminTV2h=Y/2, A~ V1414 1)

otherwise the Hamiltonian terms involving 3? would not add up to an O(T) total
value.

Since the order of magnitude of 3? does not depend on the slope position, we use
the following notation without the index, i.e.,

s = oA VAT AR 14, (22)

By similar considerations, one can now simplify the calculations for estimating
the orders of magnitude of the local slopes at larger-scale levels (k = 1,....1).

Practically, as will be confirmed below, in order to estimate the size of a certain

cf, one can introduce into (2) only the following truncation of u?

k
uOk = Z Z c;-nﬁj’m. (23)

m=0j5€eVy,
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For instance, in order to examine the local amplitudes of the next level (k = 1),
one would insert u%:! into the Hamiltonian (2), obtaining a sum of terms like

Ao 0 Loy 1 w4, Ao 0 L1 1 4

—gleg; —eg 1+ 5le; —¢i_1))" + 55(egim1 —c9i_9 + 5(¢; — ;1))

h 2 h 2

1 9 0 Iy 1 w2, 1 0 0 L1 1\ 24
—I_E(CQZ' — 91+ 5(%’ —ci_1))"+ E(CQi—l —Cyi_9t+ 5(%’ —¢i_1)) (24)

=AR(s9; + 53 )+ A(s9;_1 + s7)* + h(s9; + 51)7 + h(s9;_1 + 57 )%

In order to estimate a certain 521 one would like to determine the dominant part
in (24) that depends on s;.
Generally, inspecting the various terms of Hh(uofk'), it turns out (see note below)

that, under the assumption h < AT, for a certain local slope sf, the dominant

part in Hh(uo’k') which depends on sf has the following order of magnitude

0
1 ,
/\hkz—k E (sngj)?(Sf)?- (25)
j=—2k4+1

Hence, probable configurations are obtained for

Ahp(s0)(s§)? = O(T). (26)

2

This relation emphasizes the correlation between different scales. More precisely,
sf is correlated with all other scales, but it is most strongly affected by the smallest-
scale fluctuations, since their slopes are largest (see (20)-(21)). Hence, by (22),

)

justifying by the way our use of the truncation (23).

Of course, Hh(uo’k') includes other terms than (25), but it can be shown easily
that they are less dominant than (25), therefore they would not change the order
of magnitude of sk which is given by (27), though some of them may contribute
to the deviation in measuring the susceptibility. Specifically, in the special case
k=1, Hp(u"") contains

-1
Ta(sh)? + Tesy +T ) wisy (28)
k=1

where

N
a=\T"Th Z(s?)Q
=1
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N
p=AT'h> (s])°
=1
and

wr = AT 1h Z Z 2kz+]

zEVk ]——Qk—l—l

Notice that, the first term in (28) is actually (25) for the case k = [. Practically,
since 3’2“2._1 = 515@ (k=0,....1), ¢ cancels out ezactly to zero, and ¢y, is relatively
small

¢r = OONT 1 RY2(s9)2sk) = oA/ AT =14 =1 /49— k/2),

Note. The following simplification was employed in the calculations mentioned
above. Since the expression

(2h)~! 2 [k k| oaie1k k k 1k k
ok—1 Z B8 (aj)el + 87 (ag)ely = B (2ja)ef — BT M (@jon)el
J=2k(i-1)+2

(with summation running only over even integers) is exactly the local slope sf,

the replacement of the "original” squared slope in Hh(uofk')

(2h)~2 2 ik k| aielk k ik b a1k ko2
ok—1 Z (B (x5)ei+8" 7 (@) )i =B (xj—2)cf =B " (zj—2)¢i_1)

j=2k(i—1)+2

by the squared slope (s; )2 is reasonable. Indeed, we have cofirmed empirically that
this replacement Would not change the orders of magnitude that were estimated
above.

From (27), a reasonable estimate for Céz’—i—l is
by =k = OTVAT AR AR (25 11 € V). (29)

As in the variable-coupling Gaussian model (4), an important property of the
representation (17) is the weak correlation between different local amplitudes, i.e.,
{cf}ievk are not strongly correlated to {cI' };cy; for k # n, and far local amplitudes
on the same level are weakly correlated. From this and (17), the magnetization
(4) can be expressed as

Mh Z Z fk k
k=0:1€V},

where Y * denotes summation only over the odd integers and

, h?
e (30)
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Hence
{ {

Miu)=3_ % > " > fiic] (31)

k=0n=0:cVy jEV,

and
fhn — gk phn ﬁgk‘i‘n (32)
ij idj 7 2a :
Clearly,
(cf)=0 (33)
and by (29)
((chi1)?) = ONTV2TH 2R 2Ry, (34)

Using (31)-(34) one can show that

[
(M) = > Y ()
k=0 1€V}
l

2a
x f;a > 2 Lh AT AT 2y (35)
k=0

{
—1/2p1/232a—271-2a31/2 2
= \TV2pl/2pam2 pim2apl/2 N g2
k=0

Therefore, a proper scaling exponent for the discrete magnetization would be a =
3/4, otherwise (35) would either diverge or vanish as h — 0. Thus, the discrete
susceptibility (4) is defined as

3/2 .
= (Y wi).

2

From (35) it is clear that as in the simple Gaussian models the susceptibility
is indeed dominated by the smoothest component, being mainly proportional to
(611)2. But unlike the situation in the Gaussian models, the size of that smoothest
component is affected by all other components and especially by the highest-
frequency ones. This claim is quite evident from the observation in (26) for the
particular case k =l and 2 = 1, i.e.,

Ary(s?)2(sh)? = O(T).
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4.1. Estimation of the coarsening bias in the susceptibility

Since the susceptibility is mainly proportional to (311)2, it would be enough to

estimate the bias in ((511)2> To demonstrate the bias concept, let us refer to the

expression (28) as if ¢ is not zero and the ¢} s are zero. Then, according to (28)

it turns out that, for given values of {s{},

[(shyae(a(s1) +es1) gl
[ @l

((s1)7) ~

where a = %% Si(s9)? = %(30)2 and ¢ = %% Si(s9) = %N_1/2(30)3.

Therefore, for ¢ =1 and ¢ = 2,

2
1,2 L4
2
12 © 1
3 = —. 36
(1)) =5+ 5, (36)

Clearly, using (22),
[ \2 —1/21/2431/2

((51)%) = O~ Y2TH2R1/2),

A2
Note that the quantity 4“67 is a bias in the estimation of the squared average
magnetization, caused by freezing {5?} hence this quantity is also a bias in the
susceptibility estimation, caused upon coarsening. It follows from (22) that the
bias itself has the same order of magnitude as the observable in question, i.e.,
ﬁ2 . .
¥ :O(/\_1/2T1/2h1/2).
4a?

Therefore, the relative accuracy in measuring the susceptibility would not decrease
forever as N grows, and it is not possible to construct an optimal algorithm for
any given accuracy. Actually, at small enough grids and low accuracy levels the
problem cannot be detected (as evident in our numerical experiments, see Ex. 3
in Sec. 8), since the coefficient of the bias is quite small.

In fact, as we explained before, the terms in ¢ ezactly cancel each other. The
problem is really introduced only at the next coarsening steps, not with terms
like ¢, which for convenience were discussed above, but with terms like ¢}, which
contribute the following bias in the squared average magnetization, caused by

freezing {sY} and {sf}

2
‘f’k-2 = O\T2TV2p 297k =1
4o

and as a result at coarsening the susceptibility estimation is biased. Since the bias
of large scale slopes is less influencing, the problem becomes apparent only at high
levels of accuracy, which interfere small scale slopes.
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That the bias is not really introduced at the very first coarsening step can also be
seen as follow. Consider a certain site ¢ which does not belong to the next coarser
level (1 = 2j + 1). The anharmonic part of the Hamiltonian in the neighborhood
of that site is proportional to

(ui —wim1)* + (wipr —u)’

1
1 3 .
+ g(uz’—{—l —uimp)t Z(Quz' — o1 — 1) (i1 — ui—1)%

Since the interpolation operator I? is the equal-weight linear operator (.5,.5),
the quantity 2u; — u;—1 — u;41 is frozen at coarsening., hence the coarse grid
Hamiltonian, given by terms like (37), still retains the sign symmetry, under which
(511> = 0. Indeed, two-level tests confirm that the first coarsening is not disturbing
the feasibility of an optimal algorithm (see Ex. 6 in Sec. 9). Our main conclusion
at this stage: in order to devise an optimal algorithm, we have selected the most
effective linear interpolation operators (see Sec. 3.3), but it turns out that these
linear operators are not effective enough. It is thus natural to go one step further
by constructing nonlinear interpolation operators (see Sec. 7), which indeed will
prove much more efficient (see Sec. 8).

5. Optimal choice of the multigrid cycling parameters

As mentioned, the susceptibility is dominated by the largest-scale fluctuations,
but unlike the simple Gaussian case, the size of these fluctuations is affected by
other components, especially by the smallest-scale components.

We would like to develop a multigrid algorithm that will efficiently sample the
susceptibility. It is shown here that the optimal cycle index is not fixed through the
different levels, i.e.. the cycle indices may change from one current level to another
and moreover it is not necessarily an integer number. The way to implement this
unusual multigrid cycle is given in Sec. 3.4 above (see also Ref. 3).

We next study the number my, of relaxation sweeps the algorithm needs to perform
on level k, i.e., on a grid with meshsize hj, = 25, (k=0,....1 =logy(N/2)), in
order to achieve relative accuracy ¢, = £/0 in the estimation of the susceptibility.
We first ignore the inter-scale dependence, described above, in which case we
will get a bound on the cycle indices ~. that are needed at coarser levels of the
algorithm. Clearly, the number mj, depends on the contribution of the coefficients
{cf} (amplitudes of components with scale length of order hy) to the deviations
in measuring the susceptibility, because, as indicated in Sec. 4, only a relaxation

sweep on level k samples those coefficients efficiently.

Consider a general term (cfc?) in (31). Using the weak correlation between

distinct stochastic variables, with (30), (32), (33) and (34) above, the standard

1 -



deviation of such a term from its average is

a(fllzncfc?) R ijna(ck)a(c;l) = O(/\_1/2T1/2L_3/2hi/2hi/2).
For the case, hy, = hy, the term (cfcf) in (31) is effectively sampled my, times

in a cycle. There are O(hk_?L?) such terms, which are almost uncorrelated, hence
their total contribution to the deviation is

ijngl/QA—J/QIJ/QL—4/2h%) (k=0,....1). (38)

For the case hy, > hy, = hj_, (r > 1) with fk'a(cf) > f"o(c}) (see (30) and (34)),
the term (ci.“7 cgl) is then sampled at least my, times in a cycle. Therefore. and since
for a given k and n with fk'a(cf') > f”a(c;?) there are (hk_,lhgll?) such terms

which are almost uncorrelated, hence their total deviation in a cycle is bounded

by
()On;J/QA—J/QIJ/QL—J/Qhkhk_T) (r>1). (39)

For a given level k, summation of the contributions to the deviation (39) over
integers r > 0, gives again the estimation in (38). Hence, the total relative expected
error in measuring the susceptibility is

er =cfo = O(e/(M3E)) Z m_l/2 (40)

while the total work (operations) on all level is clearly

l
=0()_ mpLhih). (41)
k=0

The optimal choice for my, (yielding either minimal ¢, for a given W or minimal
W for a given ¢, ) is obtained when ‘%T + Mg 8” = 0, which by (40) and (41),
yields

mp = Agh2 = A322F, (42)
where A1, \p and A3 are independent of k. Relation (42) is realized by the optimal
cycle index 7. = 4.

For any fixed cycle index v, we have my = m’yé“, where m is the total number of
cycles performed. Since hj = L2k=1=1 e can perform the summations in (40)

and (41) and obtain

—-1j2 L 1/2
e —_()< —1/276/ -2 2 1)70/ [2>
T 9 1/2
1—272+,

~ 18 —



and

I ol+1.—1
-2
W = O(m%)
1=29¢

provided 2 < 7, < 16. Thus, any 2 < v, < 16, not just 7. = 4, yields W = 0(5;2).
Asymptotically (for ¢, — 0), the minimal value of We2 is attained for 4. = 4 and
values very close to the minimum are obtained for cycle indices which are close to
4. Since v, > 2 the work is dominated by the coarsest grid work, implying

my = O0(e;72). (43)

r

Observe, though, that if 4. is considerably larger than 2 for. say, half the levels
(e.g., the coarse ones) it can be considerably less than 2 for the other half and still
optimality. in the sense of W = 0(5;2) is attained.

So far, however, we have neglected in this analysis the influence of high-frequency
and mid-frequency components on the amplitudes of the smooth ones. In par-
ticular, consider the dominant amplitude of sll, which is given by (28), i.e., the

stochastic amplitude of sll from all levels is expressed in the Hamiltonian by

{\2 ~ 1
a(sy)” +¢s
where
-1

= > ¢k
k=1

X
|

Therefore, the dependence of the dominant amplitude of sll, on the smallest-scale
and the mid-scale fluctuations is given by

(1)) = 75 + 5 (44)

2
Since (P—kQ is small relatively to %, we would like to neglect the first term in (44),

for a while, then the standard deviation of this stochastic amplitude («) over the
mq samples on the finest grid is

A _1 2 _ . .
O(Zmy 2N=1/2(50y2),
Therefore, it is necessary that the relative accuracy of that level would satisfy

O(my AN"Y2) < ¢, (45)

That would mean

moN Z 0(6:2)
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Since we want our overall work to be at most O(e, 2), we must have
moN = O(e;?). (46)

With (43) it is clear that, the work on the coarsest grid should be proportional to
the work on the finest grid.

Next, we would like to consider ¢. Since a is frozen at coarsening it turns out
that in order to determine my at any mid-level k. it would be enough to examine

the standard deviation of l

fz

11-1
Z ¥ifs- (47)
1 1

i=1j=

Recall that

— 2 k
ok = T"'h Y s Z (s9ri45)° = OONTTRI2(O260). (a8)
iEVy, j=—2k41

Consider a general term (g;.¢;) in (47). Since ¢; and ¢; are weakly correlated
for ¢ # j and (¢g) = 0, the standard deviation of such a term from its average is

olpivs) = olei)oles) = () ()12 = OT2A2h(0) ')
(note that the last estimation holds also for the ¢ = j case).

A term (¢;. ;) is effectively sampled m; times in a cycle. For the case j > ¢ with
o(p;) > o(gj) (see (48)), the term (¢4, ¢ ;) is sampled at least m; times in a cycle.
Therefore, the total expected error in measuring (¢)? is

<sz 1/2<w>1/2>

=1 j3>1
= O< 2/\2 ZZm 2 sj>
=1 3>1
-1 .
= O<T_2/\2h(50)4 Zm_l/Q(s ) >
=1

Thus, the total relative expected error in measuring ¢

i -1

-1
= O(e/5%) = 2O (sH) = O(S iy V250 — 03 mH22mi)
i=1 ;

(s1)
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The optimal choice for my, (yielding minimal W for a given &, ) is obtained when

88;1; + A\ 8872; = 0, which by (49) and (41), yields optimal cycle index v = 1.
Although we have obtained an optimal value for v, which means that for a given
relative accuracy the least work would be done, this will not guarantee a statis-
tically optimal algorithm, i.e., W = 0(6;2). Indeed, as explained in Sec. 4.1, a
coarsening bias in measuring the susceptibility is introduced by (95)2, and as a
result this algorithm will not achieve optimal performance. The results, presented

in Sec. 8, indeed start to deteriorate at large lattices.

This observation can also be seen as follows. To ensure that the error contributed
by any level k + 1 > 2 is smaller than that of the next finer level &
=1/2, k4142
my (s + )

mk_-l/Q(Sk)?

< 1.

The last demand suggests to apply cycle index 7; > 1/4 on fine levels. Clearly,
7 should be smaller than 2 to keep the work on the finest level dominant. Thus,
at the fine levels one should apply,

/4 <yp <2

Moreover, to assure that the deviations from the different levels do not accumulate
unboundedly, one should require that the relative error on level 1 is smaller than
the relative error on the finest level (k = 0), in other words,

-1/2
o(m—) <1
m51/?N—1/2

O<$> < 1. (50)

Clearly, a bounded cycle index can not satisfy the last condition for all N. This
explains why statistically optimal efficiency is not achieved for any grid size.

or

Since the relative error on the finest level is of order ¢, (45), then the total relative
error in measuring the stochastic amplitude is comparable to the relative accuracy
in measuring the susceptibility, i.e., O(ey ), in cases when (50) is satisfied.

In our numerical experiments (see Ex. 3 in Sec. 8) [/2 fine grids would apply v
and the rest [/2 coarse grids would apply

Yo =4[y
satisfying 2 < 7. < 16 and 7. is close to 4. As a result, the work on the coarsest grid
is proportional to the work on the finest grid and the geomtric mean of the cycle

indices is approximately 2. Moreover, the values of 7. and vy and the relations in
(43) and (46) would enforce the optimal relation

W =0(?)
only in cases that satisfy (50).
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6. The unigrid algorithm with nonlinear minimization interpolation
operator

For relative high accuracy, both the analysis and the numerical tests show that
ideal performance can no longer be obtained by a multigrid process which employs
our weighted linear interpolation. At this stage, we have introduced a novel non-
linear interpolation, called minimization interpolation, which is very effective. The
minimization interpolation is very efficient in the sense that a stochastic coarse
grid change is followed by an appropriate most probable change on the finer grid.
The most probable fine grid change is the one that minimizes the local fine grid
Hamiltonian for the given coarse grid change. Here, for start, the concept is given
only for two levels, for which we easily applied a unigrid technique. In Sec. 7, our
complete multigrid algorithm that employs the nonlinear minimization interpola-

tion operator is described in details.

6.1. Definition of the nonlinear minimization interpolation operator

The general idea of the minimization interpolation, for any model at any dimen-
sion, is as follows: in order to define a value vy at a fine-grid point based on coarse
grid values (v1,v9,...), the minimization interpolation method is first to calculate
Vo(vi,vg,...), defined as the value of vg that would be obtained by some, ex-
act or approximate, local Hamiltonian minimization with the value of (vy, v, ...)
being held fixed. Then, to retain statistical detailed balance, the minimization
interpolation value is defined by

vy = V()(‘Ul,‘UQ, .. ) + '170 - VO(f)l:‘ﬁ?: .- )

where the v; are the values of the variables at coarsening.

Consider an anharmonic Hamiltonian with non-uniform positive couplings, i.e.,

N N
H(u) = Z fz(uz - uz’—l)4 + Z gl(uz - 'uz'—l)?'
=1 =1

Actually, this model simulates the coarse-grid Hamiltonian after the first coarsen-
ing, when I? is the pure linear interpolation operator. In this particular case, the
fi couplings of the coarse-grid Hamiltonian are the same for the whole interval,
and the g; couplings are varying over the interval.

The fine grid configuration at transition to the next coarser level will be denoted by
{&Z};ZO The next coarser level is constructed by taking every other configuration

spin, i.e., {u%}?;/o?. The question is how to interpolate effectively a change from
the next coarser level to the original grid, or in other words how to specify effective

=N/2—1 N/2 .
values to {u?i-i-l}z':o / when {'UQZ'}Z.:/O are given.
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Let 3 denotes the following known quantity

B = ugiys —uy;

then we seek for the unknown
o = u22+1 — U9;

that would minimize the local energy.

In other words, o™ would satisfy
Eq(a®) =0 (51)
where

E(a) = foir1a® + goiv10? 4+ faira(B — o)t + g2i42(8 — ). (52)

Then. in order to preserve symmetry between the two configurations {&2}2\;0 and

{uz};\;O u9i+1 is computed as follows
Uil = Uiy + S (53)

where s is the distance or the shift of @9;41 from the value which minimizes
the local energy before transition to the coarse grid. (Determine the parameter
B = tg;49 — Uy; and to obtain &* = u3;, | — Uy; solve Eg(a") = 0, where E(d) =
foit16* +g2i418%+ foip2(B—a)* +g2i42(B—a)?. Then, s would be iigjp1 —ii3; , 4.)
Two-level unigrid tests are presented in Sec. 9 (Ex. 10).

Note two important observations. First, the local energy (52) has one and only one
minimum for a given 3. Second, in the case that the couplings satisfy fo;41 = fo;42
and ¢2;41 = ¢2i42 for ¢« = 0,...,N/2 — 1, the nonlinear interpolation operator
coincides with the pure linear interpolation.

6.2. Metropolis method

The relaxation, on both levels, has been done by the Metropolis rule (23) " On the
original grid, a relaxation step at site ¢ is done as follows. Let u® be the previous

configuration and u"¢" the candidate configuration obtained by changing ufld to
u;“", which is selected randomly uniformly in the interval [ufld — 0, ulqld + 6],

where ¢ 1s a parameter. Then, changing is decided, with the following “transition
probability”:

P(u!? — 4" = min [% 1]. (54)

- 23 —



On the coarse level, the metropolis relaxation is of course applied only at even
sites. Omne has to take into account that a relaxation step at spin u9;. leads also
to changes at ug;_1 and u9;41, as explained in the previous section.

The size of the parameter ¢ is not the same for both levels. Its size is determined
as a function of the acceptance rate in each level; the parameter ¢ is chosen such
that the acceptance rate is about 50% (the acceptance rate is the ratio between
the number of acceptances of the candidate " and the total number of random
trials).

An important issue is the relative weights that should be associated with coarse
level configuration densities. We decompose a fine-grid configuration ¢ to coarse-
grid variables and fine-grid variables only, i.e., a configuration ¢

is expressed by

where u; = to; and v; = t9;_1.

Recall that on the fine-grid for given values

where || d€ || and || dn || are infinitesimally small, the probability that (u,v) would
satisfy
i <wu; <& +dg; 1=0,...,N/2 andn; <vj; <nj+dn; j= 1,....N/2

is given directly by the Boltzmann density function, i.e.,
P& < wp <&+ dn; < vy <y +dnj} = P(E,n)dEd.

Now, assume that we can have on the coarse grid an explicit way to express v; as
a function of {; — £;_1 and the shift s;, e.g.,

vj = Fj(&§ — &j-1.55).
Therefore, on the coarse-grid
pl& Suy <&+ d6, Fi(§ — €1, 55) S vy S Fy(€ —€j—1.55 +dsj)}
_ | o OF(& —€1ssh)
=p{& <wu; <&+ dE Fi(& —&5-1.55) Svj S Fj(8 — &, 55) +

0s;
OFi(& — &i—1. 50
= Pe. F(yt, o) T Sim:5)

ds;}

déds.
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Clearly, from the definition of the minimization interpolation, F; is linear with

respect to s; and
OF;(&i — Ei1.84)
0s;
Therefore, the probability density function on the coarse grid is

P(¢, F(v¢.s))

= 1.

without any weight factor multiplication.

This derivation shows that the transition probability (54) is exactly the ratio
between the physical densities of the candidate configuration and the previous
configuration when applied either on the fine level or on the coarse level. This
observation is used below to prove the detailed balance condition.

6.3. Proof of detailed balance condition

It is sufficient to prove that the stochastic process on the coarser level preserves
symmetry between any two configurations. In other words, we show that if B is
a candidate fine-level configuration obtained from another fine-level configuration
A in the coarse-level relaxation step at site 2¢, then there is the same chance to
get A as a candidate obtained from B in that relaxation step, even if the at-
coarsening variables in the two cases were different. From the definition of the
Metropolis rule, it is clear that if Bs; is obtained uniformly from the interval
[Ag; — 6, Ag; + 6] with density %, then Ay; would be obtained with the same
density from [By; — 6, Bo; + 6]. By definition of the minimization interpolation,
the shift s in B is the same as the shift in A (53), and by the observation that
the local energy (52) has one and only one minimum for given coarse-grid values,
it is clear that if the candidate spin at site 22 is A9; then its two neighbors would
be Ag;_1 and Ap;+1. With the observation above that the transition probability
(54) is exactly the ratio between the physical probabilities, independently of the
at-coarsening variables, it is clear that the detailed balance condition is satisfied.

7. Devising a multigrid algorithm with nonlinear minimization inter-
polation operators

Our main aim is to construct an optimal algorithm. in the sense that a relative
accuracy €, is obtained in 0(5;2) operations. As explained and demonstrated be-
fore, it is essential to use an effective interpolation operator, such as the nonlinear
minimization interpolation operator. The two-level unigrid experiment, Ex. 10 in
Sec. 8, implies the feasibility to construct an optimal algorithm. But to employ a
unigrid cycle would be of course very expensive, especially due to the fact that for
statistical purposes one would better do many more sweeps on coarse scales than
on fine scales. To overcome this complexity disadvantage it is required to derive an
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explicit coarse level Hamiltonian, which can be complicated. Since the minimiza-
tion interpolation operator is given by a nonlinear implicit scheme, it would be
impossible to generate exact coarse level Hamiltonians. Therefore, using elements
from approxiamtion theory (10), coarse level Hamiltonians are approximated by
polynomials. Generally, for smooth functions, arbitrarily close approximations can
be attained by raising the polynomial order.

To facitilate a recursive multigrid cycle, the Hamiltonians on all levels should bet-
ter have the same general structure. Therefore, at first one has to decide what
is the order of the approximating polynomial (e.g., p = 2,4,6, etc.) and then to
adjust the relaxation module, the interpolation module and the coarsening mod-
ule. The multigrid algorithm, which will be described below is slightly different
from the ultimate optimal algorithm, since we did not construct an estimator for
the sucseptibility. Such an estimator should be defined in such a way that the
susceptibility, too, can be evaluated on any level, without going back to finer lev-
els. In our current multigrid algorithm, statistics measurements are done only
through transfers to the finest level. This means that a relaxation on a certain
level k should be followed by the operation m(l)m% .. .mllz_l, where mg_l is the
minimization interpolation from the coarse level ¢ to the next finer level ¢ — 1.

7.1. The relaxation module

Here, on all levels (k = 0,...,] = logy(N/2)), the relaxation is done according
to the Metropolis rule (see Sec. 6.2). A transition from a fine level k to the next
coarser level k + 1 defines a coarse grid Hamiltonian which is fixed through the
processing on the coarse level. Thus, a long Monte Carlo process can be done on
the coarse level, without going back to finer levels. The coarse grid Hamiltonian is
a FAS Hamiltonian (see Sec. 7.2 below), and the coarse grid variables are initially
set to the corresponding current fine grid values. Since the Hamiltonian at all levels
has the same general structure (p—order polynomial), the Monte Carlo module is
the same for all levels. Its steps on level k£ in the multigrid algorithm involve only
the kth grid Hamiltonian, so only values on the current coarse grid are needed to

decide whether to update a certain variable.

As in Sec. 6.2, the range parameters of the Metropolis rule must be specified. In
each level 7, 6; is chosen according to the 50% acceptance rate criteria at this level.
Practically. having the range parameters for small lattice, e.g. N = 16, one can
obtain reasonable values for the range parameters on a lattice twice larger, i.e.,
N = 32, by using the estimate in (29). Then, a refinement of the range parameters
can be done. Having the tuned parameters for the larger lattice, one can continue
in the same manner for larger lattices.

7.2. The minimization interpolation module
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This interpolation is best defined in terms of the Full Approximation Scheme
(FAS; cf Sec. 7.1 in Ref. 6), where the coarse-grid variables represent the full
current configuration instead of just the coarse-grid displacement (as in Sec. 3.1).

The definition of the nonlinear minimization interpolation from level k to level

k — 1 is generalized for every p—polynomial Hamiltonian which is associated with
the fine level (k — 1), as follows.

Consider a p—polynomial Hamiltonian on level k — 1, 1.e.,

N p )

H(u) = Z Z ag(ui — uz'_l)j.

=1 5=0

(Except for the couplings of the leading terms, the couplings are not necessarily
positive.)

Let us denote the coarse-grid values on level k by {UI}IV:/(Q) and the at-coarsening
fine-grid values on level £ — 1 by {&Z}?LO Then, the fine-grid configuration after

interpolation updating {uz}fio is obtained as follows. First, the values of the even
fine-grid variables {UQI}?;/(Q) are simply {UI}}V:/(Q), respectively. The values of the

odd fine-grid variables {UQI_H}?;/(Q)_l are obtained in the following manner. Let
B denotes the folllowing known quantity

B=Ury1 —Ur =ugrqio — ugyg
then we seek the unknown
Q=g — U = Ugpyq — Ul

that would minimize the local energy, i.e.,

Ea(a*) =0 (55)
where
P ) ] P ) )
E(a)=) a0l +> a) (B —a). (56)

Then, under the assumption that the local energy (56) has one and only one
minimum for a given [, in order to preserve detailed-balance, ugy4 is computed
as follows

UL+l = Uppq + S
where s is the distance of tpy 41 from the value which minimizes the local energy
at coarsening (asin Sec. 6.1). Note that in cases where the minimum is not unique,

one can introduce a criteria in order to choose a*, e.g.. o™ would be the smallest
a for which the minimum of E(a) is obtained.
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The solution a* is a root of (p—1)—order polynomial, which can easily be computed
directly; e.g.. by few steps of Newton or the secant method, starting from its former
value.

Later on, the function notation fs will be used for the minimization interpolation
function, i.e.,

ugr41 — uar = fs(uarea —ugr) =a* + s. (57)

7.3. The coarsening module - computation of approximate Hamilto-
nians on coarse levels

Since the finest-grid Hamiltonian has uniform couplings (2), it turns out that the
minimization interpolation from level 1 to level 0 is a pure linear interpolation
operator. Therefore, the Hamiltonian on level 1 can be expressed directly in
its exact form (10), which is again a 4t order polynomial. This means that
the approximate Hamiltonians need be generated only for levels £ = 2....,] =
log(V/2).

We calculate the approximate Hamiltonians according to the theory of functional
approximation (10), as follows. We concentrate on a typical triplet of neighboring
spins ug;, u9;4+1. u2;42, which will be called without loss of generality ¢g, ¢1. ¢2.
in order to explain how to generate an approximate local coarse grid Hamiltonian,
in terms of ¢¢ and ¢2 only.

Generally, the local action on the fine grid & is given by

14
E(¢1— g0, 62 — ¢1) = Y _ bi(¢1 — o)’ +Zcz¢2—¢1)
=0 =0

and we like to compute coefficients ag,aq,...,ap s.t.

P
V(g2 — do) = E(fs(¢2 — d0), ¢2 — do — fs(da — ¢0)) = Y _ ai(d2 — o)’

=0

with small errors especially in the range of probable values of ¢9 — ¢, where
fs is the minimization interpolation function (57). This means that the p—order
polynomial approximation will be a very good approximation to the local energy
V(g2 — ¢o) on level (k + 1) in a finite interval ¢2 — ¢ € [0, £m], say, over which
V(g2 — ¢o) yields relatively probable density, i.e., e VIT = O(e™Vmin /T). Outside
this interval it is enough to require that the approximation will yield large values
(compared with the values inside the interval), no matter how close they are to
the real local energy V(g2 — ¢9).

The construction of



can be described by the following 3 stages:
1.  Calculate for : = 0,..., m the quantity V; = V(z;) = E(fs(x;), z; — fs(xy)),

where {z; = (¢2 — ¢0)i}i~, is a finite set of m + 1 values in the interval
[z, zm]. Note, that for a certain local triplet, the shift s is the same for
any value of x; = (¢2 — ¢p);, since s depends on the at-coarsening fine-grid

configuration.

2. Calculate the correspondings weights wg, w1, ..., Wy, where the weight func-

tion is proportional to the physical density

w(ds — do) = e~ V(62—00)/T

3. Minimize the weighted mean-square error () (where h; = z; — ;1)

by solving the linear equations

0Q
Oa;

0 t=0,....p

for the unknowns ag, ai. ..., ap.

We thus construct a p—order polynomial approximation which is the best Lo
weighted approximation to the local energy V(¢2 — ¢g). Clearly, it is also im-
portant to keep the outer interval (—oc,oc) — [xg, @] improbable. Under the
assumption that V (and hence T') in the probable area contains one and only one
minimum, we have chosen the following criterion. First, check whether T'(¢2 — ¢¢)
has extremum points in the outer interval. If it does, we construct a new ap-
proximating polynomial while considering some points in the outer interval with
relatively small weights, to force the new approximating polynomial to be improb-
able in the outer area.

We have implemented the case p = 4 (see Ex. 5 in Sec. 8) and indeed optimal
results have been achieved. The approximation calculation has used m = 20
(independently of the level number k) and h; = h = 220 (note that z¢ and
&y do depend on k). The 5 x 5 linear system was solved directly. For this
specific case, it is straightforward to check whether T'(¢2 — ¢¢) has any extremum
point in the outer interval, since it involves just checking whether the number
of real roots of the cubic equation d(¢57:fd>o) = 0, is more than one. If T(¢9 —

$0) has extremum points in the outer interval, then in order to construct a new
approximating polynomial that keeps the outer interval non-probable, we do the
following. A few number of points (&~ 10) from each side of the probable interval are
added, at distance h from each other, and the number of samples in the probable
interval is multiplied by a factor about 5. Then, the weighted mean-square error
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Q is constructed again., and so the Euler minimization equations. To ensure that
the outer points are not introduced with too high weights, we took the weight for
any outer point to be the smallest between 107 and the physical weight given
in stage 2. If after the reconstruction, the criterion of having only one minimum
is still not satisfied, then we add more outer points and so on, till we have an
approximate polynomial which satisfies the condition. Experimentally, it is shown
that the number of trials is bounded independently of N. These ad-hoc procedures
for approximating V(¢2 — ¢g) can no doubt be replaced by simpler and shorter
ones.
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8. Multilevel numerical results

We have applied various kinds of multigrid algorithms, with simple cycle indices or
compound cycle indices, with weighted linear interpolation or nonlinear minimiza-

tion interpolation, with exact Hamiltonians or approximate ones. The experiments
treat the anharmonic crystal model with dominating anharmonic oscillator, except
for Ex. 1 which treats a case where the harmonic oscillator is dominating. All the
experiments have used temperature 7' = 1.

Three kinds of observables have been measured:

the average energy per degree of freedom

E, = <ﬁ(hi3 Z(ul — ‘ui_1)4 + %Z(Uz - uz’—l)2)>

the harmonic susceptibility
1 .
{(F2( > ui)?)

and the anharmonic susceptibility

Xh = <#(Zuz’)2>

where each of them is associated with a corresponding thermodynamic limit.

The numerical experiments. given below, serve as a tool for demonstrating the
application of the algorithms that we have developed for the anharmonic crystal
model. The observables have been measured over one cycle, except for Ex. 3 and 4.,
where the anharmonic susceptibility was measured over two compound multigrid
cycles. In order to test the optimality of a certain application, we measure the

; _ |An—=(An)]
relative accuracy &, = —FY

meshsize h, A}, is the average of its many measurements within one multigrid cycle
(or two cycles), (Ap) is a long run average of the observable, and oj(A) denotes
its standard deviation. We say that optimality is achieved when the use of a finest
grid twice finer (N twice larger), while increasing the overall work by a factor R
(e.g, for a multigrid cycle with fixed cycle index v > 2, R = ), yields a relative
error which is smaller by a factor of V/R; so that relative accuracy &, is obtained
in 0(5;2) operations, independently of the grid size. In Ex. 1 — 4 &, is averaged
over an ensemble of 4000 runs. In Ex. 5 ¢, is averaged over an ensemble of 1000
runs only.

. where A}, is an observable on a (finest) grid with
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Experiment 1.

The relative accuracy &, in measuring the harmonic susceptibility
with cycle index v = 3 using the weighted linear interpolation,

for A =0.001-h
N Er
0.4360
8 0.2706
16 | 0.1561
32 | 0.09395
64 | 0.05360
128 | 0.03041
256 | 0.01796
512 | 0.01040
1024 1 0.006021
2048 10.003461
4096 | 0.002012

In this case the harmonic oscillator is dominating, therefore applying a multigrid
cycle with cycle index greater than 2 yields statistically optimal results, as in the
simple Gaussian case (3’5), i.e., the ratio between succesive ¢, entries in the table
tends to v/3 = 71/2 as N becomes larger.
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Experiment 2.

The relative accuracy &, in measuring the energy per degree of freedom,
with cycle index v = 1 using the weighted linear interpolation,

for A =1

N Er
1.0470
8 0.6603
16 0.4542
32 0.3342
64 0.2386
128 | 0.1709
256 | 0.1217

512 10.08674

1024 10.06065

2048 10.04401
4096 |0.03076
8192 10.02152

16384 1 0.01541

32768 1 0.01088

Here, the anharmonic oscillator is dominating, the ratio is approximately v/2. This
experiment demonstrates that optimal behaviour can be achieved while using the
weighted linear interpolation, when the observable is heavily dominated by the
high oscillatory components.
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Experiment 3.

The relative accuracy ¢, in measuring the anharmonic susceptibility,
with vy = 1.5, 7¢ = 2.666 using the weighted linear interpolation,

for A =1

N Er

8 0.2791
32 0.1720
128 10.09367
512 10.05106

2048 10.03142

8192 10.02292

32768 10.02029

This experiment justifies our claim, that the anharmonic susceptibility can be
measured in an optimal time (the ratio is roughly 2) when N is relatively small,
while using a compound multigrid cycle with the weighted linear interpolation.
But, when N becomes larger the results start to deteriorate. resulting in a ratio
which is far from 2.
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Experiment 4.

The relative accuracy ¢, in measuring the anharmonic susceptibility,
using the non-weighted (pure) linear interpolation,

for A =1

N Er

8 10.2959
32 10.2102
128 10.1485
512 10.1270
2048 10.1254

As expected, the non-weighted linear interpolation results are even worse than the
weighted linear interpolation results in Ex. 3.
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Experiment 5.

the relative accuracy ¢, in measuring the anharmonic susceptibility,
with cycle index v = 2 using the nonlinear minimization interpolation
and the approximate Hamiltonian approach for A =1

N Xh stgmay, Er

0.024053 | 0.03077

8 0.02535 | 0.03422 | 0.555

16 | 0.02604 | 0.03602 | 0.444

32 1 0.02655 | 0.03715 | 0.323

64 | 0.02695 | 0.03790 | 0.251

128 | 0.02727 | 0.03848 | 0.166

256 | 0.02751 | 0.03890 | 0.123

512 1 0.02769 | 0.03916 |0.0894
10241 0.027829 | 0.03934 |0.0661
20481 0.027925 | 0.039486 | 0.0456
4096 1 0.027993 | 0.039585

This experiment demonstrates optimal results for a classical anharmonic crystal
model Hamiltonian, since the ratio between succesive entries of ¢, in the table
tends to /2 as N becomes larger. This means that application of a W —cycle
with the nonlinear minimization interpolation and with the 4" order polynomial

approximation for the coarse grid Hamiltonians yield optimal results. To be more
accurate, since the application of a W —cycle for a grid size N requires O(N logy N)
operations, it turns out that the results are optimal upto a logarithmic factor. In
order to achieve full optimality, one has to construct an appropriate multigrid
cycle such that the geometric mean of the cycle indices is approximately 2.

Observe that although the relative accuracy ¢, is measured with respect to yp and
not with respect to the desired thermodynamic limit yg, it presents truly the ac-
curacy in measuring the continuum susceptibility. since the relative discretization

[(Gen) = {xo)

error , 1s smaller than the relative accuracy e,.
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9. Two-level performance tests

The two-level analysis allows us to test a proposed multigrid method. without
employing full multigrid, regarding the question of the volume factor elimination.
In particular, it gives us an indication about the suitability of a proposed coars-
ening scheme: only techniques with satisfactory two-level performance may be
considered as prototypes for multigrid algorithms. This is especially useful for
complicated Hamiltonians, whose form on coarse grids are not straightforwardly
calculable. In the present work, we have used two-level tests in order to examine
the suitability of the weighted linear interpolation and the nonlinear minimization
interpolation for constructing optimal multigrid algorithms.

An exact desired fine-grid observable average. on a grid with linear size N and
meshsize h = L/N . is denoted by AR and o denotes the standard deviation from
A" exhibited by a single fine-grid configuration. The thermodynamic limit A is
the limit of A" as h — 0. We assume that |4 — A”| is smaller than |A — A?"|. Let
us examine the size of the deviation from A" introduced by each coarsening from
the relevant fine-level (meshsize h) to the next coarser level (meshsize 2h). More
precisely, we define

ot = \Ji(Ah(a) — 4h)2),

where A?(ﬁ) stands for the average of many (practically infinite) measurements of
the desired observable on the coarse grid (e.g., after each Monte Carlo sweep on
the coarse grid), starting the coarsening at fine-grid equilibrium configuration .
Averaging the deviation over an ensemble of many fine-grid equilibrium configu-
rations yields the “average coarsening deviation” (ACD) for coarsening from level
h to level 2k, denoted here by a?.

The number of independent configurations that can be usefully averaged over after
coarsening from level & to level 2h is

w-o((3))

Consequently, the multigrid cycle index « should be bounded by

np  (a™)?(o2h)?
TS gy (0?2(oh)?

otherwise extra and useless work is done without getting any additional accuracy,
resulting of course in a non-optimal multigrid algorithm.

Moreover and perhaps more important, since for the calculation of observables
that strongly depend on smooth components like susceptibility, optimal multigrid
algorithms are possible only if v > 2d (when most of the work is devoted to

efficiently sampling on the coarse grids), the following condition should be satisfied
Zhos od (59)
n2h
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In statistical optimal multigrid algorithms the fluctuation of a given mode should
h 2h

be approximately the same at all levels, hence 0" =~ ¢“" ~ 0. where o is the
standard deviation from the continuous thermodynamic limit exhibited by each
continuous configuration. Therefore, according to (58) and (59), the ACD’s should
satisfy for any meshsize h

Ugh d/2
— > 2%,

og

which means that optimal multigrid algorithm, eliminating the volume factor, is

feasible only if the two-level performance tests exhibits deviation which is smaller
at least by a factor 2d/2 upon using twice finer grid.

In the following experiments the ACD was averaged over an ensemble of 1000
runs, except for Ex. 10 where the ACD was averaged over an ensemble of 2000 for

N =4 and over an ensemble of 100 for N = &, 16.
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Experiment 6.

N N
A 1
Hh(uh) = 3 g (uj —uj—1)* + E (uj — uj—1)

ACD in measuring the anharmonic susceptibility,
using the weighted linear interpolation,

for A =1

N ACD

8 0.0054
16 | 0.0041
32 ] 0.0030
64 | 0.0023
128 | 0.0016
256 | 0.0011
512 1 0.00080
10241 0.00056
20481 0.00041
4096 | 0.00027

Since the classical anharmonic crystal Hamiltonian has uniform couplings on the
finest grid, the weighted linear interpolation from the next coarser level to the
finest level is actually pure linear interpolation (all weights are equal to 1/2), which
coincides in this case with the minimization interpolation. This experiment shows
that it is feasible to construct an optimal multigrid algorithm for measuring the
anharmonic susceptibility (the ratio is approximately \/j) while using weighted
linear interpolation between the two finest levels. Therefore, the conclusion at this
stage is that the deterioration in the numerical results (Ex. 3 in Sec. 8) is a result
of uneffective interpolation on the next coarser levels. This point is explained
extensively in Sec. 4.1.
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Experiment 7.

H(u) Zfz( — Uj— 1 ‘|’Zgz — Uy— 1 2

relative ACD in measuring the harmonic susceptibility,
using the weighted linear interpolation
for f; = 1. g2;41 =1 and ¢9; = 10

N | relative ACD
0.0857
8 0.0348
16 0.0207
32 0.0132
64 0.00965
128 0.00698
256 0.00505
512 0.00405
1024 0.00311

Here. unlike the previous experiment, the weighted linear interpolation is not fully
effective, as anticipated by the discussion in Sec. 4.1.
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Experiment 8.

relative ACD in measuring the harmonic susceptibility,
using the weighted linear interpolation
for f; = 1. g4it1 = gait2 =1 and g4543 = g4, = 10

N |]relative ACD
8 0.101
16 0.0998
32 0.0682
64 0.0447
128 0.0323
256 0.0225
512 0.0159
1024 0.0114

This experiment shows promising results for a case that the weighted linear inter-
polation is actually the pure linear interpolation, which coincides in this case with

the minimization interpolation.
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Experiment 9.

relative ACD in measuring the harmonic susceptibility,
using the weighted linear interpolation
for f;=1and ¢; =1

N | relative ACD
0.1725
8 0.119
16 0.0800
32 0.0561
64 0.0398
128 0.0270
256 0.0195
512 0.0133
1024 0.00951

Again, promising results are obtained for a case that the weighted linear inter-
polation coincides with the pure linear interpolation (which is the minimization

interpolation).
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Experiment 10.

Two-level unigrid tests:
ACD in measuring the harmonic susceptibility,
using the nonlinear minimization interpolation operator

fi=1 g2i41 =1and g3; = g =10

N =4 and op = 0.0596

number of passes | ACD
on the coarse grid

10 0.0185

100 0.0078

1000 0.0064

2000 0.0063

4000 0.0059

8000 0.0059
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N =8 and o5 = 0.128

number of passes ACD

on the coarse grid
4103 0.0031
16 - 103 0.0016
32103 0.0011
64 - 103 0.00080
128103 0.00058
256 - 103 0.00038
512 - 103 0.00026
1024 - 103 0.00020
2048 - 103 0.00012
4096 - 103 0.000083
8192 - 103 0.000078
16384 - 103 0.000039
32768 - 103 0.000034
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N =16 and o5, = 0.264

number of passes | ACD
on the coarse grid
32103 0.0034
64 - 103 0.0019
128 - 103 0.0016
256 - 103 0.0012
512 - 103 0.00080
1024 - 10° 0.00058
2048 - 103 0.00038
4096 - 103 0.00024

These promising results of the unigrid two-level tests for a non-trivial case of the
anharmonic crystal model (actually, it simulates a typical Hamiltonian on level
k = 1), encouraged us to develope a multigrid algorithm using the nonlinear
minimization interpolation (see Sec. 7) that yielded optimal results (see Ex. 5 in

Sec. 8).

In this experiment, better results are obtained than in the uniform coupling case in
Ex. 9, although in both cases the minimization interpolation is used. The reason
behind this peculiarity is that the application of this particular experiment with
the minimization interpolation is very similar to the decimation process (which
usually yields as good results as one wants). Indeed, calculation of the asymptotic
coarse-grid Hamiltonian, i.e., the limit of the coarse-grid Hamiltonian as ¢ — oc,
in both processes yields the same energy action

N/2 N/2
D (ugi —ugim)t + ) (ug; — ugi_z)?.

In contrary, the asymptotic coarse-grid Hamiltonian for this particular experiment

with the weighted linear interpolation yields, as expected, different energy action
N/2 N/2
S g — upioa)t + 5 Tz — uaio2)?.
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10. Summary

The calculation of a thermodynamic limit of any observable to a relative accuracy
¢r by a usual Monte Carlo process requires O(Nd+za€;2) computer operations,
where ¢, is the error relative to the standard deviation of the obervable, N is the
linear dimension of the lattice needed to approximate the thermodynamic limit to
accuracy &y, d is the dimension and z is the critical exponent.

Multigrid algorithms can reduce and even eliminate not only the critical slowing
down factor N* but also the volume factor N%, even in the case of the one dimen-
sional anharmonic crystal model, where strong coupling between different scales
does exist.

For the optimal calculation of the susceptibility in the one dimensional anharmonic
crystal model, it is essential to use, in addition to suitable cycling, nonlinear
interpolation operators which can be determined from the local Hamiltonians.

The optimal efficiency is obtained independently of the nonlinearity strength. The
critical slowing down and the volume factor are completely eliminated, and the
total required computational work is just 0(5;2).
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