Multiscale Computation in Chemistry

The quantum-mechanical equations that govern molecular chemistry are fully
known. If efficient solvers were available, all chemistry could in principle be com-
puterized, yielding detailed understanding of molecular and macromolecular struc-
tures and interactions.

The basic reasons for the immense complexity of molecular computations are
the very high dimensionality of the fundamental equations, and the huge scale
gap, that exists between the microscopic scale at which the physical laws (or even
their low-dimensional approximations) are given and the macroscopic scale of the
phenomena we wish to understand. This gap implies, first of all, a huge number of
variables (e.g., many gridpoints in electronic-structure calculations, or many atoms
in molecular dynamics simulations) and even much larger number of interactions
(e.g., each atom interacting electrostatically with each other).

Furthermore, this gap involves other scale difficulties. First, the simulations
are limited to steps at the scale of the fast atomic vibrations, roughly 1015 of
a second. Moreover, the molecular energy landscape includes many basins with
large energy barriers between them. Huge number of simulation steps are needed
per each switch to a new basin. This difficulty is compounded many times over
since small-scale energy basins are nested within larger-scale basins, and so on at
all scales.

In various areas of physics and engineering, our past work has shown that all
such scaling difficulties can be overcome by multiscale computational methods.

Our research consists of isolating these complexity factors and constructing
the mujltiscale methods designed to overcome each of them, in the following areas:

1. Multiscale path integrals. A general approach to solve the 3N-dimensional
Schrodinger equation for an N-particle system is by Monte-Carlo methods, us-
ing Feynmann path integral representation of the time evolution operator. The
main problem with this approach is the extreme oscillatory nature of the path
contributions. A multiscale packing of paths, organized in a multigrid structure,
can eliminate the problem, using also a multigrid method for instantly updating
large-matrix determinants.




2. Multigrid quantum chemistry. A very good low-dimensional approximation
used in ab-initio quantum chemistry is the nonlinear Kohn-Sham system, in which
a large number N of eigenfunctions (representing N electrons) need be calculated
for the 3D differential operator —A + V', whose potential V' at each point depends
on the positions of nuclei and on global integrals involving the eigenfunctions. A
multiscale collective representation of the eigenbasis has been developed, elimi-
nating the need for a separate representation of each eigenfunction and for or-
thogonalizing it with respect to all others. Together with multigrid solvers for the
equations associated with the global integrals, the entire problem can be solved
in O(N log N) operations, even when the external calculation of positioning the
nuclei to achieve minimal total energy is included.

3. Multiscale molecular dynamics. Even with the vastly simplified models of mole-
cular dynamics, computing costs rise very steeply with problem size, restricting
the simulations to relatively small systems and to Monte-Carlo steps many or-
ders of magnitude smaller than needed. This steep rise can be radically reduced
by multiscale Monte-Carlo, which involves renormalization-type derivation of in-
creasingly coarser molecular Hamiltonians. Each coarsening step involves:

(A) Decomposing long-range interactions into the sum of smooth interactions and
local ones. The smooth interactions can be transferred directly to the coarse level.
(B) All the local coarse-level interactions are then constructed by iteratively com-
paring local simulations at the coarse level with such simulations at the fine level.

As a result of the multiscale algorithm it is expected to achieve the following:

e There is no need for a huge number of variables, since the coarse-level equations
(unlike the large-scale solutions) can be derived just by local simulations at
representative small volumes.

e No need for summation of long-range interactions.

e Noslowness: Large equilibrium-simulation steps can be done at the coarse levels,
effectively averaging over smaller-scale vibrations and attraction basins.

e Proceeding this way to sufficiently coarse levels, the macroscopic equations of
the material should emerge, which is often the very objective of the entire cal-
culations.



