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Abstract

We introduce a general classification tool, able to distinguish between two labelled
data sets, and which we apply to real biological data as an example. For this, we develop
a new normalization procedure integrating data obtained from multiple experiments,
then qualitatively identify the candidate genes for differentiating disease states, which
are finally used for diagnosing new samples. We demonstrate the algorithm by first
training it on real biological data of the immune system obtained from multiple antigen
arrays, and then diagnosing the correct disease state of new samples.

1 Introduction

The goal of our work is classification. We introduce a classifier able to distinguish between
classes of entities, later used to assign a new unseen entity to the right class. We build this
classifier in three stages - a normalization step, a learning step, and a classification step.
First, we normalize all the gathered information from all experiments and combine it into
one correctly scaled data set. Second, we identify the measurements showing the desirable
distinction between the classes. And finally, in the classification step, we use the information
found in previous steps to classify new unseen entities.

Typically, we are given a training set of ne labelled entities, each with a vector of nd

measurements, and asked to assign a label to additional unlearned entities. A set of entities
can be anything, e.g. set of tissue samples, blood samples, cells extracts, image segments
(shapes) etc, while its vector of measurements describes the different parameters measured in
the experiment for that entity, e.g. expression level of genes, cell content, shape moments, sets
of correlated measurements etc. We call each measured factor a determinant, and assume the
same determinants are measured for all entities, otherwise no comparison between entities
or determinants can be done.

1



In this report, we describe the three steps of our algorithm, and show our results on
immunological data of healthy samples vs. sample diagnosed with autoimmune diseases,
that is, our data measures the binding of IgG and IgM antibodies from a serum sample to a
set of antibodies.

This kind of protein data is more noisy than other kinds of microarrays data, and as
such cannot be normalized by the simple re-scaling and filtering that are often used on DNA
microarrays. Therefore, we first introduce a new normalization procedure. Once the data
is properly normalized we aim to learn the determinants that can separate between 2 kinds
of populations (e.g. healthy and sick). However, since the number of samples at hand is too
small and noisy, simple hypothesis testing are not sufficient. Thus other method should be
used. Golub et al. [1] find genes that are highly correlated with the separation of interest, by
checking the means and standard deviations of the two separated populations over each gene.
Using their method we did not find enough significant antigens, and thus got low prediction
rates on our data. A recent work introduced by Quintana et al. [2] uses the coupled two-
way clustering algorithm [3] on similar data, predicting Type-I Diabetes and proposing the
relevant antigens detected by this disease.

In this work, we introduce a novel adaptive supervised procedure to detect the significant
determinant for a disease, successfully classifying Type-I Diabetes, type-II Diabetes, Multiple
Sclerosis and Beçket’s Disease .

2 Adaptive Normalization of Multiple Experiments

The problem of normalization is a challenging subject for study when analyzing information
obtained from multiple experiments. In fact, we found normalization to be a crucial necessity
for achieving any useful conclusions especially from biological integrated experimental data.
We introduce a novel adaptive iterative procedure, successful in normalizing the data at
hand.

Our normalization procedure aims at re-scaling measurements obtained from multiple
experiments each may have been done in different conditions or by different protocols, and
moreover we wish to eliminate noise in the data. To achieve the correct re-scaling, we
integrate into the normalization procedure any known support information in a supervised
manner. In other words, all global parameters known to cause a variation in the data
over different experiments and within an experiment are integrated simultaneously into the
normalization. Some global parameters can be deduced from the data itself, such as the
total sum of reactions for an entity, or given from the outside, e.g. experiments temperature,
origin of the entities (women vs. men, adults vs. children, nationality etc). For simplicity of
presentation, we describe the normalization procedure using only one such parameter, and
later generalize. In addition, we need to neutralize the effect of outlier measures, that is, a
data point that peaks or troughs just for one or very few entities, and introduces great noise
to the data.

Suppose we have ne entities. First, we divide the entities into non-intersecting populations
according to their pre-known labelling. Usually, some of the entities are controls, that is,
entities with wildtype or normal phenotype. We denote their size by l, and the others by l̄
such that l + l̄ = ne.
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The normalization procedure finds the correct re-scaling by learning the normal behavior
curve, that is, the behavior of the control population, and adjusts all other measurements
according to that curve.

In the absence of a known a-priory model to describe this behavior in our data, we use
the dependence of the data on the list of global parameters, and find the curve by best-fitting
a piecewise linear curve, as follows.

2.1 Finding The Normal Behavior Curve

Given a matrix of nd determinants over l control entities, each entry ij corresponds to the
measurement of determinant i over the j’th entity. We normalize each determinant at a
time. Denote by a = (a1, . . . , al) the measurements of the currently analyzed determinant,
and by pj (1 ≤ j ≤ l) the global parameter corresponding to aj (e.g. pj =

∑nd

i=1 aij, i.e. the
sum of all determinants of entity j).

We regard each pair (aj, pj) as a point in a two dimensional parameter space, in which
pj is the x-coordinate, and aj is the y-coordinate . To learn the general behavior of the
control population we invoke an adaptive piecewise linear least square (LLS) fitting. For
this, we adaptively divide the x-axis into T segments such that there are n data points in
each segments, and where n is large enough to avoid over-fitting to the noise (See Sec. 3.2,
where we present a scheme for choosing statistically significant segments but in a different
context).

Next, we fit a straight line to each segment such that the lines intersect at the borders of
the segments, and minimize the sum of squared distances between the data points and the
lines. To define such lines we find T +1 points, (x1, y1), . . . , (xT+1, yT+1), through which the
lines go. The x-values of the borders, x1, . . . , xT+1, are pre-fixed, and we find y1, . . . , yT+1 by
minimizing

S =
l∑

j=1

(aj − âj)
2, (2.1)

where (âj, pj) are on the fitted lines.

2.2 Iterative Reduction of Outliers’ Effect

To eliminate the effect of outliers on the normalization, we assign a weight to each data point,
determined by the distance of the point to the fitted curve, and run the above procedure in
iterations but altering Eq. (2.1) to consider weights,

S =
l∑

j=1

wj(aj − âj)
2. (2.2)

For each iteration the weights are defined by the previous iteration, until the piecewise linear
curve does not change much between iterations. We define the weight as follows (although
other weighting methods can be used),

wj =

{
1 if dj < threshold
0 otherwise ,

(2.3)
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where dj is the distance of aj from the fitted curve, divided by the standard deviation of the
distances of points in the aj’s segment to their line. Convergence is usually achieved within
2 to 10 iterations, depending on the threshold in Eq. (2.3). Typically, we take a threshold
of 2.5.

In case lines of successive segments appear as one continues line, there is no point in
defining multiple segments, and a linear regression model suffices. This is often the case
with DNA microarrays. However, in view of our results, this is not the case with antigen
data, where the above local adaptive estimation is indeed necessary.

2.3 Normalizing Data Points

The normalized value for each measurement, is its scaled distance from the normal behavior
curve. For every measurement ak that did not participate in determining the fitted lines
(i.e. sample outside the control sub-population), we calculate pk, and find the segment τ
it falls in, and the corresponding normal-behavior value âj = a(pk). Then we define its
normalized value ãk as follows:

dk = ak − âk,

στ = (
∑
j∈C
pj∈τ

dj
2)

1
2 ,

ãk =
dk

στ

. (2.4)

That is, the normalized value is the difference between the original value (ak) and the corre-
sponding fitted-curve value (âk), divided by the L2-average of the distances of control entities
(denoted by C) from the line in its segment τ .

In case an entity, not of the controls class, has fallen outside the segments borders, we
would extend the line in the closest segment to the needed range. Or else, we can define the
borders by all the population in the first place.

After this basic normalization has been applied, we standardize each determinant to
obtain a similar range of measure for all determinants. Namely, for each determinant mea-
surement, we subtract the mean of (normalized) measurements of that determinant, and
divide by the standard deviation of these measurements, to obtain a distribution with zero
mean and standard deviation of 1. This last calculation is very important for later classi-
fication, since similar range of measurements for all determinants ensure, for example, that
one highly varying determinant will not dominate the procedure.

2.4 Larger Number of Global Parameters

For integrating any number of global parameters into the normalization procedure, we build
a multidimensional parameter space, that is, an axis for each parameter. Then, we partition
the domain in that space, that contain all measured parameters, into sub-domains (e.g.,
triangles in a two-parameter case) and best-fit a surface (e.g., continuous surface, linear over
each triangle) to the data set.
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3 Identifying Significant Determinants

Many determinants may have nothing to do with the classes we aim to distinguish, therefore
we filter out only the ones we are interested in, namely, those who show a significant difference
between the classes we wish to separate. For this we propose a test that outperforms simpler
hypothesis tests (t-test, ranksum etc.). Our test is related to the χ2-test, which is non-
parametric and assumes nothing on the distribution of the classes, but in addition, our test
is suited also for having low number of samples.

Again, we concentrate on the values of one determinant at a time, and assume there
are ne entities, and l entities out of ne for a specific label L. We estimate the probability
to obtain the given distribution of determinant-values for entities coming from this label,
provided that the distribution density generating these values is identical to the distribution
of this determinant for the whole population. Low probability means that the determinant
values for this label are distributed differently than the determinant values for the whole
population. The lower this probability is the more the value of this determinant will be
important in our classifier to determine whether a specific entity is coming from that specific
label.

3.1 Estimating Distributions Assuming Multinomial Probabilities
Over Bins

Given a partition of the determinant-value axis into m disjoint bins {bi}m
i=1, we denote the

total number of entities falling in bin bi by ni, and define n =
∑m

i=1 ni, (i.e. n = ne). For a
specific label L, we denote the number of labelled entities falling in bin bi by li, so l =

∑m
i=1 li.

We consider each entity as a random variable with a probability pi = ni/n to fall in bin bi.
According to the multinomial distribution, we have that

P (l) = P (l1, l2, ..., lm) =
l!

l1!l2! · · · lm!
pl1

1 · · · plm
m . (3.1)

This coefficient in Eq. (3.1) is expensive to compute, instead we calculate P (l) by the fol-
lowing approximation.

Let {xk}l
k=1 be the determinant values coming from label L. We associate with every

such value a vector X(k) whose length is the number of bins m, defined by

X
(k)
i =

{
1 if xk ∈ bi

0 if xk /∈ bi .
(3.2)

Assuming the labelled data to be distributed like the entire population we have that
each X

(k)
i has probability pi to be one. Hence X(k) are i.i.d (identically, independently

distributed) random variables, each being an m-vector, with E(X(k)) = µ = (p1, p2, ..., pm)T ,
and the covariance matrix

Σ =


p1(1− p1) −p1p2 . . . −p1pm

−p2p1 p2(1− p2) . . . −p2pm
...

...
...

−pmp1 −pmp2 ... pm(1− pm)

 . (3.3)
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Since l = (l1, l2, ..., lm)T =
∑l

k=1 X(k), for large l/m we can use the Central Limit Theorem
to approximate P (l1, l2, ..., lm) by a multivariate normal distribution

P (l1, l2, ..., lm) ≈ 1

(2π)m/2
√

detΣ
exp

(
−1

2

(
l/l − µ

)T
Σ−1

(
l/l − µ

))
. (3.4)

Since actually det(Σ) = 0 (the sum of every one of its columns is zero), we have to
understand the value of the approximating expression in Eq. (3.4) by taking a limit in
Eq. (3.4). This will yield

P (l1, l2, . . . lm) = C exp

(
−1

2

m∑
i=1

1

pi

(
li
l
− pi

)2
)

, (3.5)

where, if l � 1, C ≈
∏m

i=1
1

l
√

2πpi
to ensure that

∑
l1,l2,...,lm

P (l1, l2, ..., lm) = 1.

In particular, choosing the bins {bi}m
i=1 so that in each bin we have the same number

of entities ni ≡ ñ = n/m, coming from the entire population, we have that pi = 1/m and
hence, if l � m,

P (l1, l2, ..., lm) ≈ C exp

(
−m

2

m∑
i=1

(
li
l
− 1

m

)2
)

. (3.6)

Low P means that L is distributed differently from the entire population, thus we choose
as the important determinants those with lowest values of P .

The statistical rules for choosing the number of entities in a bin ñ are described in Sec. 3.2
below. An adjustment to Eq. (3.6) is needed in case l is large in comparison to ne − l, the
size of the rest of the population, and dominates the probability pi to fall in a bin. This
adjustment is described in Sec. 3.3.

3.2 Building statistically significant and correctly scaled Bins

Prior to comparing the distribution of label L and the entire population, we need to generate
an appropriate binning over which to compare.

Given a determinant’s values over the entities of the entire population, we first generate
a partition of the value axis into m disjoint bins, so that we get a similar number of entities
in each bin, ni ≈ ñ = n/m. We refer to this partitions of the value axis as an ”equi-ni

binning”. In order to get a meaningful calculation, ñ should be statistically significant,
i.e. considerable larger than its predictable statistical error. To this end, we first calculate
the statistical variation in the number of entities in a bin (Sec. 3.2.1), and then merge bins
that are not significant enough with respect to a specific label (Sec. 3.2.2).

3.2.1 The statistical variation in a bin

Concentrating on ni, the number of entities from the population falling in bin bi, we recall
that the binomial variable X

(k)
i equals 1 whenever the associated entity xk falls in bin bi and

zero otherwise. We formally denote the unknown probability with which X
(k)
i = 1 by pi.
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Since P (ni = k) =
(

ne

k

)
(pi)

k(1− pi)
ne−k, E(ni) = nepi, and V (ni) = nepi(1− pi), the

standard deviation of entities falling in a bin satisfies

V
1
2 (ni) ≤

√
E(ni). (3.7)

The practical conclusion from this is that we cannot trust ni that is not significantly
larger than

√
ni. We can start trusting statistically only ni ≥ 8. This is the main different

to a χ2 test, which usually uses ni = 5.
The equi-ni binning is generating the correct scaling of the determinant value axis. That

is, each bin is defining a unit on that axis. When doing so we can reliably consider ni

n

to represent the probability of the determinant value to fall in bin bi, and hence we can
reliably represent the distribution of the determinant values over the bins. We consider the
distribution to be uniform within each bin.

3.2.2 Generating correctly-scaled bins for different labels

Given no previous knowledge about the distribution of the entities coming from L we use the
equi-ni binning generated by the entire population as the basic units of the determinant value
axis. We assume uniform probability density value over those bins, and approximate the
probability density of the entities coming from any L, using the bins of the entire population
as the point of reference. We do so for each label at a time by looking at the number of
entities of that label in each bin while merging bins that are not ”informative enough” for
that label, as follows.

Given the equi-ni units, for any specific label L we generate a new binning {b(L)
j }mL

j=1. For

each j ∈ {1, 2, ...,mL}, b
(L)
j is a union of several consecutive bins of the entire population

(equi-ni bins), such that b
(L)
i ∩ b

(L)
j is empty for i 6= j, and such that all of the original bins

take part in the new binning. We denote the number of entities from label L in each bin b
(L)
j

by l
(L)
j .

There is one reason for wanting to enlarge bins (enlarging each l
(L)
j while decreasing µL)

and one for keeping the bins not too large. In each bin b
(L)
j we must have l

(L)
j large compared

with its expected error
√

l
(L)
j , and at least l

(L)
j ≥ 8 (as above in Sec. 3.2.1). On the other

hand, the shorter the bins, the better resolved probability density we get.
To optimize between these two reasons for each L, we define a greedy ”bin-merging”

process that merges neighboring bins of {bi}m
i=1 into {b(L)

j }mL
j=1. We will first define a criterion

for merging two consecutive bins. The process then sequentially visits the bins, for each
bin judging whether it should be merged to the next bin in line, and keep merging the
resulting bin to its next until this is prohibited by the criterion. Then, moving to the next
bin considers its merging to its next in line, and so on until the last bin is met.

More specifically, Consider two sequential bins bj, bj+1, with li, lj entities (from label L)
respectively. The probability density function in bj will be defined to be

pj =
lj/l

κj

, (3.8)
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where κj denotes the number of equi-ni bins contained in bj. Similar probability pj+1 is
defined for bj+1. We do not merge the two neighboring bins bj and bj+1 only if the difference
between pj and pj+1 is significant compared with the estimated standard deviation of

p[j,j+1] =

(
lj + lj+1

)
/l

κj + κj+1

, (3.9)

which is the probability density function estimated in their unified bin b[j,j+1] = bj ∪ bj+1.
The standard deviation in the number of entities from label L falling in bins bj, bj+1 and

b[j,j+1] is (by Eq. (3.7))
√

lj,
√

lj+1 and
√(

lj + lj+1

)
, respectively. Thus, our criteria for

not merging the bins bj and bj+1 into b[j,j+1] is first that lj and lj+1 are large enough to be
statistically meaningful, and second that∣∣pj − pj+1

∣∣ > V
1
2

(
p[j,j+1]

)
, (3.10)

meaning that the difference between the values of the probability density function in the two
separate bins is bigger than the expected error in this value in their unified bin. Explicitly,
the non-merging criteria in Eq. (3.10) above can be re-written as follows∣∣∣∣ ljκj

− lj+1

κj+1

∣∣∣∣ >
√

lj + lj+1

κj + κj+1

. (3.11)

We keep going over the bins until no two consecutive bins are merged any more. At last,
we end up with a new binning we denote by {b(L)

j }mL
j=1.

Now all is left is to superpose the new binning of each label over the original equi-ni

binning of the entire population, and to compute the probability in Eq. (3.6). These are
explained next.

3.2.3 Comparing the labelled and the entire-population data distributions over
correctly-scaled bins

For each i ∈ {1, 2, ...,m} and ji ∈ {1, 2, ...,mL} such that bi ⊆ b
(L)
ij

we define the ”induced
probability density function” of L over the equi-ni bins by

p̃
(L)
i = p

(L)
ji

=
l
(L)
ji

/l

κ
(L)
ji

, (3.12)

and the ”induced entity counting” by

l̃
(L)
i = l

(L)
ji

/κ
(L)
ji

. (3.13)

According to the construction of the correctly-scaled binning {b(L)
j }mL

j=1 of label L, the
statistics in each bin is enough to reliably estimate the probability density function over these
bins by the uniform values {p(L)

j }mL
j=1. We can therefore trust the induced entity counting

from Eq. (3.13), i.e. {l̃(L)
i }m

i=1, to replace {li}m
i=1 in Eq. (3.6).
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Lastly, since the estimated statistical deviation in l̃
(L)
i is simply

√
l
(L)
ji

/κ
(L)
ji

, then the

statistical deviation of
∑m

i=1

(
l̃
(L)
i

l
− 1

m

)2

in Eq. (3.6) can be roughly estimated by the sum of

deviations
∑m

i=1

(√
l
(L)
ji

/κ
(L)
ji

l

)2

≤ 1
l
, where the bound 1

l
is achieved in the case where κ

(L)
ji
≡ 1,

and gets tighter when {κ(L)
ji
}m

i=1 are larger. And so we can work less by looking for large
values of

l

m∑
i=1

(
l̃
(L)
i

l
− 1

m

)2

. (3.14)

instead of using Eq. (3.6).

3.3 Adjustment to Large Labelled Population

In most cases in real life, there is only a small amount of entities of the population we are
required to distinguish (the one labelled by L), that is l << ne. However, in experiments
l may be as large as the rest of the population, that is l ≈ ne − l. In that case pi (the
probability to fall in a bin according to the entire population, see Sec. 3.1), is greatly affected
by the measures of the entities labelled by L, rather than by the rest of the population.
Consequently, Eq. (3.6) is greatly biased. An adjustment to Eq. (3.6) substitutes pi in
Eq. (3.5) by the distribution of the rest of the population in each bin, rather than by 1/m
which is the distribution of the entire population. In other words we compare entities of
label L to the rest of the population, which we denote by L̄. More specifically, recall that li
denotes the number of L labelled entities falling in bin bi. Similarly, denote by l̄i the number
of entities labelled by L̄ in bin bi, l̄ =

∑m
i=1 l̄i. Next, instead of using 1/m to describe the

distribution of the entire population in a bin in Eq. (3.6), we use pi = l̄i/l̄. Thus,

P (l1, l2, ..., lm) ∼ exp

(
− m

2

m∑
i=1

( li
l
− l̄i

l̄

)2
)

. (3.15)

Now we can again generate equi-entities bins as described in Sec. 3.2, and generate the
correctly scaled bins for each label, that is, also for label L̄. Note, that the general equi-
entities binning is generated by the entire population as before.

To detect significantly low values of P (l1, l2, ...lm) in Eq. (3.15) we use the same reasoning
as with the original equation and can simply check whether

m∑
i=1

(
l̃
(L)
i

l
−

˜̄l
(L̄)
i

l̄

)2

>
l + l̄ + 2

√
l · l̄

l · l̄
. (3.16)

This since the statistical deviation in l̃
(L)
i is simply

√
l
(L)
ji

/κ
(L)
ji

, and similarly the statistical

deviation in ˜̄l
(L̄)
i is

√
l̄
(L̄)
ji

/κ
(L̄)
ji

. Meaning that the statistical deviation in
∑m

i=1

(
l̃
(L)
i

l
−

˜̄l
(L̄)
i

l̄

)2

can
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be roughly estimated by the sum of deviations
∑m

i=1

√
l
(L)
ji

/κ
(L)
ji

l
+

√
l
(L̄)
ji

/κ
(L̄)
ji

l̄

2

≤ l+l̄+2
√

l·l̄
l·l̄ ,

where the bound is approached for κ
(L)
ji
≡ κ

(L̄)
ji
≡ 1.

Notice that for a large enough sampling
√

l · l̄ is negligible compared to l + l̄ and can be
omitted, and so, we rewrite Eq. (3.16) so that important determinants are those having the
largest values of

l · l̄
l + l̄

m∑
i=1

(
l̃
(L)
i

l
−

˜̄l
(L̄)
i

l̄

)2

. (3.17)

4 Diagnosis: Assigning Labels to Unlearned Entities

The significant determinants found in Sec. 3 define a profile for each disease class. For
diagnosing new unseen entities, we compare their normalized determinant composition to
the diseases profiles, that is, look at the distinguishing determinants only. There are many
methods for doing the prediction by the relevant determinants, such as decision trees -
constructing the tree based on the significant determinants, clustering - assign the new
samples to the class of the cluster it fallen in, or clustering trees - using an hierarchical
clustering output as a decision tree based on the underlying features of the clusters. Here
we chose to use a Bayesian classifier, which gives good prediction rates on out data.

First, we normalize the new entity by adjusting it to the normal behavior curve already
used to normalized the training set (see Sec. 2.3), then use the Bayesian classifier to produce
a probability for the new entity to come from each of the classes previously learned.

4.1 Bayesian Classifier over Important Determinants

We denote by the vector xk the set of K normalized measurements of significant determinants
of labelled entity k. That is, xk = (xk1 , xk2 , ..., xkK

)T . For each new and unlabelled entity
x = (x1, x2, ..., xK)T and each label L we aim to compute P (x ∈ L|x = (x1, x2, ..., xK)T ),
that is the probability that the entity x is coming from the data characterized by the already
observed samples label by L (We would denote this in short by P (L|x)). We use the Bayes
formula, by which

P (L|x) =
P (x|L)P (L)

P (x|L)P (L) + P (x|L̄)P (L̄)
, (4.1)

where L̄ labels the part of the population complementary to L.
The priors P (L) and P (L̄) are usually given, or can be easily learned from the labelled

data. The probability P (x|L) can be described as the probability to observe the set of
determinants measurements of x, when x is assumed to belong to label L, and similarly for
P (L̄). By comparing the distribution functions of measurements originated from L and of
measurements originated from L̄ we can answer this question for x. In fact, it shows in
Eq. (4.1) that in order to estimate P (L|x) we only need to estimate the probability ratio

R(x|L) =
P (x|L)

P (x|L̄)
. (4.2)
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The distribution of a label over the entire space is hard to estimate, but the ratio in Eq. (4.2)
can be easily estimated in the vicinity of x. We do it as follows.

4.1.1 Estimating the Bayes Ratio

We build a K-dimensional space, where K is the number of the significant determinants, and
each axis represents a different distinguishing determinant. We call that space the Determi-
nant Space, and place all samples in the space according to their normalized determinants
values, along with the new unlabelled entity x.

To estimate the distribution functions in the vicinity of x, we consider for each label, the
n closest points to x (measured by their Euclidian distance to x), and define the neighborhood
of x to be the smallest ball containing the closest points to x, with x at its center (see fig. 1).
Its radius is the distance between x and the farthest point in the neighborhood. The smaller
the radius of the neighborhood the bigger the chance that entity x came from the same
distribution. To obtain a statistically significant estimation of the distribution function in

Figure 1: A determinant space for two important determinants. Two types of cases are
presented: red dots represents one class of entities, and blue the other. the x point represents
the entity to diagnose. Colored circles demonstrate the neighborhoods consisting of 10
entities each.

the neighborhood of x, we demand the neighborhood to contain enough entities, so that the
predictable statistical error in the estimation of the distribution will be small (for the same
reasoning as in Sec. 3.2.1). A neighborhood of n ≥ 8 may usually suffice. On the other hand,
we also limit the maximal number of points defining the neighborhood, since we prefer as
small neighborhoods as possible, where the distribution estimation is more accurate.

Denote the neighborhood size of label L by n
L

and of L̄ by n
L̄
. (usually n

L
= n

L̄
, but if

there is more than one point with the maximal distance in the neighborhood, we take it also,
and redefine the neighborhood size accordingly, so now there may be a case where nL 6= nL̄.)

We estimate the required ratio by

R(x|L) =
P (x|L)

P (x|L̄)
=

n
L

/|L|
(r

L
)d

L

n
L̄

/|L̄|

(r
L̄

)
d
L̄

, (4.3)
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where r is the radius of the neighborhood, and d is the embedded dimension of the neigh-
borhood, so that rd is simply proportional to the volume of the neighborhood (i.e. volume
of a ball with radius r in d dimensions). d inside the neighborhood may be smaller than K,
therefore we calculate d by neighborhood principal component analysis [4], taking it to be
the number of components with eigenvalues which are not much smaller then the maximal
eigenvalue.

To estimate P (L|x) all is left is to plug R(x|L) in the Bayes formula in Eq. (4.1).

4.2 Classification over an Ordinal Space

The problem of outliers may be relevant also in the classification process described above.
Outliers rise as a problem usually when having only a small number of entities to learn from
for one of the labels (e.g. we usually have only a small number of sick samples in hand),
and the majority of them must be always taken for the neighborhood of the point to predict.
Consider the case that one of the entities contains an outlier in one of the determinants
found to be important and therefore used in the classification. The outlier may introduce a
bias, resulting in many false positives or negatives predicted by the Bayes formula.

Next, we propose one optional procedure to overcome the effect of outliers in the classi-
fication process as well as correct any misscaling of determinants.

For any determinant, we substitute each of its values by their ordinal value, that is, the
ordinal location (rank) of each value among all the determinant’s values.

Now we invoke the Bayesian classification procedure described in Sec. 4.1 using the
ordinal values instead of the real values. For each new and unlabelled entity, we also denote
its determinants values by their ordinal location among the other entities. By using ordinal
values, we change the placement of the points on the parameter space, so that each point
would have a fix scaling compared to other points, and different determinants will have
similar scaling. Outliers may occur at the edges of the order, but would not enlarge the
neighborhoods as much as when using real values. Indeed, this adjustment improves the
results for small learning sets.

5 results

We analyze 4 different data sets from 4 different ELISA (Enzyme-Linked Immunosorbent
Assay)[5] experiments, studying 4 kinds of autoimmune diseases - type-I diabetes, type-II
diabetes, Beçket’s Disease , and Multiple Sclerosis, each with a set of healthy samples used
as a control set, except for Beçket’s Disease where the control are some healthy and some
sick with a disease with similar phenotype to Beçket’s Disease [6]. For each sample 114
measurements are taken, 57 measures of binding to IgG+IgM antigens, and 57 of binding
only to IgM antigens, which we normalize separately. Table 1 shows the number of samples
in each experiment along with the disease codes and colors that are used in our analysis.
Fig. 3 displays all measurements before and after the normalization colored according to the
experiment they were taken from, and Fig. 4 shows an example of a normalization curve.
Notice that each experiment has it’s own scaling and therefore different experiments are
comparable only after normalization. For the purpose of testing our algorithm, we take one
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Figure 2: original un-normalized data, up: chip view, down:dots view - For each sample, each
antigen measurement is displayed as a dot in that sample’s column. Different experiments
are marked by a different color, defined in Table 1.
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Figure 3: normalized data, up: chip view, down: dots view - For each sample, each antigen
measurement is displayed as a dot in that sample’s column. Different experiments are marked
by a different color, defined in Table 1.
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# disease code color number of Samples

1 Type-I Insulin Dependent Diabetes Mellitus IDDM1 green 20
Healthy donors HD1 14

2 Type-II Insulin Dependent Diabetes Mellitus IDDM2 blue 29
Healthy donors HD2 38

3 Multiple Sclerosis MS red 10
Healthy donors HD3 30

4 Beçket’s Disease BD magenta 28
Healthy donors + BD-like phenotype D4 21

Table 1: Each disease has been given a code and a color. The first column refers to the
number of the experiment the sample was analyzed in.

Figure 4: Examples for normalization curves, using 12 in a segment. Different experiments
are marked by a different color, defined in Table 1.
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disease at a time along with the 3 sets of healthy samples, and predict a classification for
samples in a jackknife procedure (i.e. leave one out cross-validation), predicting one sample
at a time while training by the rest, over an ordinal space, thus detecting for each disease
the determinants that rise as important, and give the best prediction rates. Tables 2 and 3
summarizes our results.

Disease Accuracy (FN) Sensitivity (FP) Selectivity
IDDM1 97% (0) 100% (3/82) 96.34%
IDDM2 97.3% (2/29) 93.1% (1/82) 98.78%
MS 96.7% (3/10) 70% (0) 100%
BD 100% (0) 100% (0) 100%

Table 2: Each disease was compared to the 82 healthy donor’s samples of 3 experi-
ments. We calculate the total accuracy of classigying the right disease state for all samples
(healthy/sick), and the number and percent of False Negatives (FN) and False Positives (FP)
predictions.

As for the control samples of the Beçket’s Disease , we can classify which ones are
indeed healthy and which show a resemblance to Beçket’s Disease samples using them as
a test set for our procedure. For this we normalize D4 and BD according to HD1-3 sets,
then train the algorithm to distinguish between BD and HD1-3. Finally, we use the most
distinguishing antigens, learned already by the jackknife procedure described above (see the
Beçket’s Disease column in Table 3), to classify each of the D4 samples by our Bayesian
classifier over an ordinal space. We suspect 6 out of the 21 samples of the D4 set to resemble
healthy samples, and the others show a resemblance to the Beçket’s Disease samples.
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IDDM1 IDDM2 MS BD
CartilageExt G+M ( 4.80 ) Collagen G+M ( 7.46 ) CollagenIX M ( 4.48 ) CollagenX G+M ( 7.22 )

hIgG M ( 3.92 ) Fibronectin G+M ( 5.53 ) CollagenIX G+M ( 4.48 ) hTransferrin M ( 5.98 )

Insulin G+M ( 3.69 ) Fibronectin M ( 4.99 ) Cardiolipin G+M ( 3.51 ) Laminin M ( 5.96 )

Fetuin G+M ( 3.49 ) Cholesterol G+M ( 4.89 ) CollagenX G+M ( 3.11 ) CollagenX M ( 5.89 )

Laminin G+M ( 3.08 ) Ec27 M ( 4.06 ) Tropomyosin G+M ( 5.89 )

CollagenX G+M ( 2.93 ) KLH M ( 3.82 ) Collagen G+M ( 5.82 )

hMOG G+M ( 2.84 ) Catalase G+M ( 3.72 ) Laminin G+M ( 5.33 )

Cardiolipin G+M ( 2.70 ) Thyroxinase G+M ( 3.68 ) Tropomyosin M ( 5.11 )

Cardiolipin M ( 2.44 ) Thyroglobulin G+M ( 3.63 ) hIgG M ( 5.02 )

Tropomyosin G+M ( 2.30 ) CollagenIX G+M ( 3.52 ) Collagen M ( 4.75 )

Collagen M ( 3.38 )

Cardiolipin G+M ( 3.22 )

rMOG35 M ( 3.18 )

rMBP G+M ( 3.11 )

CartilageExt M ( 3.05 )

Pepstatin M ( 3.00 )

hTransferrin M ( 2.94 )

Fibrinogen G+M ( 2.89 )

p277 M ( 2.83 )

Fibrinogen M ( 2.82 )

rMOG35 G+M ( 2.80 )

C1q M ( 2.79 )

CollagenVII M ( 2.79 )

LPS M ( 2.62 )

DSDNA G+M ( 2.59 )

Table 3: Antigens with highest significance value (in parenthesis) and used for the class
prediction.
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self-antigen in beçket’s syndrom. Eur. J. Immunol., 32:356–365, 2002.

18


	Introduction
	Adaptive Normalization of Multiple Experiments
	Finding The Normal Behavior Curve
	Iterative Reduction of Outliers' Effect
	Normalizing Data Points
	Larger Number of Global Parameters

	Identifying Significant Determinants
	Estimating Distributions Assuming Multinomial Probabilities Over Bins
	Building statistically significant and correctly scaled Bins
	The statistical variation in a bin
	Generating correctly-scaled bins for different labels
	Comparing the labelled and the entire-population data distributions over correctly-scaled bins

	Adjustment to Large Labelled Population

	Diagnosis: Assigning Labels to Unlearned Entities
	Bayesian Classifier over Important Determinants
	Estimating the Bayes Ratio

	Classification over an Ordinal Space

	results
	References

