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1 Introduction

1.1 Background

This research is an (important) part of the general drive of developing multi-
scale computational techniques, where each part contributes ideas and insights
to the others. The central new multiscale paradigm currently being developed
in various fields is what we call Systematic Upscaling (SU) [13], [12]. Based on
methods that emerged in the multigrid research in applied mathematics and on
renormalization group methods developed in theoretical physics, and on their
joint application in statistical mechanics [15], SU is a methodical approach to
derive, from a given system of fine-scale physical equations, equivalent numeri-
cal equations at increasingly coarser scales. By climbing the scales by one small
factor (typically between 1:2 to 1:10) at a time, and by switching back and
forth between finer and coarser scales, SU calculations can be restricted to only
small representative regions at each scale, and avoid computational slowdowns
typical to single-level calculations over vast domains. The resulting (generally
nonlinear) equations derived for each scale can be deterministic or stochastic,
in various numerical forms (A Hamiltonian, a conditional probability table,
discrete equations, etc.), possibly changing with the scale. Since only repre-
sentative regions need to be calculated at each scale, the SU approach allows
computing indefinitely large systems, provided their equations are repetitive,
i.e., the same relatively few equations keep repeating themselves and govern the
system everywhere.

Coarsening a system of discrete eigen equations (resulting, e.g., from a differ-
ential eigen system) is relatively simple if only few lowest eigenfunctions are to be
calculated (see Sec. 1.2 below). Not so if many eigenfunctions are required, since
normally they cannot all satisfy the same coarse equations. For one-dimensional
(1D) differential systems, a method to derive equivalent coarse-grid equations
that accommodate all the eigenfunctions was nonetheless recently developed [2],



[10]. It allows the calculation of N eigenfunctions in just O(N log N) opera-
tors, without assuming physical localization; i.e., without assuming that the
physically interesting properties at a point depend only on a local neighbor-
hood containing just Nj,cqr atoms, where Nyycqr < N. With physical localiza-
tion, the complexity of that algorithm is just O(N log Niocar). However, the
coarse equations of this algorithm are in terms of monodromies (to bypass the
problems associated with the high indefiniteness of finite-difference or finite-
element discretizations), which is a purely one dimensional concept that cannot
be generalized to higher dimensions. Nevertheless, that algorithm has served
to show that coarsening many-eigenfunction systems and attaining O(N log V)
efficiency is in principle feasible, leaving open the question of how generally this
can be achieved (or at least approached). The main objective of the current
work (and the article below) is to answer that question. It also aims at view-
ing this question in the particular context of systematic upscaling of molecular
systems (see more on that in Sec. 6).

1.2 Low eigenfunctions. EIS

As a preliminary step it was needed to study how to coarsen an eigensystem
so that at least low eigenfunctions, but as many of them as possible, can be
calculated on increasingly coarser grids. The multigrid system developed for
that purpose, the Exact Interpolation Scheme (EIS), is described in Sec. 8 of
[7]. The EIS form of inter-scale transfers has later become a basic ingredient in
the algorithms described in [1] and below. It also serves as a basic vehicle in new
algebraic multigrid (AMG) solvers, particularly for problems whose operators
are plagued with unusually small, and/or unusually many, low eigenvalues.

The number of eigenfunctions at one level that can be accurately approx-
imated by the next-coarser-level EIS equations is limited to the number that
can be approximated well enough by one and the same interpolation operator, a
number which is much reduced upon each additional coarsening. This naturally
leads to the idea of introducing progressively more interpolation operators at
increasingly coarser grids, as developed below.

1.3 One-dimensional preliminaries

The next step has been to develop the intended solver in the simpler 1D frame-
work, insisting however on a development that, unlike [2] and [10], can be di-
rectly generalized to higher dimensions. The 1D framework has indeed been
ideal to accurately study and test the process of separating calculation at pro-
gressively narrower bands of eigenvalues. To study this we have developed an
algorithm for calculating just two eigenfunctions, with eigenvalues near any
given real number. Reported in [1], it uses EIS together with the techniques of
[8] for treating a highly indefinite system.



1.4 The MEB algorithms

For organizing many eigenfunctions, we propose the Multiscale EigenBase (MEB)
approach, described in Sec. 2 below. Our main example, the linear or nonlin-
ear Kohn-Sham eigen system, is presented in Sec. 3, explaining its suitability
for our general studies. The 1D-MEB is described in detail below (Sec. 4).
Then its anticipated generalization to higher dimensions is outlined (Sec. 5),
and its expected benefits, specifically for electronic structure calculations, are
summarized (Sec. 6).

2 The multiscale eigenbasis (MEB) approach

We are generally interested in solving a differential eigenproblem of the form
Lui(x) :/\iui(x) ) (i: 1;--')N) (1)

with some homogeneous boundary conditions, to within some given tolerable
error €. Here = is d dimensional and L is a differential operator. We are
interested in the NV lowest eigenvalues A; and the corresponding eigenfunctions
s

The MEB algorithms proceed from some finest grid on which the problem is
discretized to increasingly coarser grids (“levels”). At each level, with meshsize
h say, the algorithm constructs a “scale-h basis”, namely, a sequence of functions
u?(m), j =1,...,ny, such that every eigenfunction is a h-smooth combination
of these basis functions, i.e., each eigenfunction u(x) can be written in the form

u(z) =Y (IEW/)(@) -uj(@) (2)

J

where WJH is a function defined on a coarser grid of meshsize H = mh, m > 1
being a small integer (usually m = 2) and I’ is an interpolation operator, whose
order should increase proportionately to log %

Using the scale-h basis one can upscale the eigen-equations from grid A to
grid H, then use the grid-H equations to calculate a scale-H basis. Each scale-H
basis function will be described as an h-smooth combination of several scale-h
basis functions, and will thus be defined on grid H. The number of scale-H
basis functions will roughly be m? times their number at scale h, so the total
amount of discrete values used by the H basis will be the same as that of scale
h. The eigen-equations will be transfered from the finest level to increasingly
coarser level, then solved at the coarsest level.

Thus, the structure of the solution is that each eigenfunction is represented
as a smooth mollification of coarsest-level basis functions, each of which is rep-
resented as a smooth mollification of next-finer-level basis functions, and so on.
Only very few basis functions need to be represented at the finest level.



It may seem a drawback of the MEB algorithm that, although efficient, it
does not yield explicit representation of each eigenfunction at the finest level.
But this in fact is a great advantage. The resulting MEB structure is not only
much less expensive to construct and store, but also much more efficient to use,
for nearly any task, because it allows the use of fast summation techniques, as in
[4]. For example, to expand a given function f(z) in terms of the eigenfunctions,
one needs to calculate the inner product (f, u) for each eigenfunction u(z). Using

(2),
(fru) = D (UEWulf) (3)

J

Y Wi g f) -

J

Hence, at the finest level one only has to calculate (I?I)Tu;‘f for each of the
finest-level basis functions, whose number is small. It can similarly be shown
that in DFT calculations, the MEB structure yields much faster calculation of
the electronic density than its calculation from the eigenfunctions each given
explicitly at the finest level.

3 Schrodinger operator and discretization

Our prime example is the Schrédinger operator
L=-A+V(z) (4)

where A is the Laplace operator and the potential V(z) is either given (the
linear problem) or defined in the DFT self-consistent way [3].

The Schrédinger operator appearing in the self-consistent Kohn-Sham equa-
tions is not only a very important example; it also offers some simplifications
in terms of what we can assume about V, since the resulting effective poten-
tial V(z) tends to be smooth and with mild variations. Moreover, the self-
consistency requirement by itself is not expected to substantially increase the
complexity of the MEB solver (see Sec. 5.5).

Indeed, as will be described below, the MEB algorithm can work separately
at different eigenvalue intervals. Hence it can proceed from lower to higher val-
ues of A. Lower A will give more localized eigenfunctions (e.g., core electrons),
which will only marginally be affected by updates to the self-consistent potential
introduced by higher eigenfunctions. It is thus expected that just one visit back
to lower eigenvalue intervals after calculating higher ones will usually suffice for
such updating. When calculating at higher eigenvalue intervals, lower eigen-
functions have already modified the potential V' in such a way (e.g., nucleus
singularity being masked by the core electrons) that V' can indeed be assumed
to be smooth and mildly varying. (And see the comment on self-consistent
calculations in Sec. 5.5.)



Another simplicity of DFT eigenproblems is that their domain is in principle
unbounded. So for simplicity of our first development, and of the description
below, we have assumed that V(z) is a given smooth function, mildly varying
and periodic. See in Secs. 4.7 and 5.3 for comments on other situations.

For this type of a problem we will see below (as also in [1]) that the MEB
structure allows very efficient discretizations, too. Namely, the finest meshsize
ho does not need to resolve the wavelengths of the (highest) eigenfunctions: it
only needs to be fine enough to resolve the landscape of the potential V(x).
This can be done because at such a meshsize the scale-hy basis functions can
be given in an analytical form (see Sec. 4.2).

Moreover, the discretization can be fully adaptive, using different meshsizes
and approximation orders as needed at different subdomains. For this purpose,
the multigrid structure of local refinements in terms of overset uniform grids (see
[5] and [6]) is especially convenient and efficient. The local finer level of that
structure will usually correspond to calculations at lower eigenvalue intervals,
while calculations at higher intervals will use only coarser grids, carrying pre-
calculated finer-grid corrections: either defect corrections as in FAS multigrid, or
Galerkin-type approximations based on the finer levels (the Exact Interpolation
Scheme (EIS) introduced in [7]), as used in the algorithm below. (See more in
Sec. 4.7.)

4 Current one-dimensional MEB algorithm

4.1 General

The publication [1] shows a method for calculating two eigenfunctions with
eigenvalues close to some given value A\. Based on the same general approach,
the MEB algorithm described below has been designed for calculating all the
eigenvalues in some given interval Ay < A < Apax-

As explained above, we aim at solving the eigenproblem (1), with the Schro-
dinger operator (4), and we first assume for simplicity a uniform finest grid of
meshsize hg that well resolves the landscape of V(z), with the latter potential
being smooth, mildly varying and satisfying the periodicity condition V(z+1) =
V(z) for all z € R. Extensions beyond these assumptions are discussed later.

4.2 Discretization

We divide the interval (Amin, Amax] into the union of disjoint subintervals JO =
A2 X0 (e =1,...,nY%), with AJ = A\puin and )\%0 = Amax, the length of JO

a—1»
being bounded by some relation like

» Na—1

A0 =\ < hgt(max[hy?, A0 | — min V(z)])'/? . (5)



This relation is designed to ensure that at the finest level hg just two functions,
called w2, and u?_, will suffice as scale-hy basis for all the eigenfunctions with
eigenvalues in the interval J2. Note that (5) requires only a small number n°
of intervals; e.g., n° does not depend on the number of atoms. The number will
remain uniformly bounded and small even for indefinitely large Amax — Amin (cf-
Sec. 5.4 below).

The two basis functions for each J? can in fact be given analytically; e.g.,
Uo 4 () = exp(ikg (2)2) , ug_(2) = exp(—ikg(2)z) | (6)

where k2 is the local wave number associated with Ao = (A°_, + A2)/2, the
center point of J?; i.e.,

ko(x) = (max[0,Aq = V())'/? . (7)

(Even better seems to be the Liouville-Green form %, = exp (+i [ k(€)d¢),
but this does not have the needed localness property, and is particularly less
convenient for higher-dimensional analogy). Indeed, it can be shown that each
eigenfunction in JO (i.e., whose eigenvalue belongs to J?) can be written as

u(@) = wy (2)ugy (z) + w_(2)ug_(2) (8)

where the “mollification functions” wy () and w—(z) are smooth at scale hyo,
i.e., they can be interpolated from function wi_ and wl , respectively, defined on
a grid G' with meshsize h; = 2hy.

The equations on grid G', which is the finest level with discrete equations,
is a coupled pair of eigen equations for the pair of functions w} (z) and wl (z).
These equations can be derived in two alternative ways. One way is to substi-
tute (8) into (1), (4), and discretize on G' the obtained differential equation
multiplied by ul, (z), with a similar discretization also for multiplication by
u® _(x). Another way, more in line with the coarsening stages of the algorithm,
is to introduce two interpolation operators, I, and IJ_, defined by

(I W) (x) = ud i (2) - (I°WY)(z) , for any W € G | (9)

«

where I° is a polynomial interpolation from G' to the continuum, of order
. 1 _l .
proportional to log ¢, and G will generally stand for the space of complex

functions defined on a grid G*. We denote by I°f, I2t and I2" the adjoints of
1°, I3, and I3, respectively. That is, if p}(x) re the coefficients of I?, defined

oa—"

by
W)= S Wizhph(z) , forany W' e @, (10)
z;eG!
then
(IOTw)(x}) = /w(w)p} (z)dz , for any continuous function w(z) , (11)



and
(1% w)(z}) = / WL @) w(@)p (2)de | (12)

superbar standing for complex conjugate. With this notation, the G' eigen
equations in J° can be written as

wi Wi
AL = AB. ,Whe@', (13)
Wt W

where £ = 1 (similar equations will later be constructed for coarser levels £) and

0f 7 70t 0f 7 70t
F 7 S S Y

Al = (14a)
©iorl ot

01 707 01 70+
S SO S i

B! = . (14b)
T S S

4.3 Coarsening the basis by relaxation

Having obtained the equations for J eigenfunctions on G', we now use them to
construct the h; basis in that interval, by dividing J? into two subintervals JJ,
and J3,,, where for any § and any level £ we will generally denote Jj = (A§_, Aj]
and M, = A1 XL L = At = (ALY 4+ A1) /2. At each level £ and for each
interval J§, we construct, on the grid G¥, with meshsize hy = 2h;_, two h,-basis
functions, uj, and uj_. Each of these is a 2-vector function (W{, W) obtained
by several Kacmarc relaxation sweeps on Eq. (13) with A = j\é, starting with
the initial approximation (1,0) to obtain uf,, and with (0,1;) to obtain uj_,

. —t . .
where 1, is the G function whose all entries are 1.

The number of relaxation sweeps should grow proportionately to log % To
reduce this number, a short (usually just two-level) cycle of coarse-level correc-
tion (see Sec.4.5 below) may be useful.

If the off-diagonal operators in A° and B! are sufficiently small compared
with those of the diagonal, relaxation can most efficiently be done by relaxing
u’, separately from u’_. The needed diagonal dominance is obtained if the
finest basis functions u2_ are locally (at scale h,) orthogonal enough. This is
obtained (already for £ = 1) in the case of the closed form solution (6) when the
potential V' is smooth enough (on scale hy). Otherwise this can be obtained by

local orthogonalization (see Sec. 4.7).



4.4 Coarsening the equations

Having formed a suitable h, basis for each eigenvalue J, equations for that
interval at the next coarser grid G**! can be derived. Which is done analo-
gously to the derivation of discretization (Sec. 4.2). Namely, two interpolation
operators I%, and I are introduced, defined by

(IL L W)(z) = u’, (z)(I'w)(z) forany W € G ', z € G, (15)

where I’ is a polynomial interpolation from G**! to G* of order proportional
to log % Denoting by Ifj+ and Iﬁt the complex conjugate transpose of Ier and
It | respectively, and by I and I‘' the 2 x 2 interpolation operators

I, 0 I‘i. o
Ii:< 06+ IZ ) ) szj:( 06+ I“_) ) (16)

the coarse-grid eigen equations can again be written as (13), with £ + 1 instead
of ¢ and with
AGtt =TI ALIL , BET = I BLIL , (B=20—1,20; £>1).  (17)

With Eq.(13) now at level £+ 1, one can relax and create the hy; basis (as
in Sec. 4.3), then construct the equations for level £ + 2, etc.

4.5 Coarse level correction cycle (optional)

Actually, before splitting J¢ into Ji!, and JiI! for creating the hyy; basis,
one may use grid GT! to accelerate the relaxation on grid G*. Namely, after
a couple of relaxation sweeps on grid G*, one forms the G**! equations (as in
Sec. 4.4), then relaxes them, starting with Wfi“ =Wl = 1¢41, then use the

resulting Wi to correct the G solution by

why = I, Wl =1 W (18)
Adding afterwards several more relaxation sweeps on G* one can coarsen the
equations again, either to create the hyy; basis or to have another cycle of

correction to the G* solution.

In the case of more correction cycles, one can also accelerate the G*! re-
laxation by another coarsening, to grid G**? (without yet splitting J/), and so
on. However, only one level, if any, is expected to be useful, since the purpose
of these cycles is not to create an exact eigen solution at level £, only an h, ba-
sis; hence there is no need to converge smooth mollifications, only to somewhat
accelerate the convergence of some intermediate ones. (The extent of usefulness
of correction cycles really needs to be further explored.)



4.6 Solving at coarsest and accuracy control

At the coarsest level £, the number of gridpoints is very small, hence the obtained
equations (13) can inexpensively directly be solved, for one interval J at a time.
Some intervals may turn out to contain no solution with A%, _; < A < A%, others
will contain several.

The coarsest grid and the solution on it depend of course on the boundary
conditions (BC). In the case of periodic BC, the coarsest level £ can have just
one gridpoint per period, yielding in each J a simple 2 x 2 eigen problem. If
the domain is unbounded but the potential is periodic V(z + 1) = V(z), each
eigenfunction has the Bloch form u(z) = i(z)e?®, with i(z + 1) = 4(z) and
—m < v < mw. The finer-level construction of local bases does not depend on
~, since e is a very smooth mollification at all scales up to the scale of the
period. Only at the 2 X 2 coarsest system the value of v enters as a parameter.
Other types of boundary conditions are discussed in Sec. 5.4 below.

A simple way to check the accuracy of the solution is to compare the eigenval-
ues of two solutions obtained with two different sets of parameters (different hy,
interpolation orders, number of relaxation sweeps, etc.). One can also compare
a specific eigenfunction obtained by the two different solutions, by performing
for it all the chain of interpolations from the coarsest level to the finest. Or
compare certain important numbers that can inexpensively be calculated, such
as the electronic density or the expansion coefficients of some functions (cf. Sec.
2). If the accuracy turns out insufficient, the more accurate of the two solu-
tions (e.g., the one with smaller hg) is retained and compared to a new solution
calculated to greater accuracy (e.g., with still smaller hg, and/or higher-order
interpolations, etc.). And so on until the desired accuracy is obtained. Not much
work is wasted, since the final, most accurate solution will always consume most
of the work.

If 7 is the coarsest level, there is the possibility that two calculated eigen-
functions, with eigenvalues A\; € Jf and X2 € JS; but with XA, —); smaller than
the estimated eigenvalue numerical error, represent actually the same physical
eigenfunction. If the interpolation orders (and hence the accuracy orders) are
higher than the dimension d, this will rarely happen, and can easily be detected
by having the basic interval (Amin, Amax] slightly shifted in one of the compared
solutions, so that its intervals J come out also suitably shifted.

4.7 Non-smooth equations. Local orthogonalization. A-
daptive grids

The eigenproblem may have regions where the finest level basis cannot be for-
mulated in a closed form such as (6), due to non-smoothness of the potential,
boundary conditions, etc. In such regions, for higher eigenvalue intervals, the
finest grid G° must be fine enough to resolve the eigenfunctions. To form an hy
basis one would then use relaxation together with local orthogonalization.

10



The purpose of the local orthogonalization is to create a sufficiently separated
hg basis, meaning u®, and u?_ such that B} is sufficiently diagonally dominant,
ie.,

0% 0% 0
N2 1012 < I T2 e - WD I8, forall w € G* (19)

where || - || denotes a norm at some local neighborhood of the point z. To
achieve that, the relaxation sweeps for ul, and u%_ are intermingled with a
process of smoothly recombining these functions; e.g., replacing

wd —ud —I0W, (WeG"), (20)

a— «

where the values of W are sequentially adjusted, each value in its turn being
chosen so as to minimize ||Ig:_Ia, |l This local orthogonalization can be further
strengthened by a similar process conducted also on G?, recombining u}, and
ul .

Since all hy bases are local, the desired finest-level meshsize can easily change
from region to region. One convenient and efficient way to organize such an
adaptive discretization is to think in terms of uniform grids covering the entire
domain at all levels, starting from the level of the finest meshsize needed any-
where; except that in regions where a certain grid G* is finer than necessary,
the hy basis functions can be chosen to be identically 1, hence they need not be
explicitly stored.

5 Higher Dimensional MEB outline

5.1 General

The MEB algorithm in dimension d is directly analogous to the 1D procedures
described above. The most important difference is that each interval J£ of eigen-
values may contain many, not just two, h, basis functions uf;ﬂ, (v=1,2,...,n%);
their number n!, increases like 5t = nft! = 24-1p’ . In particular at the dis-
cretization level, the ho basis functions, analogously to (6), may more generally

be

u&u(a:l, ..y, Tq) = €xp {z i: kgw,j(ajl, e ,:rd):rj} (20a)
j=1

where the vectors kp, , = (k3 .1, ..., k2 , ;) are selected uniformly in the sphere
{k : k? = max[0,\, — V(z1,...,24)]} - (20b)

At a higher level £, any eigenfunction u(z) with eigenvalue in J. has the form

W14+1
w(z) = IL - Wi Wi = : , witeE (2
ijl

11



a,lsr:

where I’ = (I’ .. ,Ii ,¢) and each interpolation operator is defined by
(I8, Wt (@) = ug, ()T W) (2) | (22)

with I’ being a polynomial interpolation from G**! to G* of order proportional
to log % (See Sec. 7 for extension to AMG-type interpolations.) The G* eigen
equations, instead of (13), take the more general form

wi
AW =ABIWE, wi=| |, Wle@ (23)
WZ
where n = nf{l, a =28—1or a =23, and the matrix operators A%, and B,
are again defined recursively by (17) above.

After forming the G equations (23), the n’, basis functions are first formed
by local relaxation, starting with n’, = 2¢~!n different initial approximations.

Each of these initial approximations is a vector W¢ = (W{, ..., W%)T in which
WS =0forall v # p while W, = F! , (n=1,...,n; ¢ =1,...,24° ). For

each p, the 29! functions F; , are chosen to be nearly locally orthogonal, i.e.,
analogously to (19) above, IfTFH,qF,MIZ is chosen to be much smaller for g # r
than for ¢ = r. The local near orthogonality between all the basis functions
ul ,, (v =1,2,...,n%), is then further reinforced by the process described next.

a,v?

5.2 Operator sparsity and local orthogonalization

A central new issue in higher dimensions (d > 1) is how to recursively keep the
matrices A, and BY as sparse and diagonally dominant as possible, which is of
course essential for obtaining full efficiency. This should be done by the process
of local orthogonalization (a simple 1D case of which has been described in Sec.
4.7).

For any 1 < v < nf, denote by S, ,(x) the set of “neighbors” u, , of the

basis function uf;’,, in the vicinity of a gridpoint z € G, defined by

Saw(@) = {118, BLIg e > e} (24)
where the threshold ¢, is proportional to (but can be substantially larger than)
the desired accuracy €, and we assume the basis function to be roughly locally
normalized, i.e., |15, BLIE . = O(1). From (17) it is clear that during relax-
ation the set Sﬁw are those inherited from the next-finer level, meaning that at
the vicinity of any x they each on the average include 2?~! as many neighbors

as in the neighborhood sets of the next finer level.

To trim down the increased number of neighbors, local orthogonalization
sweeps are added in between the relaxation sweeps. In those sweeps one sub-

12



tracts from each uﬁw a smooth combination of its neighbors:

wh, b, — Y I WL (Wi e (25)

@
neSt ,

where the values of Wﬁ“ are adjusted one by one in some order, each in its turn
modified so as to lower as far as possible the overlap If, BT, . Tt is estimated
that at each level such local orthogonalization sweeps can reduce the overlap by
a factor close to m~P, where m is the coarsening ratio (usually m = 2) and p
is the order of interpolations. Hence, with p taken high enough, each overlap
inherited at some level will disappear in its descendants few coarsening levels

later.

5.3 Coarsest level solution: Types of problems

At the coarsest level é, the system can be solved separately for each eigenvalue
interval J.. Asin Sec. 4.6 above, one can check the solution accuracy and detect

the cases where eigenfunctions appearing at different J£ actually represent one
and the same physical eigenfunction.

The development of the system at the coarsest levels, and the value of ¢
itself, depend on the type of boundary conditions and may differ for different
eigenvalue intervals and at different spatial subdomains. In every case, however,
it is expected that at some level £ the relevant part (see below) of grid G* will be
reduced to just one point, so that in the eigen-system (23) each operator A;; and
Bijj, will be just one complex number. Hopefully this system, due to the local
orthogonalization at all levels, will come out sparse. Moreover, it is expected
that the number of eigenfunctions with eigenvalues in J will be comparable
to the size n of the system, and that each eigenfunction will be combined from
only one, or very few, of the sets Siﬂ,. Hence it can be expected that the system
will be solvable in O(n) computer operations.

For problems in unbounded domains, several situations can be distinguished,
as follows.

5.3.1 Localization

For lower eigenvalue intervals, the basis of J. will become localized in one or
several regions, practically vanishing elsewhere. In each such region, a level i
will then be reached at which the region is reduced to only one gridpoint, so
the operators A;; and B;; are indeed reduced to mere numbers. Moreover, the
system can be solved in each such region separately from other such regions.
The level ¢ at which this happens may of course vary from one region to another.

13



5.3.2 Periodicity
In the case of periodic potential, e.g.,
V(zy,xs) =V(xy +a1,2) = V(zy, xs + a) , forall (z1,z2) € R? (26)
each eigenfunction has the Bloch form
w(zy, ) = ﬂ(ml,xz)ei('““*”m) , —T <y, V2 <7 (27)

where @ is periodic. The fine level basis functions will be independent of (71, v2).
The coarsest level will have meshsizes equaling the periods, hence the periodic
part @ of each eigenfunction will be a mere constant, while each A;; and By
will be a number that depends on (71,72). The system can be solved for few
representative values of (71,72), and the solution interpolated to any other val-
ues.

5.3.3 Periodicity with potential defect

Suppose a periodic potential (26) is given, except that it is modified in one of
the periodicity cells, called the “defect cell”. Due to its purely local character,
the system of basis functions at all levels needs then calculations in only two
cells: One which represents every regular cell, and one representing the defect
cell and few meshsizes around it. One can therefore inexpensively reach very
coarse levels with meshsizes much larger than the periods (a1,as2), at which the
Bloch representation can be assumed outside the defect, so there the system can
be solved similarly to the above description.

For problems with many atoms in each periodicity cell, the number of levels
with meshsize greater than the period will be significantly less than the number
of levels with smaller meshsize, hence the overall computational work will be
only a fraction more than twice the work for the purely periodic case.

5.3.4 Periodicity with atomic defect

More usually in electronic structure calculations, the defect (departure from the
periodicity) is in the nuclei positions, not in the potential, meaning that even
outside the periodicity cell V(z) is not periodic. However, far enough from
the defect, the fine-scale structure of V(z) does maintain periodicity (cf. Sec.
5.5). This implies that at each level £ of the algorithm, the basis functions
calculated in just one periodicity cell (or, at coarser levels, a larger cell of linear
size comparable to h¢) can represent all the regions whose distance from the
defect is large compared with hy. It can then be shown that, for large problems,
the total solution cost is just a fraction more than in the previous case (Sec.
5.3.3).
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5.3.5 Bounded atomic structure

This is just a special case of the former. If the electronic density p = AV van-
ishes outside a bounded domain €2, the potential V' will be very smooth away
from €. In this case, the basis functions away from 2 can readily be writ-
ten analytically, with no computation, as pure exponential functions (Fourier
components).

5.4 High eigenfunctions and dual-space interpolation

It can be shown that the matrix operators A, and BY in the eigensystem (23)
tend to a limit as A — oo, so one can use one eigenvalue interval J¢ to cover all
values of sufficiently large A. This would substantially reduce the computational
cost wherever A — V is large compared with variations in V.

One can much further reduce the number of A intervals by realizing more
generally that A’ and B’ are smooth functions of A\’, and can therefore be

represented by few values of A’ with interpolation to any other value of A’. The
level-£ eigensystem will then have the form

AW = ABf )WL . (28)

Furthermore, one can expect similar interpolations to be possible also be-
tween the component equations of (28), provided suitable parameter(s) are in-
troduced on which these equations depend, thereby substantially reducing the
size of that system. We intend to explore what parameters can best be used
and how to take full advantage of all such possibilities.

5.5 Preliminary comments on self consistency. Quasi lo-
calness

From the point of view of the MEB solver, the important property of the
DFT self-consistent potential V(x) is that its non-smooth part (e.g., scale-h
fluctuations) depends only locally on the electronic density p(y) = 3 |ui(y)|?,
or on the eigenfunctions {u;(y)}, themselves (i.e., the dependence decays like
exp(—|y — x|/h). We call this property quasi-localness.

Indeed, a quasi-local potential V' can be relaxed at each level ¢ simultane-
ously with the relaxation of the scale-h; basis functions. Such a simultaneous
relaxation leaves undetermined only smooth components of the eigenfunctions
and hence only smooth components of V. Such scale-hy-smooth corrections to
V', calculated later at coarser levels, will have secondary feedback effect on the
scale-h, basis functions (except for shifting the eigenvalue itself), hence only
one, or very few, transitions from coarse levels back to finer ones will be needed
throughout the algorithm to account for such feedbacks.
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Quasi locality makes of course a very good physical sense. Indeed, all existing
self-consistent functionals have this property, LDA or not (due to a well known
corresponding property of Poisson’s equation). So the fact that this is the only
property that really matters for the MEB solver may bring to mind many new
and flexible ways to construct the exchange-correlation potential as a multiscale
functional, perhaps even directly in terms of the h, basis functions.

The dependence of the potential on the location of the nuclei is also quasi
local. Tt is therefore feasible to incorporate nucleus positioning (to minimize the
total energy) into the same one-shot MEB solver. A basic ingredient of such a
process has been described in Sec. 6.1 of [9], but in the many-atom MEB frame-
work it will be used only at finer levels (to transfer to coarser levels the effect of
moving each nucleus on the energy minimization equations). At coarser levels
(with meshsize comparable to the inter-nucleus distance) distributive moves of
nuclei (moving simultaneously several nuclei at a time so as to leave their gravity
center unchanged) to lower total energy should accompany the relaxation of the
basis functions. At the next coarser levels similar distributive moves should be
made with small blocks of nuclei; then with larger blocks at still coarser levels;
etc.

6 Anticipated performance and benefits. Up-
scaling

It is not yet really clear whether the high-dimensional (d > 1) MEB algo-
rithm presented above can generally reach the ideal O(N log N) efficiency (or
O(N log Niocar) — see Sec. 1.1), in terms of both CPU time and storage. This
will depend on the full efficiency of the local orthonormalization steps and the
sparsity they can produce (see Sec. 5.2). On the other hand, even better
efficiency may be obtainable when additional devices, like the dual space inter-
polations (Sec. 5.4), are fully utilized. These factors remain to be studied.

However, more important even than the exact computational complexity of
the algorithm in the worst scenario are other advantages it can offer, due to its
true local nature. This localness makes it possible to detect and separate out
localized eigenfunctions (see Sec. 5.3.1). It yields very inexpensive solvers at
unbounded domains, without detailed resolution of superlarge periodicity cells,
clusters or such (Secs. 5.3.3, 5.3.4, 5.3.5). More generally, the localness of
the algorithm makes it possible to practically solve just once for all repeating
regions, i.e., all small or large regions, within the same problems or in other
problems, which exhibit the same atomistic structure. Only the coarsest level of
calculation in each such region should be repeated, to account for interactions
with surrounding regions. The coarse-level basis functions calculated in such a
region by one researcher can be used by others for other problems.

This of course will fit very well into the general Systematic Upscaling paradigm
(see Sec. 1.1). Moreover, upscaling can lead beyond the electronic calculations
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and link directly to molecular dynamics (MD) at coarser levels, by including
one-shot nucleus positioning in the coarsening process (cf. Sec. 5.5). It means
that electronic calculations may only need to be done in rather small regions.
In a work on upscaling a polymer [14], for example, it has been shown that
MD simulations of rather short parts of the polymer are enough to derive a
coarse-level MD Hamiltonian that can accurately (and much faster) reproduce
the behavior (all the statistics of interest) of the fine-level system. Similarly, the
basic force field (the fine-level MD Hamiltonian) can be derived from electronic
calculations done only with even shorter parts of the polymer: either isolated
parts or (later, to enhance accuracy) temporary “windows” in selected locations
of the MD simulation (see [12]).

The local nature of the algorithm also allows of course very efficient utiliza-
tion of many parallel processors, using domain decomposition.

Other potential benefits mentioned above are the practical elimination of the
need to iterate for self consistency, and the enhanced flexibility in introducing
multiscale exchange-correlation functionals (Sec. 5.5). Also, as partly described
in Sec. 2, the MEB structure is particularly suited for various fast calculations
in terms of the eigenfunctions, calculations that can only much more slowly be
performed when the eigenfunctions are each explicitly represented at the fine
level (requiring also much larger, O(N?) storage).
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