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Abstract

The Graph partitioning problem is widely used and studied in many practical and theo-
retical applications. The problem concerns the partitioning of the nodes of a graph into a
given number of disjoint subsets, while minimizing the number of inter-edges, edges that
connect one set to the other. Furthermore, the sets must be of roughly equal size. In
this work we present a new multilevel algorithm for partitioning graphs into two disjoint
sets. The algorithm is inspired by the Algebraic Multigrid approach which is based on
weighted edge contraction rather than simple contraction. The algorithm uses an extended
energy functional that reflects the trade off between the constraint regarding the size of
the sets, and the minimization of the number of inter-edges. It allows a variable amount
of imbalance at coarser levels, which is reduced gradually as the uncoarsening proceeds.
Experimental tests show that (except for a special class of graphs in which there exists
a subgraph which is strongly connected within itself) the minimum cost obtained using
our algorithm is comparable to, and in some cases even better than the best known re-
sults. Furthermore, the averages and, in particular, the standard deviations are lower than
those achieved by hMETIS (the most popular up-to-date partitioning algorithm), i.e., our

algorithm is less sensitive to the choice of sequences of random numbers.

1 Introduction

In the most general form, the graph partitioning problem concerns the partitioning of a
graph into a given number of disjoint subsets of nodes of roughly equal size, while min-
imizing a given objective functional that reflects the amount of connection between the
subsets. The problem comes up in many fields connected to computer science including
sparse matrix-vector multiplication, image processing [40] and parallel computation. It is
also central in many subfields connected to Very Large Scale Integration (VLSI) of circuits
and systems [14]. The problem is known to be NP-hard [19]. A special instance of the
graph partitioning problem, in which the graph must be divided into two approximately
equal sized subsets, is known as the graph bisectioning problem. Although the bisectioning
problem seems an easier problem, it is also known to be NP-hard [20]. An algorithm is said
to approximate a minimization problem within a ratio f (f > 1) if it runs in polynomial
time and outputs a solution whose objective functional is at most f times the minimal one.
The best known approximation algorithm for bisectioning a general graph (consisting of n
nodes, n even) achieves a ratio of O(log®n) from the minimum [17]. Therefore, all known
practical algorithms for partitioning are heuristics that merely return approximations to



the optimal bisection.

The problem has attracted a lot of attention, and has given rise to several heuristic
solvers. Different heuristics that address the problem are surveyed in [1]. Those different
heuristics solvers may be divided into four major classes: Move based algorithms, that
iteratively produce a new candidate solution based on a previous feasible solution [31, 18,
24, 21, 12]; Geometric algorithms that use the graph’s coordinates information [13, 22, 34];
Structural algorithms that operate on the graph’s combinatorial structure [41, 15, 35]; and
Multilevel algorithms [3, 23, 11, 29, 30, 47, 42, 46, 2].

Since 1995, multilevel algorithms have become the most popular approach. This class
of graph partitioning algorithms recursively reduces the size of the graph (i.e., coarsens
the graph) by collapsing vertices and edges, partitions the smallest (coarsest) one and
then uncoarsens it to construct partitions for all subsequent larger graphs until a partition
for the original graph is obtained. The coarsening process is based on matching nodes
according to some heuristics (e.g., heavy edge matching [29]). The matched nodes are
“collapsed” (merged) to create a new multinode with a volume equal to the sum of their
volumes. Similarly the edges connecting multinodes are the sum of the edges incident on
the corresponding matched nodes. The coarsest level (smallest graph) is then partitioned
by various heuristics. During the uncoarsening (interpolation) process the matched nodes
are simply separated and each gets the partition of its multinode. To get better results
different refinement processes which are modifications of the well known Kernighan-Lin [31]
and Fiduccia-Mattheyses [18] move based algorithms are used [11, 23, 29, 30, 47, 42, 46].

Different ways of matching nodes were proposed and tried by Karypis and Kumar in [27]
and [29]. A greedy heuristic, called heavy edge matching, in which edges with higher weight
are more likely to be selected proved itself (experimentally) to be superior to other heuristics
and was later used in [29, 30, 47, 42, 46, 2]. Based on this work they have developed
a software package for partitioning large graphs named METIS. This package was later
extended to the partitioning software package for large hypergraphs named hypergraph-
METIS (hMETIS) [27], by implementing the algorithms described in [30, 25]. By presenting
a graph as a hypergraph, were all hyperedges are of size two, hMETIS can also be used
for partitioning graphs. In fact, it actually performs better than METIS, especially as it
allows many partitioning trials, each resulting with a different partition due to stochastic

elements in the algorithm.

Another commonly used partitioning software package, JOSTLE, has been developed
by Walshaw et al. at Univ. of Greenwich. It includes implementation of the greedy [15],



recursive coordinate bisection [41], multilevel Kernighan-Lin [47] and iterated multilevel
Kernighan-Lin [46] algorithms. The package also includes an implementation of a combined
evolutionary /multilevel algorithm [42]. Experiments showed that the combined evolution-
ary/multilevel, although not a practical method for applications in which partition must
be found rapidly, is very successful at computing very high quality partitions compared to
METIS. The results were not compared to those of hMETIS since the definitions of the
imbalance factor are incompatible.

This report concentrates on the bisectioning problem of sparse graphs. It suggests a
new multilevel bisectioning algorithm which is inspired by the Algebraic MultiGrid (AMG)
scheme [7, 8, 4, 37, 43, 44]. General multilevel techniques have been successfully applied
to various areas of science (e.g. physics, chemistry, engineering, etc.) [6, 9]. AMG-type
algorithms were originally developed for solving linear systems of equations resulting from
the discretization of partial differential equations. Lately they have been applied to various
other fields, yielding for example novel methods for image segmentation [39] and for the
graph linear arrangement problem [38]. In the context of graphs it is the Laplacian ma-
trix that represents the related set of equations attached to a graph. The main difference
between the AMG approach and other multilevel ones is the coarsening scheme. While
the latter may be viewed as strict aggregation process, the AMG coarsening is actually
a weighted aggregation: each node may be divided into fractions, and different fractions
belong to different aggregates (multinodes). In both cases, these aggregates will form the
nodes of the coarser level. As AMG solvers have shown, weighted, instead of strict aggre-
gation is important in order to express the likelihood of nodes to belong together; these
likelihoods will then accumulate at the coarser levels of the process, automatically reinforc-
ing each other where appropriate. This enables more freedom in solving the coarser levels
and avoids making hardened local decisions, such as edge contractions, before accumulat-
ing the relevant global information, while a strict aggregation may lead to inconsistency

between local and global considerations.

The disaggregation consists of projecting to a finer level the final partition obtained
at the next coarser level. This initial fine level partition is being further improved by
applying local processing first of strict minimization followed by Simulated Annealing (SA)
[32]. SA is a general method used to escape local minima. By introducing a temperature
like parameter, moves which increase the cost function one wants to minimize are accepted
with some non-vanishing probability. These algorithms are usually extremely inefficient,
since they require exponential slow temperature decrease to approach the true minimum.
In the multilevel framework, however, SA is aimed at searching only for local changes,

with rapid cooling at each level, which guarantees the preservation of large-scale solution



features inherited from coarser levels.

To demonstrate the importance of our weighted coarsening scheme, we have constructed
a family of graphs in which some strong local connections (edges) would probably push any
heuristic solver (which is based on strict clustering) to find a local minimum away from
the global one. We have tested these examples with hMETIS and with our new algorithm.
It turned out that while hMETIS hardly ever finds the global minimum (even with many
hundreds of trials), our algorithm uniformly converged to the global minimum and was not
trapped in any of the local ones. In addition, we have tried our algorithm on many other
graphs taken form [45]. We compare our results with the best partitions found to date which
appear in Walshaw’s web site [45] as well as to the hMETIS results. Experimental tests
show that the minimum cost obtained using our algorithm is in most cases practically equal
to, and in some cases even better than the best known results. Furthermore, the averages
and, in particular, the standard deviations are lower than those achieved by hMETIS, i.e.,

our algorithm is less sensitive to the choice of sequences of random numbers.

An exception where our present algorithm performs more poorly is a special class of
graphs which contains subgraphs strongly connected within themselves. A correction for

the algorithm to deal with such cases is discussed below but has not yet been implemented.

The present report is divided as follows: The problem definition is given in section 2.
Our algorithm is described in section 3. Finally, in sections 4 and 5 we report on the

algorithm general performance, draw conclusions and suggest future work.

2 Problem Definition

Given a weighted graph G = (V, E), where V = {1,2,...,n} is a set of n vertices and E
is a set of edges, denote by w;; the non negative weight assigned to an edge ij, 7,5 € V' (if
there is no edge 75 then w;; = 0) and by v; the non negative volume that may be assigned to
vertex i (if no volume is assigned consider all nodes to have an equal volume). The purpose
of the k-way graph partitioning problem is to divide V into a (usually small) number of
disjoint subsets Ri, Ry, ..., R, called regions, each with total volume between two given

bounds v and v™**, so that the total weight of all inter-region edges (cutsize, partition-
cost) is minimal. Or, more formally: Given a weighted graph G = (V, E)), a positive integer

k and two bounds v™" and v™?®, find k subsets Ry, R, ..., R, of V such that

1. U Ri=Vand RRNR; =0,Y(i # ), i,5 € {1,2,...k}.



2. ymin < Y g <pmee < |V i ={1,2,...k}

1€ER;
3. >, w;; is minimized among all partitions of V' that satisfy 1 and 2.
i€Rp,jERg,
e
Bisectioning or bipartitioning is the problem for £ = 2, where usually the bounds on

the two volumes are tight to obtain nearly balanced bisection. In particular, the maximum

imbalance allowed (in percentage), denoted by imbalance_factor (usually given by the user),
determines v™" and v™ :

Jmin (50 — imbafggce_factor) £ (1)

eV
maz _ (50 + imbalance_factor) f o @)
100 i€V

For other major variant formulations of the partitioning problem see [1]. Although the
bisectioning problem seems an easier problem than the general partitioning problem, it is
also known to be NP-hard [20]. The methods developed below for bisectioning have natural

extensions to general partitioning.

3 The Multilevel algorithm for bisectioning

In this section we introduce the new multilevel algorithm for the graph bisectioning problem.
The heuristic algorithm works in time linear in the number of vertices for sparse graphs.
By sparse we mean graphs for which the number of edges, |EF|, is O(|V|) and hence the
average degree (denoted by avg_deg) is much smaller than the number of vertices, i.e.,
avg-deg < |V|. The algorithm is based on the Algebraic MultiGrid (AMG) scheme.

Formally, a multilevel graph bisectioning algorithm consists of the following three stages:
Coarsening - Given a (weighted) graph G, = (Vj, Ey), a hierarchy of decreasing size graphs
Go,G1, -+, Gy is derived from it.

Bisectioning - A bisection of Gy, denoted by B, is computed.
Uncoarsening (disaggregation) - The bisection of Gy, By, is projected to create an ap-
proximate bisection of GGj_1, which is then refined to create By_;. This process is continued

until a bisection of the given graph G is obtained.

As in the general AMG setting, the choice of the coarse variables (aggregates), the
derivation of the coarse problem which approximates the fine one and the design of the
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coarse-to-fine disaggregation (uncoarsening) process are all determined automatically as
described below. For a schematic recursive definition of the algorithm see the box Algorithm

Bisection. For details see the following subsections.

Algorithm Bisection(G; = (V;, E;))

If [Vi| <20
Solve the problem directly.

Else
Construct the set V;,; of nodes of G;,1, each being a weighted aggregate of nodes in V;
Construct the set F;.; of edges of G;1; by weighted summation of edges in E;
Bisection(G; 1 = (Vig1, Eiv1))
Disaggregate the bisection of G;;; to create an initial bisection of G;
Improve the bisection of G; by local processing

Return the bisection of G;

end.

3.1 Preliminaries and notations

Let Gy = (Vp, Ep) be the given graph. During the coarsening phase of the multiscale
process the current level graph G; = (V;, E;) is coarsened to create the next level graph -
Giv1 = (Viz1, Eiy1). In the description of the algorithm we occasionally refer to the current
level (fine) graph as Gy = (V}, Ey) and to the next level (coarse) graph as G. = (V,, E.).
The nodes (vertices) that will serve as the seeds of the next level nodes are selected from
the current set of nodes, V;, and gathered into a new set denoted by C' C V;. We denote
the complement of this set by F' = V; \ C. At the end of the coarsening phase we get a
coarsened graph G,y 1 = (Viy1, Fiy1), where |V 1| = |C| and E;;; is a new set of edges.
Note that the nodes in V;,; have generally different ordinal numbers than their seeds in
Vi. Each vertex i is assigned a volume, denoted by v;. (In most applications all nodes of

Gy are assigned an equal volume, 1.) In the uncoarsening phase, each node is assigned to
a region R € {Ry, Ry}. We denote the complement of R by R, i.e., R, = Ry, Ry = R;.

We further generalize the problem as follows. In order to get a higher bisection quality
we allow variable amount of imbalance which is gradually reduced as the uncoarsening
phase proceeds. In other words the balance constraint is looser at coarser levels: Initially,
on Gy, we use the imbalance_factor given by the user (see equations 1 and 2). At every

subsequent level we define a larger imbalance_factor. We denote the imbalance factor used



at the i-th level by imbalance_factor;. More details follow in Section 3.2.3.

When solving the coarsest level and during the disaggregation phase, two objectives
should be considered: Minimizing the cutsize, i.e., min 3~ w;;, while satisfying the bal-
ance constraint. Note that those objectives might conizﬁ(?c,?es\fe therefore introduce a new
energy functional Em which has to be minimized and which grows exponentially when the
balance constraint is violated. As a result, while a feasible bisection with higher cutsize is
usually preferable over an infeasible bisection with lower cutsize, an infeasible bisection that
only slightly violates the volume constraints will be chosen over a bisection that satisfies
the balance constraint but has much higher cutsize. Let G; be a given graph with a given
bisection where imbalance_factor; is the percentage by which imbalance is allowed. Let

current_imbalance be the current bisection imbalance defined as 50 * | 3 v; — X vs|/| V4.

i€R icR
En(G;) is defined by

En(G;) I cutsize - exp (p - max [ (current_imbalance — imbalance_factor;),0)  (3)

The value of p is determined as follows: At the coarsest level in order to determine an initial
bisection, and at any other level to allow a good initial assignment of nodes at disaggregation
(see below Section 3.4.1), p is chosen so that if the deviation from the imbalance_factor;
equals half of the heaviest node’s relative volume v,,q,/|V5|, the energy is larger than the
cutsize by initial_punish_cost. In this case p is the solution of the following equation:
1 + initial _punish_cost = exp (p . % . 100) ,

where initial_punish_cost was set to 0.10. At each level, after the initial partitioning has
been obtained, the value of p is updated. p is chosen so that when the deviation from the
imbalance_factor equals half the relative volume of the heaviest node along the cutsize,
Umaaz_border /| Vo|, the energy is larger than the cutsize by border_punish_cost. In this case p

is the solution of the following equation:

0.5 - mazx_border
1 + border_punish_cost = exp (p . U|V | border ., 100) ,
0

where border_punish_cost was set to 0.02.

We finally introduce one more notation. Let wg(ij) denote the normalized weight of an
edge 17 with respect to the set of nodes S and to the vertex 7, defined by
Wsj

Y Wik

kesS

wg(ij) =
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A list of all the parameters used in the algorithm is given in the Appendix.

3.2 Coarsening

The construction of a coarse graph from a given fine one is divided into three stages: first
a subset of the fine nodes is chosen to serve as the seeds of the aggregates (the nodes of
the coarse graph), then the rules of aggregation are determined, thereby establishing the
fractions of each non-seed node belonging to each aggregate, and finally the strength of the
connections (or edges) between the coarse nodes is calculated.

3.2.1 Coarse seed selection

The algebraic representation of a graph G(V,E) is given by the graph Laplacian A, a
|V| x |V| matrix whose terms are defined by

— Yz Wi for (1 =7)
0 otherwise

The construction of the coarse level graph starts with a construction of the subset C of
the fine level set of nodes V' (recall that the complement of C' is F'). On one hand, this set
of seeds should be representative of the given fine graph so that each F-node is “strongly
connected” to C', which should guarantee good uncoarsening. On the other hand it should
obey some balancing rules to maintain as even a distribution of the total graph volume as
possible. The set C' should also include nodes with exceptionally large volume, or nodes
that, if used as seeds, would tend to aggregate around them an exceptionally large volume

of F-nodes (a rule that will be modified in special situations; see Section 4.3).

Define the future-volume, ¥, of a fine-level node i as

9 v+ 3 v - wy (i)
jEF
which is a measure of how large an aggregate seeded by ¢ might grow. We start with an
empty set C, hence F' =V, and then sequentially transfer nodes from F' to C, employing
the following steps. Nodes with future-volume larger than 7 times the average of ¥ are
automatically added to C; we used n = 2. Next, a criterion for further increasing C', and a
practical method to control its quality can be based on sweeps of compatible relazation [5].

We use a compatible Gauss-Seidel (GS) relaxation. A vector x defined on V is relaxed by



GS relaxation that avoids relaxing those variables of x that belong to nodes in C. More
precisely, consider a relaxation process for the system of equations Az = 0 initialized by

. 0 ifieC
11 ifierF.

In each GS sweep, the equations are scanned in their natural order, and each equation
1 € F in its turn is satisfied by replacing the current approximation to the associated
unknown z;, with the new value z; = a;; 1(— >t a;;x;). The convergence rate of each z;
is then checked. The set C is guaranteed to be good when (and only to the extent that)
the compatible relaxation exhibits uniformly fast convergence rates (of all z; to 0). When
these rates are too slow, a diluted subset of the slow-to-converge F-nodes should be added
to C. In particular, we divide the current set F' into num_groups groups (we set the value
of num_groups to three) of decreasing convergence slowness. Each group is then sorted in
ascending order of the ¥;s of the related F-nodes. We then scan the groups’ nodes starting
with the slowest to converge group and add nodes to C' (starting with those having the
largest ;). When a node is added to C' the node’s neighbors are marked so that they
will not be added to C' at the current iteration. In order to reduce the variability of the
volumes of the coarse nodes, nodes with large ¥ and a relative weak connection to C (i.e.,
lower from a given threshold @) are chosen with higher priority. We used @ = 0.4. This
|

process is repeated iteratively until C' is large enough, i.e., as long as v < % In each iter-

ation, v GS sweeps are done, where v = 8. For complete details see Procedure Fix_C_Points.

Remark- For convenience we are currently using a library O(n - log(n)) sorting algorithm.
However, since only a very rough ordering is really needed, this can be replaced by a rough
bucketing sort which has O(n) complexity. This remark applies as well for all cases below

where we have used an exact sort.

The chosen set C' of nodes is the set of seeds of the aggregates, which will become
the coarse level nodes. It is left to determine the aggregation such that the coarse graph
bisectioning will be a good approximation to the bisectioning of the finer graph and then
to construct all coarse edges in a way that will encapsulate the connectivity information of

the finer graph. We first introduce the notion of aggregation weights.

3.2.2 Aggregation weights

The set C' of coarse variables is chosen so that, once a partition of the coarse nodes (ag-
gregates) is given, a partition of all fine nodes will quite naturally follow. The aggregation
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Procedure Fix_C_Points(Q, 7, v)

C—0,FV
Calculate 99, for each 7 € F
C «+ nodes with ¥ > n-(average of 1)
F—V\C
Recalculate 9J; for each ¢ € I
While [C|/|V|< %
Set x; =0VieCandz; =1Vi € F
Relax Az = 0 by v GS relaxation sweeps on F
Sort z in decreasing order (larger x indicates slower convergence)
Divide the sorted z into equal sized num_groups groups
Sort each group in decreasing order of the ¥; of the related F-nodes
Unmark all nodes in F'
For each group g (starting with the slowest to converge)
For each unmark 7 in ¢
If (X wy/ X wiy) <Q
jec jEV
Move ¢ from F' to C
Mark the neighbors of ¢
Recalculate ¥; for each i € F
Return C
End.

weights are defined to be a sequence of fractions P;; (see below), where i is a fine node, and
J € C is the seed of one of the aggregates to which the fraction F;; of ¢ “belongs”. That is,

P;; represents the fraction of 4 that tends to belong to the same region as j.

In classical AMG, these aggregation (interpolation) weights are based on the “strength
of couplings”, a;; of A. The following are formulae for such generalized couplings. (Note

that, for every 4, >°; a;; = 0 while the normalized couplings, defined below, satisfy 3, ag;’) =
(v)

1.) The v-generation normalized couplings a;;’ are recursively defined by

1 for 1€C, j=1

y 0 for 1€C, j#1i

o = DDA )
0 for 1¢&€C, j=1
il for igC,j#i,
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where

ag;’) —

—aij/ai; v=1 %)
2 az('f_l)ag}j_l)/(l — 5 a ey s

The purpose of the v-generation normalized couplings calculation is to consider not
only direct couplings (edges) between a node i to j € C, but also to accumulate indirect
couplings in which j € C is reached via one or more (depending on v) F-nodes. This
calculation reveals to which of the C'-nodes a particular ¢ is mostly connected, thus enables
a more accurate and reliable calculation of the couplings of the next coarse level (see below).

W) _

Clearly, for + € C' and for any v, a;; 1 and thus it is necessary to actually calculate new

couplings only for ¢ ¢ C.

The 1-generation normalized couplings is merely a normalization of the original cou-

plings which indeed yields for every 1, Zgl) a;; = 1. This normalization breaks the original
() is usually different f (1
ij y different from a;;
the graph sample given in Figure 1(a), where nodes 2, 5 and 8 are C-nodes (indicated by

double circles) and a;; is a short notation for ag)

symmetry of the couplings, i.e., while a;; = aj;, a ). Consider
. We will concentrate, for example, on
the calculation of the 2-generation normalized couplings of node 1. Clearly its 1-generation
couplings sum up to 1, i.e., a}y + a}3 + alg + a}; = 1, and so do the corresponding sums
of all other nodes. For the 2-generation couplings calculation we replace every coupling
adjacent on 1 which does not lead to a C-node, i.e., replace al,, a} and a};. For example,
node 6 is connected to nodes 1, 5, 8 and 7, thus a/y4 is replaced by a4ag,, a\gass, aigag; and
by algags, that is, node 1 is now connected to 1, 5, 7 and 8, via those four couplings. Note
that the sum of these new four couplings still equals a4, and that node 1 is now connected
not only to one C-node 2 as before, but also to 5 and 8. We similarly replace a}; and a’,.
The resulting couplings of node 1 are presented in Figure 1(b). Their sum still equals 1,
however, a self loop (i.e., a coupling from 1 to itself) is included. To normalize all other
couplings one should divide each of them by one minus the strength of the self loop. Thus
for example, the final coupling between node 1 and 5 is
13035 + 16065
1 — (a13a3; + ajgag + airan)

The self loop is set to zero, and node 1 is finally connected to three C-nodes: 2, 5 and 8.

We have used v = 2 followed by a procedure called v-selective-generation in which the
v-generation (in our application # = 3) is applied only partially, i.e., only to a small subset
of the fine nodes, those which have particularly “weak” connections to C, e.g. smaller than
0.3.

To curb complexity, the number of fractions of each node should be restricted by a proper

12



Figure 1: A graph sample. C-nodes are double circled. (a) The original graph, where the agjs
denote the 1-generation normalized couplings between i and j. (b) The resulting non-normalized

2-generation couplings of node 1.
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choice of the thresholds «; defined below. Denote by 151 the set of the 7 (the final generation
used for node i: either v or ¥) generation normalized couplings: ﬁ,:{agf)\ jeC},and
define for each i ¢ C' a coarse neighborhood N; = {j € C|a§?) > «;}, where q; is determined
by the demand that the size |N;| should not be too large. To compute the value of a; we
first sort P; by decreasing order and define «; to be
ai:{ 0 if {a > 0)jeC} <r
P;[r] otherwise

I

where the interpolation order parameter, r, is initialized by rq = 6 at the finest level and
increased as a function of level L to r = ro + R, where R % log(mazx(1, |Ey|/|EL|))-

Finally, we define the aggregation weights matrix P (of size |V| x |C|) by
o)/ Shen; aly) forieF, je N,
Pj=4q1 forieC, j=1
0 otherwise

Note that for every 7, the aggregation weights satisfy >°;cn, Pi; = 1.

3.2.3 The coarse problem

Let I(k) be the ordinal number of the coarse graph node that represents the aggregate
around a seed whose ordinal number at the fine level is k. A coarse edge between two
coarse nodes should represent the total weight of all the fine-level edges (connections)
between the corresponding aggregates. Thus, we followed the weighted aggregation scheme
used in [39, 38]. An edge connecting two coarse nodes p = I(i) and ¢ = I(j) is assigned
with the weight
?U;q = Z PkiwklPlj .
k#l, kleVy

Dilution - Note that to control the running time of the algorithm, it is often important
to decrease the total number of edges of the constructed graph. This is achieved by using

the following two parameters:

e The maximum allowed coarse neighborhood size r which restricts the number of

aggregation weights allowed for each vertex i € F (see Section 3.2.2).

e Edge filtering threshold, €. Every relatively weak edge 75 is deleted from the created
coarse graph; namely, 75 is deleted if both w;; < e-s; and w;; < €-s;, where
S; = > Wix. We used € = 0.001.
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The volume of a coarse node i = I(k), vj ), should reflect the volumes of the nodes in the

aggregate around k including £ itself. Thus, we define its volume to be vf Lf > v P,
jEVf

i.e., it equals to the previous volume of its seed k plus the relative parts of the volumes of

other fine nodes it represents. Note that during the coarsening process the total volume of

all vertices is conserved, i.e., for all coarse graphs, G; = (V;, E;), obtained in the coarsening

phase > v, = Y v, . Also, under the assumption that all nodes in the original graph
ueVp uevV;

have volume one |Vy| = ¥ v,.
u€Vp

min max

The constructed coarse problem is again a graph bisection problem with v™" and v
constraints. As explained, during the coarsening process the number of vertices in the
graph decreases while their total volume is conserved. Thus, the average volume of a node
1, v;, increases. We wish to enable the transfer of nodes from one side of the partition to
the other without violating the constraints. Therefore, the imbalance_factor (provided by
the user) should increase with respect to the graph level, i.e., the constraints should be
looser when the graph level is higher. In each level we chose the imbalance_factor to be
equal to the relative volume of the heaviest node. That is, the imbalance factor used at

the 7’th level denoted by imbalance_factor; has the value

Vi(;
tmbalance_factor; = max (imbalance_ factor, | ‘7/( ?) ,
0

where j(i), is the heaviest node at level i, i.e., it has the maximum volume.

3.3 Coarsest level solution

Solving the coarsest level, which consists of no more than 20 nodes (otherwise a coarser
level should be introduced for efficiency) is preformed directly by simply trying all possible
bisections. Note that for a graph that consists of 20 nodes there are just 524287 possible
bisections (not all necessarily satisfy the balance constraint). Our algorithm will usually
accept for further processing several bisections, provided that they all have relatively low
values of En and they are all substantially different from each other. More precisely,
consider first the best obtained bisection, i.e., the one that has the minimal En. Scanning
other bisections, according to their increasing En, we pick additional ones if the total
volume of the nodes at which they differ from the ones already picked, is more than a
certain fraction, w, of the total vertices volume (we have used w = 0.08). For example, let
s° be the optimum bisection of G; and s9 be the bisection region (R; or Rj) assigned to
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node j € V;. A bisection s* is considered to be sufficiently different from s° if

min (Y v, Y, v)>w-|Vl. (6)

J€V;, s9#sk JEV:, 595k

The maximum number of bisections chosen from the coarsest level is denoted by num_co-
arse_solutions (although we have fixed it to 40, a perhaps better way would be to choose
it proportional to the original graph size). See Section 3.4.5 for the subsequent selections
that reduce this number at finer levels.

3.4 Disaggregation

Having solved the coarse problem, an approximate bisection to the original (or the-next-
finer-level) problem is obtained by disaggregation, the analog of the coarse-to-fine multigrid
interpolation. The disaggregation is done in two phases. The initialization of the fine level
bisection, which is subsequently improved by several relazation sweeps, first compatible

then regular, with or without stochastic elements, as explained below.

3.4.1 [Initialization by layers

Define V' C V to be the subset of nodes that have already been assigned to one of the

regions. Initially V' = (). At first, having obtained a bisection of the coarse level aggregates,

each node i for which its aggregation weights Y FP;; is almost 1 (> 0.95) for either £ =1 or
JERy

k = 2, is assigned to that region R;. Clearly all seeds are bisectioned and added to V. Then

iteratively assign each fine node ¢ € V' \ V' to the region Ry if > wy(ij) > certainty’.

JERy
The value of certainty is initialized with 0.95. It is decreased by 0.05 when the number

of nodes that were assigned in the last iteration is smaller than maz(10,0.1 - graph size)
and stops when its value is less than 0.90. Thus, the sequence in which the nodes are
placed is roughly in decreasing order of their relative connection to V’. Finally assign a
partition to the rest of the nodes using energy considerations. All fine nodes that have not
yet been assigned concentrate along the cut (between R; and R,). We assign each fine node
i € V'\ V' to the region Ry so that the value En of the bisection, at that moment when ¢
is being placed, is minimized. Note that some of the neighbors of : may not have yet been

!Tn the results presented below we have actually used a slightly different criterion: Y wy(ij) >
JER
certainty, which proves to perform well.
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assigned to a region. More precisely, : € V' \ V' is assigned to a region Ry (k = 1,2) if

SNowy > > wi+ Y, wiy,
JERE JEVA\V! JEV',j¢Ry
until no new assignments were made. The rest of the nodes i € V' \ V' are then assigned

by majority: 7 is assigned to the region R} if

dowi > YL Wi

JERy JEV! ¢ Ry
If the terms in the inequality above are actually equal, then it will be assigned to either Ry
with probability 0.5.

3.4.2 Strict minimization

The simple disaggregation (initialization by layers) is not likely to be accurate enough. It
should therefore be followed by several sweeps of compatible relaxation, motivated in [5],
which is like the minimization described below, but avoids changing the positions of the
seeds (C-nodes). This will produce much improved disaggregation still compatible with

the coarse bisection before changing it by reqular relaxation.

A strict node by node minimization (regular relaxation) is simply the process of assign-
ing each node to R; or Ry according to which of the two has a lower value of En. The
minimization is applied along the cut line. Given a node ¢ € R that is located on the cut,
i.e., there exists some edge 4j such that j € R, the new value of En associated with the
assignment of 7 to region R is calculated. If the new value of En is lower or equal to the
value of En before the change, then the change is accepted. This process should be applied
to all nodes on the cut and continue for sufficiently many times. We run it for maximum of
num_minimaization times chosen to be 10, as long as the energy is further reduced. Note
that the calculation of the new En is done locally since the cutsize change when node £k is

transferred from R to R is given by

D Wi = D W

JER jER
3.4.3 Simulated annealing (SA)

Simulated annealing, originally presented by Kirkpatrick et al. [32], is a general purpose
global optimization technique for very large scale numerical optimization problems. This
method is related to the Monte Carlo (MC) method [33] and is based on the principles
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of thermodynamics. The process simulates the common industrial process of “annealing”
— obtaining a low material energy (such as less brittle glass) by slowly cooling a melted
material. At the beginning, the temperature is relatively high so atoms can move freely. As
the process proceeds, the temperature is carefully decreased so that atoms can move just
enough to begin adopting the most stable configuration. If the cooling is done carefully
enough then at the end of the process the most stable configuration is reached, i.e., the one
that has the lowest energy. This basic concept can be applied to multi-variable optimization
problems, in particular it is used to escape local optima. The analogy is straightforward.
The current thermodynamic configuration is analogous to the current approximation to the
solution of the optimization problem. The energy functional is analogous to the objective
function and the final stable state of minimum energy is analogous to the optimum state.

The simulated annealing optimization starts with high temperature 7'. For minimization
problems, any random step that reduces the energy is accepted. Since 7' is high, the
probability to accept a random step that results in an energy increase should still be
relatively high, increasing with 7' and decreasing with the size of the energy increase. A
common used probability function that satisfies this need is P(AE) = min(1, exp(=22)),
where AE = Fnpey, — Engg. After sufficient number of MC steps with high temperature,
the temperature T is reduced and the MC process is repeated until sufficiently small 7" is
reached. The way T varies is known as the cooling schedule. 1t is used to control the rate
of convergence and the strategy of exploring the solution space. Different cooling schedules
are being used: a linear cooling schedule 7., = T,;4 — AT'; a proportional cooling schedule
Thew = C - Ty, where C' < 1.0; etc. This process in large problems would usually need
to apply very gradual cooling (decrease of temperatures), making it extremely slow and

inefficient for approaching the global optimum.

In the multilevel framework, however, the role of SA is somewhat different. At each level
it is assumed that the global partition has been inherited from the coarser levels, and thus
only local, small-scale changes are needed. For that purpose, we have started at relatively
high T, lowered it substantially at each subsequent sweep, until strict minimization is
employed.

In particular, the SA is applied only to nodes that are located along the cut line. Each
move of such a node (to the other region) is assigned with a particular probability value.
Consider a node i, denote by AE the change in En caused by moving i from R to R. The
probability that this move will be accepted is:

Prob-move(i) = AR

s [ 1 if AE <0
exp(—7.5) otherwise
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E;‘efiwij

where S; is the strength of the connection between i and R, i.e., S; = o In other
words, a move that causes a small change in En but makes a big change along the cut line
gets a higher probability to be accepted, as it is expected that some local relaxation around
the change will produce a lower partition cost. The initial temperature 7 is calculated a-
priori for each level [ by aiming at the acceptance, accept, of certain percentage of moves:

2% on the coarsest level which is gradually increased by equal increments up to 14% on the
AE
Si
in ascending order. Choose the entry located at the accept relative location as the current

for each node on the border and sort the results

finest level. In particular, calculate

value of %, denoted by A, and calculate the value of T' from 0.5 = exp (—%). Note that

nodes with lower value (of %) than A have a higher probability (than 0.5) of accepting their
move (closer to 1). We used proportional cooling schedule: T is reduced to reduce T _factor
times its previous value at each subsequent sweep with reduce T _factor = 0.7. The lo-
calness of these changes and the rapid cooling guarantee the preservation of the large
scale bisection inherited from the coarser levels. We run the SA process (heating-cooling)
num_heating_cooling times, in each iteration we first calculate an initial temperature and
then decrease it iteratively num_reduce T times. We used num_heating_cooling = 20 and
num_reduce T = 5. At the end of each cooling process we employed strict minimization

relaxation.

Note that we may reach the minimal En during the SA process and not necessarily
at its end and that it may even be destroyed by the next heating-cooling iteration. This
difficulty is treated below. For complete details see Procedure SA.

3.4.4 Lowest common configuration (LCC)

For a large enough graph it is expected that the detailed bisection of one subgraph will often
be independent of those of other subgraphs. That is, even when part of the global minimal
bisection has been reached, it might be later destroyed (by using further heating) before
other parts attain their minimal bisection values. It might, of course, take a very long time
before all parts simultaneously settles at the optimal cut. This slowness can, however, be
overcome by adding some “memory” to the annealing process. More precisely, instead of
just storing (one or several) best-so-far (BSF) visited bisections, a possibly better bisection
than all of these can be obtained using the so called Lowest Common Configuration (LCC)
procedure introduced by Brandt et al. in [10] and by Ron in [36], and applied by Safro et al.
[38] in the context of the linear arrangement problem. In our context the LCC procedure
applied on two given bisections basically selects partial sub-bisections out of the two given

ones and forms a third bisection with En not higher than its two constituents. The BSF, of
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a certain level, is initialized by the bisection obtained at the end of the strict minimization.
Then the BSF is improved by the LCC procedure which updates parts of it taken from
the new bisections reached either during the SA process, if the value of En happens to
be lower than that of the BSF, or at the end of each heating-cooling procedure. This, of
course, justifies the repeated re-heating process involved in the annealing with no danger
of possible damage to already achieved parts of the global minimal partition. When the
entire disaggregation process is completed, the accumulated BSF serves as the bisection of

the current fine level.

The LCC procedure works as follows. Suppose that after a step of the heating-cooling
procedure we have reached a new bisection. The LCC marks the set of nodes which lie in
different regions with respect to the current BSF and the new bisection. Then, a set of
connected clusters of the marked nodes is created (two marked nodes which share an edge
are in the same cluster). For every cluster £, all nodes i € k are temporarily put in a region
different from their current BSF assignment. The value of En of this “new” assignment
is then calculated. In case a lower value of En is reached, BSF is modified to assign all
nodes ¢ € k to their new region. Otherwise, BSF remains unchanged. To demonstrate the
benefits of using LCC we ran the algorithm both with and without it, and compared the
results (see Section 4.3). The LCC procedure as written below runs in a linear time with
respect to the number of edges and the number of vertices, i.e., O(|V|+ |E]). For complete
details see Procedure LCC.

Procedure LCC(BSF, bisection of G)
current_En < En of the BSF configuration
Mark all nodes with different assignments in BSF and in the bisection of G
While there are still marked nodes
Pick a marked node %
current_cluster < the cluster of all marked nodes connected to ¢
Unmark all the nodes appearing in current_cluster
new_En «— En of BSF when we flip the assignment of all nodes ¢ € current_cluster
If (new_En < current_En)
Accept the changes into BSF and update the value of current_En
End.

An overview of the entire disaggregation process is given in Procedure Disaggregation.
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Procedure SA (bisection of G,num_heating_cooling,num_reduce_T ,reduce_T _factor)
BS F+—bisection of G
Repeat num_heating_cooling times
current_ T « calculate initial T (for details see Section 3.4.3)
Repeat num_reduce T times
For all nodes 7 € R that have a neighbor in R
En « current En
new_En « En when i is moved to R
AEn «— new_En — En
S; Z_ Wij
jJER
Move i to R with probability min(1, eifﬁ—'ET)
current T «— reduce T _factor - current T
Apply num_minimization sweeps of strict minimization on Gy
BSF«+— LCC(BSF, bisection of G)
Return BSF
End.

Procedure Disaggregation(coarse graph G., fine graph Gy)

Parameters: num_minimization,num_heating_cooling,num_reduce T reduce T _factor
Initialize G (see Section 3.4.1 for details)

Apply num_minimization sweeps of strict minimization on the F-nodes of G

Apply num_minimization sweeps of strict minimization on G/

S A(bisection of G,num_minimization,num_heating_cooling,num_reduce T ,reduce_T_factor)
End.
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3.4.5 Bisections elimination process based on efficiency considerations

In order to explore different possible bisections, we start by choosing num_coarse_solutions
different bisections from the coarsest level (see Section 3.3). During the SA process (espe-
cially at coarser levels) the cut might change and become similar to one of the bisections
we already have. Therefore we might want to keep the bisections before the SA as well. In
order to limit the running time of the algorithm, the number of different bisections that we
propagate back to the finest level must be restricted. We measure the amount of work at
each level by the number of edges. Note, that this number might increase at the beginning
of the coarsening process, i.e., at the first two or three levels. However, due to the decrease
in the number of nodes and the dilution used as the coarsening proceeds (see Section 3.2.3),
the number of edges eventually decreases. The maximum number of bisections that will be
propagated all the way back to the finest level is restricted to num_fine_solutions. This is
also true for every level i that satisfies |E;| > 3 -|E,|. As the number of edges in the graph
decreases (|E;| < 3 - |Eol), the allowed amount of work is reduced by a factor of 7. That
is, the maximum number of different bisections that will be propagated to the i’th level,

num_t_solutions is:

num_fine_solutions Vi <m
™ Vi>m

|Ep|-num_fine_solutions

| E;]

num_i_solutions = ) )
min|2 - num_coarse_solutions,

where m = arg maz;(|E;| > |Ey|). We chose to limit the number of bisections as fol-
lows: num_corase_solutions = 40, num_fine_solutions = 5, while 7 = % Bisections
are considered to be different if Equation 6 is satisfied using variable w so as to maintain
num_i_solutions bisections. Finally, LCC was performed on the num_fine_solutions ob-
tained for the original graph, to produce their best combination. This is the final result of

the algorithm.

4 Numerical results

Section 4.1 describes the used test suite and introduces a new set of contrived test case
graphs. Section 4.2 provides information about available software tools for graph parti-
tioning. Last, in Section 4.3 we bring a summary of our results [48] compared with other

works.
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Figure 2: A mesh graph: The bold horizontal edges are of strength 12, the dashed horizontal
ones 11; the vertical dotted edges 10. Any straight horizontal bisectioning costs 80, any vertical

non-centric costs 88, while the central vertical cut, the global minimum, costs only 72.

4.1 Test case graphs

Experimental tests have been performed on a wide range of graphs of different sizes and
topologies taken from [45]. The characteristics of these graphs are described in table 1.
It includes 2D and 3D examples of nodal graphs, where the finite element mesh nodes are
partitioned and dual graphs, where the mesh elements are partitioned. In addition there
is a 3D semi-structured graph, cti, and non mesh based graphs which arise from various
scientific computing applications such as add32, vibrobox, bcsstk30 etc. None of these

graphs have either vertex or edge (non-uniform) weights.

In addition we have constructed some more graphs for the following reason. The main
difficulty of finding the global minimum for a discrete variables problem is caused by its
complicated landscape structure which involves a multitude of local minima usually nested
within each other. These attraction basins result from the local structure of the problem,
e.g., local, strong or dense connections being present in subgraphs of the given graph. Any
clustering that is “greedy”, and thus would usually prefer the matching of the strongest
local connections, would tend to assign such a substructure fully to one of the partitions.
If, however, the global minimum is only obtained by partitioning such subgraphs, these
algorithms would most likely be trapped in a local minimum. The algorithm suggested in

this report attaches such local connections only partially and avoids making hardened local
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decisions, such as edge contractions, before accumulating the relevant global information.
Observe for example the mesh graph presented in Figure 2, where the bold horizontal edges
are of strength 12, the dashed horizontal ones are 11 and the vertical dotted edges are 10.
Clearly, all straight horizontal bisections cost 8 x 10 = 80, while all vertical non-centric
cost 8 x 11 = 88. However, the central vertical cut which is the global minimum costs
only 6 x 12 = 72. We have created similar mesh graphs of sizes 200 x 200, 400 x 400 and
800 x 800, with increased values of the “horizontal/vertical ratio”, v, which is defined by

local minimum: horizontal cutsize

global minimum: centric vertical minimum cutsize -

The value of ¢ was increased by deleting a larger number of vertical edges from the central

column of the mesh.

4.2 Available software tools for graph partitioning

During the last few years many public domain software tools have been developed for graph

partitioning. In this section we list some available software packages.

e CHACO, [23]. Developed by Hendrickson and Leland at Sandia National Labs. Tt
contains implementation of the inertial, spectral, Kernigham-Lin and multilevel-KL

algorithms.

e TOP/DOMDEC, [16]. Developed by Simon Farhat and Lanteri. It includes im-
plementation of the greedy, recursive graph bisection, inertial and recursive spectral

bisection algorithms.

e JOSTLE. Developed by Walshaw et al. at Univ. of Greenwich. It includes imple-
mentation of the greedy [15], recursive coordinate bisection [41], multilevel Kernighan-
Lin [47], iterated multilevel Kernighan-Lin [46] and combined evolutionary/multilevel
[42] algorithms.

e METIS. Based on the work of Karypis and Kumar [26, 29, 28] at the Dept. of
Computer Science, Univ. of Minnesota. They have later extended this package to a
hypergraph partitioning software package named hypergraph-METIS (hMETIS) [27],
by implementing the algorithms described in [30, 25].

The software-packages / algorithms that were used to get the minimal cut on the test suite
described in Table 1 are abbreviated in table 2.
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Graph Name V]| |E| min/avg/max degree type

add20 2395 7462 1/6.23/123 20-bit adder

data 2851 15093 3/10.58/17 3D nodal graph

3elt 4720 13722 3/5.81/9 2D nodal graph

uk 4824 6837 1/2.83/3 2D dual graph
add32 4960 9462 1/3.81/31 32-bit adder
besstk33 8738 291583 19/66.73/140 3D stiffness matrix
whitaker3 9800 28989 3/5.91/8 2D nodal graph
crack 10240 30380 3/5.93/9 2D nodal graph
wing nodal 10937 75488 5/13.80/28 3D nodal graph
fe_delt2 11143 32818 3/5.89/12 Not indicated
vibrobox 12328 165250 8/26.8/120 vibroacustic matrix
besstk29 13992 302748 4/43.27/70 3D stiffness matrix
delt 15606 45878 3/5.87/10 2D nodal graph
fe_sphere 16386 49152 4/5.99927/6 Not indicated

cti 16840 48232 3/5.72/6 3D semi-structured graph
memplus 17758 54196 1/6.10/573 digital memory circit
csd 22499 43858 2/3.90/4 3D dual graph
besstk30 28924 1007284 3/69.65/218 3D stiffness matrix
besstk31 35588 527914 1/32.19/188 3D stiffness matrix
fe_pwt 36519 144794 0/7.92/15 Not indicated
besstk32 44609 985046 1/44.16/215 3D stiffness matrix
£60k 60005 89440 2/2.98/3 2D dual graph

wing 62032 121544 2/3.91/4 3D dual graph
brack2 62631 366559 3/11.70/32 3D nodal graph
fina512 74752 261120 2/6.98/54 Linear programming
fe_tooth 78136 452591 3/11.58/39 Not indicated

200 x 200 79950 40000 2/3.97/4 2D nodal graph

400 x 400 319094 160000 2/3.98/4 2D nodal graph

800 x 800 5116365 2560000 2/3.99/4 2D nodal graph

Table 1: Description of the test suite.

4.3 Results summary

Table 3 summarizes the results obtained by running the most popular up-to-date partition-
ing algorithm for hypergraphs, the hMETIS [27], on the test suite described in Table 1.
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Abbreviation | Software References

Greedy Farhat’s greedy algorithm (within JOSTLE) [15]

RCB Recursive Coordinate Bisection (within JOSTLE) [41]

MRSB Bernard and Simon’s Multilevel Recursive Spectral Bisection 3]

Ch2.0 CHACO - version 2.0 23]

M4.0 METIS - version 4.0 29, 28]

GTS Stephane Popinet’s multilevel implementation available as —
part of the GNU Triangulated Surface Library

J2.2 Multilevel Kernighan-Lin (k-way) (within JOSTLE) [47]

iJ iterated multilevel Kernighan-Lin (k-way) (within JOSTLE) 46]

JE Combined evolutionary / multilevel scheme (within JOSTLE) [42]

GrPart Alexander Kozhushkin’s implementation of iterative —
multilevel Kernighan-Lin

MLSATS MultiLevel refinated Mixed Simulated Annealing and Tabu Search | [2]

Table 2: Abbreviations of the software packages/algorithms that were used to get the minimal
cut. Taken from [45].

The hMETIS program may be executed with different arguments. In order to achieve the

best possible results, we used five different coarsening schemes combined with two different

refinement schemes. For each of these ten combinations we have executed the program one

hundred times. In Table 3 we present the best results (out of the ten possibilities) obtained

by hMETIS along with the results obtained by our algorithm averaged over ten runs using

different sequences of random numbers, i.e., ten different disaggregations applied to the

same aggregation. We have not included any execution time results since our algorithm

have not yet been optimized in this respect.

Looking at Table 3, one can observe that the minimum cost obtained using our algorithm

is comparable to that obtained using hMETIS for all graphs except for Add20 and Memplus.

Excluding these two graphs, in 18 out of 26 graphs the minimal cut found was the same

for both algorithms.

In 2 test graphs the minimal cut found by hMETIS was higher

by an average of 2.24%. In 6 test graphs the minimal cut found by our algorithm was
higher by an average of 0.35% than hMETIS. In 24 graphs the average result obtained by
our algorithm was lower than hMETIS. Furthermore, in general the standard deviation

obtained by our algorithm was significantly lower, i.e., our algorithm is less sensitive to the

choice of sequences of random numbers.

For the Add20 and the Memplus test graphs the minimal cut obtained by our algorithm
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hMETIS Our algorithm
Graph average ‘ SDV ‘ min. cut || average ‘ SDV ‘ min. cut
add20 678.14 | 57.73 577 704.2 0.63 704
data 198.8 9.26 186 190.9 | 3.81 187
3elt 88.75 1.43 87 87.3 0.67 | 87
uk 20.25 1.50 18 19 0.94 |18
add32 10.3 1.169 10 10 0 10
besstk33 10100.64 | 185.56 | 10064 10064 | O 10064
whitaker3d | 128.55 1.81 126 127.2 | 0.91 126
crack 188.64 5.92 182 183.5 | 2.12 | 182
wing nodal | 1756.11 | 59.082 | 1688 1691 2.49 | 1690
fe_delt2 130 0 130 130 0 130
vibrobox 11303.08 | 484.56 | 10310 10310 | O 10310
besstk29 2853.68 | 18.271 | 2818 2819 0 2819
4elt 142.8 8.277 138 138 0 138
fe_sphere 384 0 384 384.2 0.63 384
cti 330.62 17.49 318 318 0 318
memplus 6044.25 | 408.25 | 5413 6474.7 | 116.31 | 6300
csd 399.2 16.192 | 375 366.7 |1.15 | 365
besstk30 6354.94 | 168.197 | 6251 6297.3 | 30.44 | 6251
besstk31 2845.77 | 257.24 | 2676 2695.2 | 11.64 | 2677
fe_pwt 358.18 6.26 340 340 0 340
besstk32 5487.01 | 474.766 | 4667 4667 0 4667
t60k 81.51 7.49 73 77.1 2.02 |73
wing 863.91 24.04 813 799.9 | 1.59 | 799
brack?2 705.74 | 8.74 700 715.6 6.78 707
finab12 162 0 162 162 0 162
fe_tooth 4105.95 | 224.76 | 3813 3850.8 | 18.81 | 3827
200x 200 | 1998 20 1800 1800 0 1800
400x400 3999.56 | 21.97 3528 3528 0 3528
800x800 7990.2 98 7020 7020 0 7020

Table 3: Comparative table of results: Ours versus hMETIS with up to 1% imbalance. The

obtained minimum average, standard deviation and cut are bolded.
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was higher by 22% and 16%, and the average was higher by 3.8% and 7.1%. Add20 and
Memplus belong to a class of graphs for which the coarsening scheme, as implemented now,
might indeed fail. This class contains graphs in which the average degree is much smaller
than the maximum degree, i.e, only few nodes are connected to many nodes. The highest
degree nodes are expected to aggregate around them a large volume. Thus, during the
coarsening phase they will be chosen as seeds, and will continue to be such as the process
proceeds. However, the optimal cut does not necessarily divide those heavy nodes into two
groups. Thus we might not be able to get the optimal cut. This problem arises from the
following asymmetry appearing at coarsening: A heavy node always tends to be a seed,
while a light node tends to be attached to a heavy seed to which it is strongly connected,
while this heavy node might only be weakly connected to that light node.

For example, let G = (V, E') be a graph with the following properties:

e Define A and B such that V. =AU B, AN B = (),
o |A << B,
eVieB, jeA : deg(i) << deg(j),

e the vertices in A are each strongly connected to each other (i.e., form a clique-like

structure).

During the coarsening phase, the heavy nodes from A will be chosen as seeds. As a result,
the current version of our algorithm will tend to draw the partition within this clique-like
structure of aggregates. However, this is not necessarily the optimal bisection. The minimal
cut may well pass through the light nodes while the set of heavy nodes is (mostly) placed

at one side. See Figure 3.

Best bisections for the test suite’s graphs are located and updated at Walshaw’s web
site [45]. These bisections (indicating the minimal cut size) classified by four levels of
imbalances: 0%, 0.5%, 1.5% and 2.5%. Tables 4, 5 and 6 compare the costs obtained by
our algorithm with the minimum reported costs for 0.5%, 1.5% and 2.5%, respectively.
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Figure 3: Example of failure of the coarsening phase. The dashed line bisect the graph into two

equal sized subsets. Any cut that passes through A, which has a clique-like structure, has a much

higher cost.

500 Nodes

|AlI=100
IBI=900

500 Nodes

Graph archive

Software Package/

Graph archive

Software Package/

algorithm Minimum algorithm Minimum
graph (See Table 2) cost our cost || graph (See Table 2) cost our cost
add20 GrPart 618 705 fe_sphere | JE 386 386
data GrPart 196 188 cti JE 318 318
3elt GrPart 89 90 memplus | JE 5492 6471
uk GrPart 21 19 csd JE 367 369
add32 J2.2 10 10 besstk30 | GrPart 6335 6347
besstk33 GrPart 10109 10097 | besstk31l | GrPart 2701 2724
whitaker3 | JE 126 126 fe_pwt GrPart 340 340
crack JE 184 182 besstk32 | JE 4667 4667
wing nodal | GrPart 1703 1697 t60k iJ 78 7
fe_4elt2 MRSB 130 130 wing JE 798 796
vibrobox JE 10310 10310 | brack2 GrPart 708 708
besstk29 GrPart 2818 2826 fina512 Ch2.0 162 162
4elt GrPart 138 138 fe_tooth | GrPart 3982 3827

Table 4: A comparison between the “best known” results reported in [45] and our results with

up to 0.5% imbalance.
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Graph archive Graph archive
Sotvare Pl | Minimum oty Pl | Minimunn
graph (See Table 2) cost our cost || graph (See Table 2) cost our cost
add20 GrPart 618 702 fe_sphere | JE 384 384
data GrPart 196 185 cti JE 318 318
3elt JE 87 87 memplus | JE 5407 6404
uk JE 18 18 csd JE 363 362
add32 J2.2 10 10 besstk30 | JE 6251 6251
besstk33 GrPart 10096 10064 | besstk31l | MLSATS 2676 2676
whitakerd | JE 126 126 fe_pwt GrPart 340 340
crack JE 184 182 besstk32 | JE 4667 4667
wing nodal | JE 1686 1681 t60k JE 72 71
fe_4elt2 MRSB 130 130 wing JE 778 780
vibrobox JE 10310 10310 | brack2 JE 684 686
besstk29 GrPart 2818 2818 finab12 Ch2.0 162 162
delt JE 137 138 fe_tooth | GrPart 3982 3829
Table 5: A comparison between the “best known” results reported in [45] and our results with
up to 1.5% imbalance.
Graph archive Graph archive
St Mo | Minimum Rl BT
graph (See Table 2) cost our cost || graph (See Table 2) cost our cost
add20 GrPart 618 702 fe_sphere | JE 384 384
data GrPart 196 182 cti JE 318 318
3elt JE 87 87 memplus | iJ 5353 6252
uk JE 18 18 csd JE 363 356
add32 J2.2 10 10 besstk30 | JE 6251 6251
besstk33 | iJ 9914 9914 besstk31l | MLSTAS 2676 2676
whitaker3 | JE 126 126 fe_pwt GrPart 340 340
crack JE 184 182 besstk32 | JE 4667 4667
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Graph archive Graph archive
Graph archive Graph archive
Softare Faoee®/ | Minimum S e/ | Minimum

graph (See Table 2) cost our cost || graph (See Table 2) cost our cost
wing nodal | MLSATS 1670 1672 t60k JE 72 67
fe_4delt2 MRSB 130 130 wing JE 778 774
vibrobox JE 10310 10310 | brack2 | MLSATS 668 661
besstk29 GrPart 2818 2818 fina512 | Ch2.0 162 162
delt JE 137 137 fe_tooth | GrPart 3982 3805

Table 6: A comparison between the “best known” results reported in [45] and our results with

up to 2.5% imbalance.

From Tables 4, 5 and 6 we conclude that our results are comparable to (and in some

cases even better than) those obtained by the best other software packages/algorithms. In

particular:

e For up to 0.5% imbalance (Table 4), in 7 out of 26 test graphs (including Add20 and
Memplus) our minimal cut was higher than the minimal “known” cut by an average
of 4.98%. If we exclude Add20 and Memplus this difference decreases to 0.6%. In
8 out of 26 test graphs we found a cut that was on average 2.56% lower than the

minimum previously known.

For up to 1.5% imbalance (Table 5), in 5 out of 26 test graphs (including Add20 and
Memplus) our minimal cut was higher than the minimal “known” cut by an average
of 6.7%. If we exclude Add20 and Memplus this difference decreases to 0.43%. In
7 out of 26 test graphs we found a cut that was on average 1.83% lower than the

minimum previously known.

For up to 2.5% imbalance (Table 6), in 3 out of 26 test graphs (including Add20 and
Memplus) our minimal cut was higher than the minimal “known” cut by an average
of 10.17%. If we exclude Add20 and Memplus this difference decreases to 0.12%. In
6 out of 26 test graphs we found a cut that was on average 3.30% lower than the

minimum previously known.

Table 7 summarizes the results obtained by running the hMETIS [27] on the different

meshes we have constructed. In order to get the best possible hMETIS results we combined
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five different coarsening schemes with two different refinement schemes. In addition, we
allowed imbalance of one percent and two percents between the two parts. For every such
combination we ran the program one hundred times. Hence, the total number of hMETIS
trials was two thousands. As shown in Table 7 hMETIS’s success rate is very small, i.e.,
less than 0.3%. On the other hand, our algorithm always finds the minimal cut, i.e., the

average result equals to the minimal cut and the standard deviation is zero (see Table 3).

hMETIS
Mesh size |E| \4 Migdsfut P nggélggsregt average | SDV
200 x 200 | 79950 | 40000 1800 1.11 4 1999.82 | 13.298
400 x 400 | 319094 | 160000 3528 1.13 3 3999.56 | 21.971
800 x 800 | 1278185 | 640000 7020 1.139 7 7998.03 | 72.120

Table 7: Results obtained by running hMETIS on different meshes

To demonstrate the benefits of using LCC we ran the algorithm both with and without
it, and compared the results. Table 8 summarizes the average results obtained by running
ten tests with different choices of sequences of random numbers. From Table 8, we conclude
that the results obtained by using SA combined with LCC are better by an average of 7.27%
than the results obtained by using SA only. The percentage by which the average result is
improved by employing the LCC is given in the bottom line of Table 8 separately for each

imbalance.

0.5% imbalance 1% imbalance 1.5% imbalance 2.5% imbalance
graph with LCC | without LCC || with LCC | without LCC || with LCC | without LCC || with LCC | without LCC
add20 708.9 725 704.2 723.4 705.7 719.7 697.3 723.7

data 194.9 195 190.9 193.8 189.5 190.5 184.5 193.8
3elt 90 92.9 87.3 88.7 87 90.6 87 90.4
uk 19 22.3 19 21.4 18 21.8 18 21.2
add32 10 10 10 10 10 12.8 10 11
besstk33 | 10102.2 | 10122.9 10064 10073.4 10064.3 10066 9914 9974
whitaker3 127.7 138.3 127.2 128.9 126.3 129.2 126 127.9
crack 184.8 192.1 183.5 191.8 183.5 192.3 182.3 190.8
wing_nodal 1700 1717.4 1691 1708.9 1686 1702.2 1673.7 1680.4
fe_delt2 130 130 130 130 130 130 130 130
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0.5% imbalance 1% imbalance 1.5% imbalance 2.5% imbalance
graph with LCC | without LCC || with LCC | without LCC || with LCC | without LCC || with LCC | without LCC
vibrobox 10310 10842.7 10310 10693.5 10310 10720.4 10310 10800.9
besstk29 2826 2890.6 2819 3020.9 2818.6 3030.3 2822.5 2927.3
4elt 138.9 138.7 138 138.8 138 138.2 137.8 138.7
fe_sphere 386 390.8 384.2 390.8 385 390.4 385 390.2
cti 318 367.6 318 346.8 325.5 350 324.1 325.3
memplus 6493.8 6562.9 6474.7 6567.1 6621 6712.3 6452.4 6702.6
csd 370.4 390.4 366.7 388.3 364.3 385.5 357.4 381.9
besstk30 6347.6 6398.3 6297.3 6315.6 6258.1 6304.9 6284.1 6307.7
besstk31 2741.3 2845.3 2695.2 2864.8 2683.1 2862.1 2676.1 2874.5
besstk32 4667 4754.7 4667 4703.2 4667 4711.4 4667 4712.4
t60k 80.8 127.1 77.1 112.5 71.6 116 68.6 110.2
wing 801 842.4 799.9 850.5 791.4 838.9 780.5 846
brack2 719.1 722.7 715.6 728.9 716 730.1 670.8 678
fe_tooth 3878.7 4141.6 3850.8 4106.2 3869 4067.6 3863.4 3989.7
200 x 200 1800 2068.3 1800 2076.8 1800 2064.7 1800 2071.5
400 x 400 3528 4578.1 3528 4484 3528 4452.1 3528 4270.8
Tmprogoment | 7-22% 6.35% 8.30% 7.21%

Table 8: Results obtained by running our algorithm with and without LCC.
5 Conclusions and future work

We have presented a new multilevel algorithm for the bisectioning problem for sparse
graphs. The algorithm is based on the general principle that during the coarsening each
vertex may be associated to more than just one aggregate according to some “likelihood”
measure. The uncoarsening initialization, which produces the first bisectioning of the fine
graph nodes, strongly relies on energy considerations (unlike usual interpolation in classical
AMG). This initial bisectioning is further improved by local strict minimization relaxation
and by employing stochasticity, i.e., simulated annealing, which is enhanced by the LCC
procedure. The algorithm suggests a new energy function that reflects the tradeoft between
the bisection problem’s two objectives: the cut minimization and the balance constraint.
In order to get a lower cut size it allows increased imbalance, which is gradually reduced
as the disaggregation proceeds. The running time of the algorithm is linear, thus it can be
applied to very large graphs.
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Except for a special class of graphs in which there exists a subgraph which is strongly
connected within itself, the minimum cost obtained using our algorithm is practically equal
to (and in some cases even better than) the best known results. Furthermore, the average
and standard deviation are lower than the ones achieved by hMETIS (the most popular up-
to-date partitioning algorithm), i.e., our algorithm is less sensitive to the choice of sequences

of random numbers.

To show the advantage of using weighted aggregation rather than strict aggregation
we have constructed a class of graphs in which the global optimum contradicts the local
information. We claimed that any clustering that is “greedy” would usually prefer the
matching of the strongest local connections and thus would fail to find the optimal bisection.
When using weighted aggregation such local connections will only be partially attached and
while taking into consideration more global information the process would finally reach the
optimal bisection. This claim was supported by experimental tests on hMETIS and our

algorithm.

Besides the above positive indications of this preliminary version of our bisectioning

algorithms there still remain a lot of work that could be done:

e Implement the algorithm in a way that minimizes the running time so as to get

comparable running time.

e We mentioned above that the algorithm does not work for a special class of graphs
in which there exists a subgraph which is strongly connected within itself. This
problem arises from an asymmetric coarsening when a heavy vertex always tends to
be a seed and a light vertex tends to be attached to a heavy seed to which it is strongly
connected, while the heavy vertex is only weakly connected to that light vertex. A
possible way to correct this feature is to develop a strategy of combining several light
vertices into a special kind of aggregate that can be compared with “naturally” heavy

vertices.

e Currently, the algorithm uses a simple strict node by node minimization along the
cut line: Given a node ¢ € R which is located along the cut (i.e., there exists some
edge ij such that j € R), the new energy associated with the assignment of i to
region R is then calculated, and if the result is lower or equal to the old energy, the
change is accepted. This could be extended by trying to move each such node and
revise around it, i.e., find out what happens if we moved along with it some of its
neighbors either in this level or possibly on finer levels and only then decide whether

to accept the entire move (similar to the strategy in [10]). It would be interesting to
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check the effect of this generalization on the algorithm. It might explore new possible
bisections.

e Generalize the algorithm to a k-way partitioning.

e Generalize the algorithm to hypergraphs partitioning.
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APPENDIX

Overview of the parameters used by the algorithm

In this section we summarize the setting of all parameters used by our algorithm. We use the
convention that if parameters are set to a fixed value, then that value appears in parentheses

following the parameter’s name.

e imbalance factor; - Used by Equation 3 to calculate En(G;). Its value indicates the
imbalance allowed at the i’th level, as a percentage. At the finest level, it equals to the
imbalance factor given by the user. At any other level ¢ > 0, it equals to the relative volume

of the heaviest node, i.e., imbalance_factor; = max <z’mbalance_ factor, T%/('(:I)) , where v;(;

is the volume of the heaviest node at level 3.

e initial punish _cost(0.10), border_punish_cost(0.02) - These parameters are used to de-
termine the value of p appearing in Equation 3. Namely, p is determined by the requirement
that if the deviation from the imbalance_factor; (see above) equals half of the volume
of one of the heaviest nodes, then the energy will be larger than the cutsize by either
initial_punish_cost or border_punish_cost. More precisely, at each level, before a bisection

is initialized, p is determined by the following equation

0.5-
1 + initial_punish_cost = exp (p- # . 100) ,
0
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where vpq, is the volume of the node with maximum volume. After an initial bisection, p

is determined by

0.5 -
1 + border_punish_cost = exp (p- 20 Umazyorder 100) ,

Vol

where Upmae_border 1S the volume of the node with maximum volume along the cut.

7(2) - Used in Procedure Fix_C_Points. A fine node 7 with a future volume larger than this

factor times the average future volume is automatically added to C.

v(8) - Used in Procedure Fix_C_Points. It indicates the number of compatible GS relaxation

sweeps.

num_groups(3) - Used in Procedure Fix_C_Points. It determines to how many groups to

divide the outcome of the GS relaxation from which the seeds are then chosen.

Q(0.4) - Used in Procedure Fix_C_Points. Fine nodes that have a relative total connection
to C lower than this threshold, are add to C with higher priority.

ro(6) - Used when calculating the aggregation weights. It is the interpolation order used

for the finest level.
R - Used when calculating the aggregation weights. At level L, it equals log(min(1,|Eo|/|EL])).

r - Used when calculating the aggregation weights. It is the interpolation order parameter,

which equals r¢ at the finest level. At any other level L, it has the value 9 + R.

€(0.001) - Used at the end of each coarsening phase: Edge filtering threshold, aimed at
reducing the complexity of the algorithm.

w - Used in the bisections elimination process and when solving the coarsest level. Two
bisections are considered to be different if the relative total volume of nodes in which they
differ is greater than this parameter (Equation 6). At the coarsest level, it equals 0.08. At
any other level ¢ during the bisections elimination process it has a variable value so as to

maintain num_i_solutions (see below).

num_coarse_solutions(40) - Used in the bisections elimination process and when solving
the coarsest level: The number of different bisections chosen from the coarsest level. (Al-
though we fixed it to 40, a perhaps better way would be to choose it proportional to the

original graph size.)

certainty - Used in the process of initialization by layers. Nodes with relative connection
to a region R higher than this parameter are assigned first. It is initialized by 0.95 and
reduced to 0.90.
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num_minimization(10) - Used in the disaggregatoin and in the simulated annealing pro-
cesses. It indicates the allowed maximal number of strict minimization sweeps; i.e., if En

has not been reduced in the last sweep, minimization is aborted.

num_heating_cooling(20) - Used in the simulated annealing process: The number of times

we execute the simulated annealing process.

accept - Used in the simulated annealing process, it indicates the expected percentage of
non decreasing energy moves that will be accepted. It is initialized to 2% at the coarsest
level, then gradually increased by equal increments until it reaches 14% at the finest level.

num _reduce_T(5) - Used in the simulated annealing process, it indicates the number of

times the temperature is being decreased for each heating-cooling iteration.

reduce_T _factor(0.7) - Used in the simulated annealing process: The factor by which the
temperature is reduced at each step of the simulated annealing process.

T(%) - Used in the bisections elimination process: The factor by which the estimated amount

of work is reduced with respect to the former (finer) level.

num _fine_solutions(5) - Used in the bisections elimination process: The maximum number

of bisections that will be propagated to the finest level.

num_i_solutions - Used in the bisections elimination process: The maximum number of

bisections that will be propagated to the ¢’th level:

num_fine_solutions Vi<m

\Eo\-num_]“g%r_solutions Ti_m] Vi>m

num_i_solutions = ) )
min|2 - num_coarse_solutions,

where m = arg maz;(|E;| > 3|Eo|).
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