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Abstract

Clustering is a difficult problem. Clustering data may differ by a vari-
ety of aspects (dimensionality, cluster size, noise, etc), and the criterion
for clustering may depend on the context in which the data is given. We
present a multilevel approach for clustering, easily adaptable to handle
various kinds of data by identifying desired underlying features of the
data. The scheme we present is given a similarity graph, on which we
apply a recursive coarsening process, resulting in a pyramid of graphs
in time that is linear in the number of edges in the graph. The pyramid
provides a hierarchal decomposition of the data into clusters in all res-
olutions, and data points are associated to clusters with soft relations.
We demonstrate the algorithm by applying it successfully to challenging
clustering problems.

1 Introduction

Clustering is the grouping of similar objects together. While the notion of clustering is
intuitively clear, there is no widely accepted definition for the task of clustering, and the
definition may vary between types of data sets, and between algorithms. Clustering is
difficult for a number of reasons. Real-life data may contain clusters of varying size and
shape, whose number is unknown in advance. Noise and outliers can further complicate
the task by connecting separate clusters. Two examples of such clustering data are shown
in Fig. 1.

A large variety of clustering algorithms have been proposed. Most common methods pro-
vide high quality results on a large variety of data sets. Nevertheless, these methods often
return unsatisfactory results when applied to complex, real-life examples. Some methods,
such as k-means [1] can largely only handle clusters of spherical shape. Other methods,
such as average Linkage [2] and spectral methods [3, 4] can better adapt to clusters of
different shapes, but they are more sensitive to noise and outliers, particularly when the
amount of noise is significant. This paper introduces a clustering scheme that addresses
these problems. This algorithm is easily adaptable to handle different types of data sets
and different clustering objectives, and so it successfully solves such complex data sets,
see Fig.1. We present a multilevel graph algorithm for clustering. Given a set of data
points and a distance function between the points, we begin by constructing a similarity
graph, in which each data point is a node, and each pair of nodes are connected by an edge.
We assign weights to the edges, reflecting the proximity between the points. We further



Figure 1:Comparison of our results and other algorithms. The top row is a relatively easy example,
while on the bottom is a more challenging noisy example of three horizontal clouds of changing
densities. From left to right are the original points, our result, k-means, average linkage and self-
tuning spectral clustering.

bound the degree of this perhaps fully connected graph by applying a k nearest neighbors
pre-processing step. Clustering is then defined as finding minimum normalized cut in this
graph [5, 6]. We solve this minimization problem by applying a sequence of coarsening
iterations, where at each iteration a smaller graph is generated. This process yields a hierar-
chy of clusters in all resolutions, where clusters can overlap, and a data point can belong to
several clusters with soft association weights. The coarsening is adaptable to the data and
is designed to faithfully represent the problem with fewer variables, producing an irregular
pyramid of graphs in computing time that is linear in the number of edges. This algorithm
is inspired by algebraic multigrid (AMG) solvers [7, 8, 9] and by the weighted aggregation
algorithm for image segmentation (SWA) [10].

2 SWA Review

The SWA algorithm is a multiscale graph partitioning algorithm. Given an image, it con-
struct a graphG = (V,W ), with nodes inV representing image pixels and the symmetric
edge weight matrixW represents the similarity in intensity between adjacent pixels.

A segmentS is evaluated by a saliency measureΓ(S) =
∑

i<j wij(ui−uj)
2∑

i<j wijuiuj
, whereui is

one if nodei ∈ S, and zero otherwise. The saliency measure sums the weights along the
boundaries ofS normalized by the sum of internal weights. Segments that yield small
values ofΓ are considered salient (excludingS = V and single point partitions).

Allowing arbitrary real assignments tou, the minimum forΓ is obtained by the minimal
generalized eigenvectoru [11], which is in fact equivalent to the normalized cut solution
in [6]. Since this task is intractable with the constraint of discrete assignments ofu [6],
SWA approximates the solution invoking a recursive multilevel process, inspired by AMG
solvers for the eigen problem.

The multilevel framework automatically constructs a hierarchy of decreasing size graphs:
G[0], G[1], . . . , G[S]. At each level, the next smaller graph is created bycoarseningthe
previous one. The coarsest level (G[S]) is solved directly, and finally the solution is un-
coarsened back to the initial graph (G[0]) to yield the graph partitioning. The coarsening
is a process ofweighted aggregationof the graph nodes to define the nodes of the next
coarser graph. The construction of a coarse graph from a given one is divided into three
stages: First, a subset of the fine nodes is chosen to serve as theseedsof the aggregates



(coarse graph nodes). Then the rules forinterpolationare determined, thereby establishing
the fraction of each non-seed node belonging to each aggregate, so that an aggregate rep-
resents a soft partition of fine nodes. Last, the coupling weights of the edges between the
coarse nodes are calculated. This results in an irregular pyramid of graphs. Each desired
segment emerges as a node in the pyramid, and nodes at different levels represent segments
in different resolutions. The un-coarsening is done for each coarse segment to identify the
elements of the finest level that associate to it through the interpolation weights, and thus a
soft relation is obtained between the image pixels and the nodes at each level. We use this
multilevel framework for clustering as follows.

3 The Algorithm: Adaptive Multilevel Clustering

3.1 The Similarity Graph G[0]

The process starts with the graphG[0] = (V [0],W [0]) called thefinest graph, where each
data point is a node. Each node is attached with an edge to each of itsk nearest points,
provided that the node is among its neighbor’sk nearest neighbors, so that the connectivity
degree is bounded byk. The similarity graph is built by a pre-processing step using any
nearest neighbors approximation approach such as [12].

The initial weights of this graph are a function of the similarity between data points, and
adjusted to the type of data in hand. For example, in SWA the resemblance between neigh-
boring pixels is measured by the difference in their intensities, so the weights used are
wij = e−α|Ii−Ij |, whereIi andIj are the intensities of adjacent pixelsi andj, andα is a
scaling parameter. In sets of genes, two genes are considered to relate to the same biolog-
ical pathway if their expression patterns correlate over time or a set of conditions, so their
edge may have the weightwij = |corrij |α, wherecorr is the Pearson correlation coeffi-
cient between the genes’ expression vectors. Yet another example is of data points in an
Rn Euclidian space, whered is the Euclidian distance, and weights can bewij = 1/(d α

ij ),
α is a scaling parameter, enlarged to emphasis smaller distances. In all the experiments
presented here, we have used the latter definition.

3.2 Adaptive Weighted Aggregation by Coarse Level measures

The first step in creating a coarse graph from an existing one is choosing the coarse graph
nodes from the set of the fine nodes. For this, we define anaggregation weightfor each
edgeij denoted byaij , which is a function of the coupling weightswij . The aggregation
weights are used to choose the coarse nodes and establish the relations between the coarse
and fine nodes. The simplest definition of the aggregation weights is byaij = wij , and
we will present other constructions later, suitable to different clustering problems. The
criterion for choosing the coarse nodes also depends on this choice of aggregation weights
and will be elaborated on later as well (see Sec.3.3).

The set of coarse nodesC and its complement, denoted byF are constructed so that each
F -node is ”strongly coupled” by the aggregation weights to the nodes in C. As a result, the
coarse graph represents the fine graph with respect to the clustering objective.

Each nodek in the chosen setC becomes the seed of an aggregate that will constitute the
J(k)-th, say, coarse level node (that is,J(k) denotes its ordinal number among the nodes of
the coarse level). The classical AMG interpolation matrixP (of size|V | × |C|) is defined
by

piJ(k) =

{
aik/

∑
l∈C ail, for i ∈ F

1, for i = k
0, for i ∈ C, i 6= k.

(1)



piJ(k) represents the likelihood of nodei to belong to thek-th aggregate, and
∑

k piJ(k) =
1. For simplicity of presentation we denotepiJ(k) by pik. It is also advisable to remove
very small interpolation weights (typicallyp < 0.2), to reduce the complexity of the com-
putations, but for not more than20% of interpolations per node, to prevent loss of informa-
tion. (After any removal of interpolation weights, they are re-normalized so as to satisfy∑

k pik = 1 for eachi ∈ V ).

The final stage sets the edge weights of the coarse graph. For two coarse nodesk and l,
their coupling weight is set bywkl =

∑
i<j pikwijpjl, (wherewij is a weight in the fine

graph andwkl in the coarse).

The aggregation weights affect the choice of seeds and the interpolation weights. When
definingaij = wij the above procedure is adequate for many problems, like in image seg-
mentation [10, 13], linear ordering problems [14] and simple clustering problems when
the clusters are well separated. However, for more complex problems such as texture seg-
mentation, or as in Fig.1, where clusters are separated by areas of vast noise and outliers,
relying only on the coupling weights does not yield the desired result as seen in Fig.2, since
the couplings are based only on the distance between points and do not hold information
about other properties such as density or shape.

We overcome such situation by calculating specific properties for nodes and edges, based
on existing pre-knowledge of the data. We then incorporate these properties into the ag-
gregation weights. In many multilevel applications different properties are often used in
various ways, to gather relevant statistics on emerging aggregates, and are calledcoarse
measures, e.g. in texture segmentation [11] and in Manifold Identification in 2D and 3D
[15]. Here, we incorporate coarse measures into the aggregation weights to allow the cor-
rect clustering already during the bottom-up process. Although the choice of what to incor-
porate into the algorithm is done in a supervised way, the aggregation itself is unsupervised.

Coarse node measuresare initialized at the finest level, and recursively aggregated per
node through the interpolation weights without increasing the complexity. For example,
the volume of nodeυi in the finest level is one, and at coarse levels is calculated byυk =∑

i∈V pikυi.

First we give some motivation for the coarse measures we use. Since noise often mani-
fests in sparser neighborhoods than the underlying ”real” data, we would like for points
in sparse neighborhoods to more likely be chosen as coarse, until all other denser areas
have finished their aggregation. To control this we calculate the density of a node as a
coarse level measure, and weaken the weight between nodes whose density differs. More-
over, distant clusters become strongly coupled through stretches of noise between them and
wrongly aggregate together, as is often the case in other algorithms. We would weaken this
effect to allow segments of a cluster to aggregate together before the noisy patches attach
to them and corrupt the aggregation. This is done by calculating the ”true” distance be-
tween clusters, not influenced by the sparse noise between them. We can so overcome even
extreme noise between overlapping clusters. Fig.2 shows the effect with and without the
use of adaptive aggregation weights.

To capture the feature of density of emerging nodes, we define the coarse node measure of
sparsity. The sparseness of a node in the finest graph is itstypical average distance(first
used in [15]) given byρi =<dij >; that is, the mean of the distances to its nearest neigh-
boring points (we use6 neighbors in the experiments shown). This measure resembles the
inverse of the local density, in the sense that lowerρ implies lower local sparsity, i.e. larger
density.

At coarser levels we define the sparseness of a coarse nodek by ρk =
∑

i pikρivi∑
i pikvi

, wherei

is a fine node connected tok through the interpolationpik.



Figure 2:The effect on the aggregation with and without the adaptive aggregation weights. On the
left is the clustering at level7. Notice cluster number12, its coupling and aggregation weights to
nodes1,2 and10 are given in the table on the right and explain the results achieved when using each
of them. In the middle is the result using the coupling weights, which undesirably aggregate node12
to 1, and on the right is the correct result, obtained by using the adaptive weights defined in Eq.3.

Next, we define acoarse edge measure, which will allow measuring distances between
clusters at coarse levels. TheCommon Borderdenoted byc: At the finest level, for every
two nodesi andj that share an edge, their border iscij = 1. For two coarse nodesk and
l sharing an edge we defineckl =

∑
i<j pikcijpjl, representing the weight of the border

between the nodes.
Normalized Couplingsdenoted byw̄: At the finest levelw̄ = w, and between two coarse
nodesk andl, w̄kl is calculated by

w̄kl =

(∑
i<j pik(w ξ

ij )pjl∑
i<j pikpjl

) 1
ξ

, (2)

wherei andj are fine nodes, andξ > 0 is a parameter. This is actually a normalization
of the coupling weightsw. It can be controlled so that a large number of small valued
interpolations would not overtake the coupling value: their effect is weakened by increasing
ξ. Thusw̄ reflects the true relations between coarse nodes. Notice that the inverse ofw̄
corresponds to the distance between sub-aggregates. However, it does not always represent
the real distance between aggregates, since it may be biased by noise. To measure the real
distance we define another coarse edge measure denoted byd̂. It is similar to the previous
measure but normalized by the common border, to prevent patches of noise to bias the

distance,̂dkl =
(∑

i<j pik(w ξ
ij )pjl

ckl

)− 1
ξ

.

The three above aggregative edge measures and the sparseness property of a node are com-
bined to define theaggregation weights, denoted bya,

akl = w̄ α
kl · e

−γ1
|ρk−ρl|
ρk+ρl · e−γ2

d̂kl
(ρk+ρl) (3)

α, γ1 andγ2 are parameters. In words,akl is a function of the normalized coupling between
nodes, weakened by two factors. The first exponent weakens the weight if the nodes’
ρ differs, and the second exponent weakens the weight if their global distance is large
compared to their difference inρ. α is set as before to re-scale the aggregated distances
if necessary, emphasizing smaller distances (and larger couplings).γ1 is enlarged in order
to capture even small changes in density, andγ2 is enlarged to strengthen the effect of the
distance on the aggregation weight. Consequently, the aggregation weights would be larger
for adjacent nodes with similar density, enforcing them to aggregate first by the procedure
in the following section.

The adaptive weighted aggregation can be adjusted to follow other properties of the data by
calculating the relevant coarse measures, and modifying the aggregation weights accord-
ingly.



3.3 Choosing the coarse nodes

We use the aggregation weights to choose the seeds as follows. We start with an empty set
C, henceF = V , and then sequentially transfer nodes fromF to C. Nodes with smallρ
(high density) are considered first. We transfer nodes until all remainingi ∈ F satisfy∑

j∈C

w̄ij>δs

aij/
∑
j∈V

w̄ij>δs

aij ≥ Q. (4)

whereδ is a threshold dependent on the levels. For simple data where clusters are expected
to be well separated, and weights inside a cluster much stronger than between clusters, we
can consider all the edges, and setδs = 0. For noisy data however, we letδ0 be a user
defined parameter, and reduce it byφ at each level, soδs = δ0/φs up to some predefined
levels′. Fors > s′ we setδs = 0, so that from this level on all edges are considered. Thus
only relatively strong weights are used at the low levels to determine the seeds. As a result,
in low levels the sparse nodes will have a smaller fraction on the left hand side of Eq. (4),
and will be more inclined to be chosen as coarse, instead of attaching themselves pre-
maturely to the denser aggregates and corrupt the entire aggregation. A future approach to
controlδ automatically is to pre-process the weights of the original graph into a histogram,
and at each level defineδ so as to include increasing number of bins of the histogram.

3.4 Controlling the Aggregation Order

For data of clusters of different sizes, the small ones often finish their aggregation first,
then attach prematurely to others, corrupting the clustering result. We can detect this situ-
ation noticing that an object has not finished its aggregation if it still has relatively strong
couplings (or aggregation weights) to other nodes.

To identify this, we look at every nodej ∈ F (i.e. nodes that wherenot chosen as coarse),
and examine its interpolation valuespjk. High interpolation indicates premature attachment
to a coarse node only if that coarse node has much stronger connection to any other node.
So for anypjk ≥ τ , if there existsl ∈ C, l 6= k such thatalk � ajk (e.g.10 fold) then
pjk is replaced by0 (i.e., removed). After all the relevant interpolation weights have been
removed, the rest are re-normalized such that

∑
k pjk = 1 for everyj. In addition, if by

the end of this process a node remains disconnected to all coarse nodes, it becomes coarse
itself. τ was typically0.5 in the experiments shown in the results section. The process can
be repeated in iterations, but in the reported experiments one iteration, and only in each
of the few last coarse levels, suffices. In any case, a final iteration determines the final
interpolation weights also to the new coarse nodes.

3.5 Aggregative Interpolation

This operation looks at the interpolation weight from a certain coarse node as determined
by the entire corresponding aggregate, not just by its seed. The goal is to correct the
situation where a fine node finds itself in a different aggregate than most of its coupled
neighbors. Thus we allow for nodes to strengthen or weaken their affinity to coarse nodes
based on the majority decision of their neighborhood. This is achieved by calculating a

new interpolation weightp new
ik =

∑
j wijpjk∑

l

∑
j wijpjl

, wherej runs over all fine nodes coupled

to i, andl over all coarse nodes interpolated toi. We run this process in iterations, usually
two iterations per level suffice.



3.6 The Final Clustering Solution

The results of the aggregation process is an irregular pyramid of graphs. Each desired
cluster will emerge as a node in the pyramid, and nodes at different levels represent clusters
at different resolutions. For each desired cluster we identify the elements of the finest level
that associate to it through the interpolation weights by a single top-down sweep of the
pyramid, and thus obtain a soft (fuzzy) relation between the original elements and the
clusters.

4 Complexity

Given a distance matrix as input, the bottom-up aggregation algorithm is linear in the num-
ber of edges. The number of edges depends on the number of neighbors (k) we define for
each node, and so we bound the number of neighbors per node byk = 0.1N (10% of the
size of the data), and usually use much less (k = 10). Calculating the nearest neighbors
may suffer from the curse of dimensionality, and can be approximated by several method
(e.g. [12] in O(k · dim · logN) time per node).

5 Experiments

We tested the clustering on several data sets, including synthetically generated data and
real-life data. Given the bounded similarity graph, the typical running time for a graph of
7700 nodes of bounded degree20 is less than a minute using an un-optimized code.

Iris Data This data set due to Fisher (1936) (obtained from UCI [16]), contains 3 classes
of iris plants, of 50 instances each. One class is linearly separable from the other two, while
the others aren’t. Dubnov et al. [17] correctly classify 124 samples, and compare their re-
sults to Blatt et al. [18] who classified correctly 125 samples by the Super-Paramagnetic
Clustering (SPC) algorithm, and report that their result is the second best after the Mini-
mum Spanning Tree (MST) algorithm that achieves perfect classification on this data.

We correctly classify 146 of the data points using only the non-adaptive coupling weights.
This makes our result the second best after the MST. To determine the final classification
from our clustering algorithm, we assign a sample to the cluster whose interpolation value
to it exceeds0.5. At the coarsest level we get two clusters, one of all the iris-setosa plants,
and the other of all the rest, which decomposes at the next level into two clusters, each of
48 plants of the same kind, and two plants of the other kind.

Figure 3:Results as a dendrogram.

Hierarchical clustering of Image Silhou-
ettes We received the database of silhouettes
of objects, and the dissimilarity between every
two objects from Gdalyahu and Weinshall [19].
The data contains 90 silhouettes of 6 different
objects (toy, cow, wolf, hippopotamus, 2 cars and
a child) each at 15 different tilts and pans. The
dendrogram on the right displays our clustering
result. All objects were correctly classified at
level three, and aggregated into 3 clusters at the
top level: the group of animal, the cars, and the
children.

2D clouds of changing densities and noiseWe randomly generated several synthetic
data sets. Each is a sampling of points in 2D from specific distributions, allowing to test the
performance of the algorithm in cases of changing densities, noise and different geometric



shapes in space. Figure4 summarizes the results.

Figure 4:Our clustering results on different shapes and increasing difficulty. From left to right:600
pts with similar densities.800 pts in crossing lines differ by their density.2400 pts of two circles
connected by sparser filaments.7700 pts uniformly distributed around different radii.7700 pts of
closer circles.4800 pts normally distributedN(r, 0.25) aroundr = 1, 2, 3. Each cluster is drawn
with a different color, and black′×′ marks points whose association is not determined since they
belong equally to more than one cluster.
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