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1 Path Integrals

1.1 The basic setup

The path integral approach was introduced by Feynman in his seminal paper (Feynman, 1948). It provides

an alternative formulation of time-dependent quantum mechanics, equivalent to that of Schrödinger. Since

its inception, the path integral has found innumerable applications in many areas of physics and chemistry.

The reasons for its popularity are numerous. First, the path integral formulation offers a straightforward

way of obtaining the classical limit of quantum mechanics. In addition, it provides a unified description

of quantum dynamics and equilibrium quantum statistical mechanics. Finally, it avoids the use of wave

functions and thus is often the only viable approach to many-body problems.

The path integral formulation builds on the principle of superposition, which leads to the celebrated

quantum interference observed in the microscopic world. Thus, the amplitude for making a transition be-

tween two states is given by the sum of amplitudes along all possible paths connecting these states in the

specified time. Specifically, the amplitude to get from a [vector valued] position xa at the time ta to the

position xb at the time tb is expressed, in the path integral formulation, as a sum of contributions from all

conceivable paths that connect these points. The contribution of each path x(t) is proportional to a phase

that is given by the action functional S[x(t)] along that path in units of Planck’s constant h:

K(xa, ta;xb, tb) ∝
∑

x(t)∈C([ta,tb])

x(ta)=xa,x(tb)=xb

exp{iS[x(t)]/h} (1)

In practice, the paths are discretized using the Trotter theorem (Trotter, 1959), leading to the following
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approximate path integral expression for the propagator:

K(xa, ta;xb, tb) =
(

mn
2πih(tb−ta)

)

∫

dx1 . . .
∫

dxn−1

× exp
{

i
h

mn
2(tb−ta)

∑n
k=1(xk − xk−1)

2 − i
h
tb−ta

2n

∑n
k=1 [V (xk) + V (xk−1)]

}

, (2)

which becomes an equality in the limit n→ ∞. The exponent in the last expression is easily recognized as

the trapezoid rule discretization of the action in Eq. (1).

Because the quantum mechanical time evolution operator exp(−iH(tb − ta)/h) has the same mathe-

matical form as the Boltzmann operator ρ = exp(−βH), where β = (kBT )−1 is the inverse temperature in

units of the Boltzmann constant kB , the above path integral formalism can be straightforwardly generalized

to yield equilibrium properties in the canonical ensemble (Feynman, 1972). Making the formal identifica-

tion tb − ta = −ihβ, the canonical density matrix is given by the following “imaginary time” path integral

expression:

ρ(xb, xa) = 〈xb | exp(−βH) | xa〉 = limn→∞
(

mn
2πh2β

)n/2 ∫

dx1 . . .
∫

dxn−1

× exp
{

− mn
2h2β

∑n
k=1(xk − xk−1)

2 − β
2n

∑n
k=1 [V (xk) + V (xk−1)]

} (3)

Although identical in structure to Eq. 2 for the real time propagator, the path integral representation of

the canonical density matrix involves a real-valued integrand, in which different paths enter with different

weights. These features are extremely useful in numerical calculations as discussed in the next section.

In addition to calculation of purely dynamical quantities using the real-time propagators on one hand,

and the equilibrium calculations using the imaginary-time expressions just described, path integrals can also

be used to compute thermally averaged quantum time correlation functions (Thirumalai and Bern, 1983) and

thus information about dynamical effects at finite temperature. It is often convenient from a computational

point of view to express a time correlation function GAB(t) in a symmetrized form (Thirumalai and Bern,

1984) by introducing the complex time tc = t− ihβ/2:

GAB(t) = Tr[A exp(iHt∗c/h)B exp(−iHtc/h)], (4)

where A and B are quantum mechanical operators. The complex-time propagators appearing in Eq. 4 can

be also represented using path-integrals similar to Eq. (2) and (3).

To summarize, many quantum mechanical problems can be reduced to a calculation of the path integrals

of the form:
∫

dx1 . . .

∫

dxn−1A(x̄) exp
{ i

h

m

2δ

n
∑

k=1

(xk − xk−1)
2 −

i

h

δ

2

n
∑

k=1

[V (xk) + V (xk−1)]
}

, (5)

where:
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• for real-time propagator, δ = tb−ta
n

• for equilibrium calculations, δ = −ihβ
n = ih

kBTn

• for symmetrized thermally averaged quantum time correlation functions, δ = t−ihβ/2
n

Within the path integral formulation, identical particles are dealt with by adding (or subtracting) the ap-

propriate amplitudes corresponding to particle permutations in a way similar to that employed in the sym-

metrization (or antisymmetrization) of wave functions. This procedure introduces negative amplitudes in

finite temperature calculations of many-fermion systems, leading to significant numerical difficulties, which

are addressed below.

1.2 Numerical methods

1.2.1 Equilibrium properties

The discretized path integral expression of the canonical density matrix leads to extremely useful numerical

algorithms for evaluating finite temperature properties of many particle spinless or boson systems not treat-

able by other techniques. The required multidimensional integrals are evaluated by Monte Carlo methods,

which have been reviewed extensively elsewhere (see e.g., (Ceperley, 1995)). Here we outline the gen-

eral features of such calculations, using as an example the Boltzmann average of a quantum mechanical

operator A:

〈A〉 =
Tr( exp(−βH)A)

Tr( exp(−βH))
=

∫

dx〈x | exp(−βH)A | x〉
∫

dx〈x | exp(−βH) | x〉
(6)

Assuming that the operator A is diagonal in the coordinate representation and using the path integral repre-

sentation (3) of the canonical density matrix, the expectation equals to the limit:

〈A〉 = lim
n→∞

∫

dx1 . . .
∫

dxnW (x1, . . . , xn)A(xn)
∫

dx1 . . .
∫

dxnW (x1, . . . , xn)
, (7)

where

W (x1, . . . , xn) = exp
{

−
mn

2h2β

n
∑

k=1

(xk − xk−1)
2 −

β

2n

n
∑

k=1

[V (xk) + V (xk−1)]
}

(8)

Here x0 = xn, that is, the paths involved in the integrals are closed.

The weight function W is positive and, consequently, the ratio of the two integrals above can be cal-

culated with Monte Carlo methods using sampling distribution proportional to W . Note that successive

variables (xk−1, xk) are correlated under W , hence some sort of collective coordinate moves are needed in

order to achieve rapid convergence. A variety of methods for improving the sampling efficiency have been

proposed in the literature, the most effective being the multilevel sampling (Ceperley, 1995).
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The approach outlined above can be easily generalized to bosonic systems, by augmenting the variables

x1, . . . , xn with a permutation σ(x1, . . . , xn) and integrating over the augmented space. However, when

dealing with fermions severe problems arise. As configurations corresponding to identical particle exchange

enter with alternating signs, the integrand is no longer positive and the Monte Carlo procedure must be

modified. Although positive sampling functions can still be identified, the frequent sign change causes

dramatic cancellation and eventually renders Monte Carlo methods unstable. This behavior, known as the

“sign problem”, continues to plague quantum Monte Carlo simulations of many-electron systems. The

Systematic Upscaling approach, described in the following, deals with the sign problem by absorbing the

sign effect into the propagator at the time scales where this effect becomes visible.

1.2.2 Dynamical properties

Unlike finite temperature equilibrium properties of spinless or boson systems, which can be evaluated ef-

ficiently by Monte Carlo path integral methods, dynamical quantities present a considerable challenge. As

all paths carry a complex weight with unity modulus, one needs to sample the entire volume of integra-

tion uniformly and importance sampling does not offer an advantage. Most importantly, the rapid phase

oscillation of the integrand results in enormous cancellation, which cannot be dealt with by Monte Carlo

procedures. This behavior is yet another manifestation of the sign problem and hinders dynamical path

integral calculations.

The situation can be improved, for example, by constructing improved propagators which employ ap-

propriate projection operators (Makri, 1991) or bias the sampling near classical paths, where the phase is

stationary and therefore phase cancellation is minimal (Filinov, 1986; Makri and Miller, 1987; Doll and

Frreeman, 1988). These schemes lead to path integral expressions where the integrand is relatively local-

ized and only mildly oscillatory with respect to each path integral variable. However, the effect of the

residual oscillations (which are essential for reproducing quantum interference effects) is amplified in mul-

tidimensional space, leading to dramatic cancellation, which renders Monte Carlo schemes inadequate for

calculating the dynamics beyond a few time steps. The methods described above can be also applied in

the context of thermally averaged quantum time correlation functions, but as the number of the time steps

increases, the cancellation effects become destructive, similarly to the real-time propagation.

Let us finally note that including the fermionic effects further increases the sign problem, making the

calculation unstable even for a moderate number of time steps.
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2 Research motivation

2.1 The scale gap

The difficulties described above are a particularly pronounced example of a much more general problem

plaguing many areas of scientific computation. This problem is the scale gap between the microscopic

level, at which the mathematical description is given and the much larger scale of phenomena we wish to

understand. For example, in Eq. (2), the long-time quantum propagator is expressed as a product of the short-

time propagators. This introduces a huge number of new variables (e.g., coordinates of the intermediate

points), whereas, in fact, we are only interested in the relation of the end-points.

The multiple particle systems exemplify another aspect of the scale gap - the “microscopic description”

entails some combination of numerous single-particle descriptions, whereas in practice we are commonly

interested not in the effect of each particular particle, but rather in a much higher-level description, such as,

for example, electronic density (Kohn and Sham, 1965), in which averaging over the individual particles

and/or their permutations is taking place.

In addition to introduction of a huge number of microscopic variables and possibly even a much larger

number of interactions (e.g., one force between every pair of particles), one has to deal with some purely

computational problems. Specifically, computers simulate physical systems by moving few variables at a

time; as a result, each such move must be extremely small, since a larger move would have to take into

account all the motions that should in parallel be performed by all other variables. Such a computer simula-

tion is particularly incapable of moving the system across large-scale energy barriers, which can be crossed

only by a large coherent motion of many variables. These obstacles make it impossible to carry out realistic

calculations of the properties of elementary particles, atomic nuclei, etc., or, in other words, to comput-

erize chemistry and materials science, so as to enable the design of materials, drugs and processes, with

enormous potential benefits for medicine, biotechnology, nanotechnology, agriculture, materials science,

industrial processing, etc. With the computational methods currently in use, the needed amount of computer

processing often increases so steeply with the problem size, that in many cases even much faster computers

will not do.

2.2 Multigrid methods

Past studies have demonstrated that scale-born slowness can be overcome by multiscale algorithms. Such

algorithms have first been developed in the form of fast multigrid solvers for discretized PDEs (Brandt,
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1977; Brandt, 1982; Hackbusch, 1985; Briggs et al., 2000; Trottenberg et al., 2000). These solvers are

based on two processes: (1) classical relaxation schemes, which are generally slow to converge but fast to

smooth the error function; (2) approximating the smooth error on a coarser grid (typically having twice

the meshsize), by solving there equations which are derived from the PDE and from the fine-grid residuals;

the solution of these coarse-grid equations is obtained by using recursively the same two processes. As a

result, large scale changes are effectively calculated on correspondingly coarse grids, based on information

gathered from finer grids. Such multigrid solvers yield linear complexity (solution work proportional to

the number of unknowns). Moreover, since the local processing (relaxation, etc.) in each scale can be done

in parallel at all points of the domain, the multiscale algorithms, based on such processing, proved ideal for

implementation on massively parallel computers.

In many years of research, the multigrid methodology has been extended to cover most major types of

linear and nonlinear large systems of equations appearing in sciences and engineering. The new develop-

ments include, for instance, grid-free solvers, called algebraic multigrid (AMG; see (Brandt et al., 1982;

Brandt, 1986; Ruge and Stüben, 1987)), non-deterministic statistical mechanics problems ((Brandt et al.,

1986; Goodman and Sokal, 1986; Brandt, 1992; Brandt et al., 1994)) and multiple coarse-level representa-

tions (Brandt and Livshits, 1997).

To obtain even further generality, there emerged however two basic reasons to go much beyond these

multigrid methods. First, they do not perform well for highly nonlinear cases, where configurations

cannot be decomposed into weakly-interacting local and non-local parts. Second, for many systems, even

linear complexity is not good enough, since the number of variables is huge. Such systems on the other hand

are typically highly repetitive, in the sense that the same small set of governing equations (or Hamiltonian

terms) keep repeating itself throughout the physical domain. This opens the way to the possibility of having,

at the coarse level too, a small set of governing equations that are valid everywhere, and that can be derived

from fine-level processing conducted only in some small representative “windows” (see below).

These two basic reasons point in fact in the same direction. Instead of relaxing the given system of

equations so as to obtain a smooth error that can be approximated on a coarse level, one should use coarse

level variables that represent the full solution rather than the correction to any given current approximation.

Such coarse variables can be chosen (as described below) so that the coarse-level equations can be derived

just by local processing. We use the term “upscaling ′′ for this type of direct (full-solution) transition from

a fine level to a coarser one. Such a transition is valid even in those highly nonlinear cases, where all scales

interact with each other so strongly that correction-based multileveling is inapplicable. These include, for
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example, an Ising spin model (Brandt and Ron, 2001), simple fluids (Brandt and Ilyin, 2001) and polymer

models (Bai and Brandt, 2000; Bai, 2004).

In the following we generalize these ideas under a single methodological approach named Systematic

Upscaling.

2.3 Systematic Upscaling (SU): An outline

Local equations and interactions. Computationally, we deal only with discrete systems; their n variables

x1, x2, . . . , xn will typically be either values of discretized functions or locations of particles. An equation

or interaction is called local, if it involves only O(1) neighboring variables. In the following, we limit the

discussion to the case of local interactions, as those appearing in Equation (5), although generalization to the

non-local case is possible. Also the discussion is restricted to the stochastic problems, with the deterministic

ones being regarded as a zero-stochasticity limit.

Coarsening. Similarly to multigrid, SU is based on two processes: The usual local processing (using

appropriate Monte Carlo method) and repeated coarsening, creating increasingly coarser descriptions of

the same physical system. At each coarsening stage, to each fine-level configuration x = (x1, . . . , xn) one

defines a unique coarse-level configuration, denoted by xc = (xc1, . . . , x
c
m), which is a vector with a reduced

number of variables.

Interpolation. To any given coarse configuration X = (X1, . . . , Xm), there are of course many fine-

level configurations x, which are compatible with X . The interpolation (transition from X to a specific

configuration x) is created by compatible Monte Carlo (CMC), that is by a local processing, restricted to

configurations compatible with X . The interpolation is completed once the CMC has reached its equilib-

rium.

The general coarsening criterion. The fine-to-coarse transformation x → xc (and, in particular, the

choice of coarse variables) is said to be adequate if (and only to the extent that) the compatible Monte Carlo

equilibrates fast.

A major problem in coarsening any system is to find a suitable set of coarse variables. The above

criterion gives a general and very effective tool for developing such a set. The adequacy of that set im-

plies essentially local dependence of the configuration only on coarse variables, and hence the feasibil-

ity to construct, just by local processing, a set of coarse interactions, that is, a Hamiltonian-like func-

tional of the coarse variables, H c(xc), that will govern simulations at the coarse level, namely, such that

Prob(xc) ∝ exp(−Hc(xc)).
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The actual derivations of such a coarse functional H c is done by expressing Hc in the form
∑

ajH
c
j ,

where Hc
j are simple known local interactions and aj are to-be-determined coefficients. Similarly to the

group renormalization techniques (Wilson, 1983; Fisher, 1998), the coefficients are found by iterative com-

parisons of a sequence of averages (such as < H c
l >) calculated through simulations on the coarse level

with corresponding averages calculated at the fine level. The comparisons also suggest what new interac-

tions Hc
j should be added to Hc to obtain better agreement (as in our work on upscaling polymer models

(Bai and Brandt, 2000) described also in (Brandt, 2001)). Our previous experience suggests that the errors

introduced in the Systematic Upscaling of a system are fully controllable; as the number of terms H c
j in

the coarse functional increases, the errors typically decay exponentially, whereas the amount of invested

computation increases only algebraically.

In highly repetitive systems (defined above), the local processing need not be done everywhere: the

coarse-level equations can iteratively be derived by comparing coarse-level with fine level simulations,

where the latter are performed only in some relatively small windows (subdomains, on the boundaries of

which the fine level is kept compatible with the coarse level). New separate windows need only be opened

at regions of different regional conditions (i.e., such that simulations in one region are not likely to sample

local situations encountered in the other region).

In particular, separate windows should be opened at different attraction basins of the investigated sys-

tem. By building a common Hamiltonian (through adding to H c terms sensitive to changing the basin),

the possibility for easy Monte Carlo transition between the basins will emerge at coarser levels, enabling

accurate statistics of their relative probabilities.

Thus, the fine level simulations supply the operational rules (the Hamiltonian-like functional) for the

next coarser level, while the latter supplies the windows for those simulations. Iterating back and forth

between all the levels quickly settles into a self-consistent multilevel compatibility. If the coarsening ration

n/nc is not large, no slowdown should occur, and, at each level, the computations need extend only over a

collection of representative windows, whose number depends on the diversity of regional conditions, not on

the size of the problem.

Long range interactions (e.g., between electrostatic charges) can each be decomposed into a smooth

interaction and a local one (“smooth” and “local” being meant on the scale of the next coarse level; all

familiar physical interactions can be decomposed this way (Brandt, 1991)). The smooth part can directly

be transferred to the coarse level (e.g., smoothness allows accurately replacing the fine-level electrostatic

charges by aggregated charges and dipoles), while the local part is coarsened, together with all other local
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interactions, using the fine/coarse iterations described above.1

The SU approach produces a direct macro-level description of the system in question. That is, it leads

to a formulation of new “physical laws” (such as H c) describing the physical phenomena of interest on

the scale of interest. Upscaling does not solve an isolated problem, but derives coarse equations for a wide

family of situations. When needed, the family is enlarged by opening new windows. The upscaling accuracy

can be fully measured and controlled by comparing the fine and the coarse level averages of a sequence of

test functionals for each pair of successive levels.

2.4 Related work

The very idea of using multiscale methods in the context of path integral calculation is not entirely new. Be-

low we review some important contributions in this directions and discuss their limitations and differences,

as compared to the “Systematic Upscaling” paradigm.

First, within the MG community, several multigrid Monte Carlo methods have been proposed in the

past (Mack and Pordt, 1985; Goodman and Sokal, 1986; Brandt et al., 1986; Brandt et al., 1994). Indepen-

dently, Ceperley and co-workers have developed the “multilevel sampling” (Ceperley and Pollock, 1986;

Ceperley, 1995; Ceperley, 2003). This approach uses a multilevel trial distribution, which is incorporated

in the Metropolis-like Monte Carlo update. The trial paths are generated using a “bisection method”, which

first generates new midpoints for paths and then new midpoints for remaining halves and so on, with the

possibility of rejecting the new paths at any stage in the construction. The bisection method insures that

the improbable paths may be rejected at an early stage of their construction, hence allowing many more

trial moves for a given amount of computer time. The rejection step ensures that the accepted paths reflect

the correct density matrix. The conditional distribution of the midpoint is approximated by a multivariate

Gaussian, whose parameters are chosen to approximate the moments of the exact conditional distribution.

While producing some impressive results, the multiscale sampling suffers from an inherent drawback, stem-

ming from the reliance on the Gaussian approximations - clearly if the conditional distributions are not well

approximated by Gaussians, the algorithm will loose its effectiveness.

A different approach was employed in (Janke and Sauer, 1993), where a unigrid version of MG algorithm

was implemented for the φ4 model. While not relying on approximations, the unigrid implementation (i.e.,

1The advantage of such a smooth decomposition is that fine scale MC movements can be designed (distributive movements, as

in (Brandt and Lubrecht, 1990)), such that they are hardly affected by the non-local part. As a result, only rare rejections will occur

when the result of a series of fine-scale MC movements is subjected to a coarse level Metropolis test to obtain the exact detailed

balance.
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actually performing the fine-level moves corresponding to the coarse-level moves) can be quite demanding

computationally for problems of considerable size. It is important to note that, in the cited article, the

authors were forced to use the unigrid approach, since they had no way to directly estimate the coarse level

Hamiltonian. Automatic construction of such estimates is at the core of the SU methodology described in

Section 3.

While the two methods cited above did make some use of the multigrid methodology, the final calcu-

lation was still performed on the finest level. Though beneficial for bosonic imaginary-time path integrals,

where those methods allow to reduce the sampling slowdown, they are not particularly useful for fermionic

imaginary-time and general complex-time path integrals, where the main problem is the sign-cancelation.

A different approach, which is closer in spirit to the SU methodology, is the “multilevel blocking”

algorithm (Mak and Egger, 1999). In this method, the final calculation is transferred to the coarsest level by

“integrating out” the intermediate points in a multiscale manner. The crucial part is the exact mechanism for

carrying out this integration - in the multilevel blocking, the integrals are approximated by weighted Monte

Carlo averages based on a large fine-level sample. This point is, in our view, the main limitation of the

multilevel blocking, since it could be expected that the number of the fine-level points used for “integrating

out” should scale exponentially with the number of particles involved, hence making the method unsuitable

for any, but really small problems.

The SU methodology described next bridges the gap between the methods based on parameterized ap-

proximations (as in “multilevel sampling”) and the “non-parametric” methods like the “multilevel blocking”.

The solution is the use of flexible extensible semi-parametric approximations, which allow high-accuracy

estimates, while maintaining reasonable computational costs.

3 Systematic Upscaling for Path Integrals

3.1 The Multiscale Structure

The general SU principles surveyed above can beautifully be adapted to path integrals, including even the

more difficult case of real-time path integrals of fermions, which we outline next.

The starting point of our methodology is the existence of natural multiscale structures in the problem.

First, obviously, the time dimension has a natural scale hierarchy, with the time step size as a scale parameter.

The fine level steps are short enough to facilitate the use of the trapezoid rule in Eq. 5, and the coarsening

amounts to increasing (e.g., doubling) the time step.
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The coarsening of the time step could be accompanied by spatial coarsening, because at long time

intervals individual particle location (or pointwise phase values) are hardly correlated. A natural spatial

coarsening is by Gaussian averaging of particle locations, forming a weighted aggregation of the paths. As

shown in (Filinov, 1986), such an averaging (without which the path summations are not even well defined)

integrates over many mutually canceling contributions of neighboring paths and produces a real and positive

weight for each aggregated path (similar to W (x) in (5)). These weights, which correctly locally prefer

paths closer to the classical one, make the system suitable for Monte-Carlo simulations that can be used for

the SU local processing. It can be shown that the width of the Gaussian should increase proportionally to

the time step in order to maintain the temporal locality of the interactions.

What is missing in (Filinov, 1986) and other related works are the multiscale aspects of the spatial av-

eraging. In fact, Filinov’s procedure can be regarded as a one-step coarsening, whereas in SU we develop

the underlying ideas to their full realization in a truly multiscale manner. With each additional time-step

coarsening, further corresponding averaging of paths takes place. Due to the possibility of restricting the

derivation of coarsening to representative windows at each level (see below), it can be done purely numer-

ically. It is worth noting that the restriction to one-step coarsening was not the only reason for the very

modest performance of the previous approaches. A more serious limitation of these methods was the use

of the analytical approximation to the coarse-level functional, which requires sufficiently small averaging

width, in order to maintain reasonable approximation accuracy. In SU this limitation is alleviated by the

numerical approximation methodology described above.

We will apply the general coarsening criterion cited above to design at each level an adequate set of

variables. As noted in (Makri and Miller, 1987), one should not limit the averaging only to the path in-

termediate points x1, x2, . . . , xn−1 , but also to the end points taking into account the initial (final) wave

function Ψ(x0) (Ψ(xn)). However, for problems with pronounced momentum (e.g., nearly classical par-

ticles), using this position-space averaging introduces spurious correlations, hence destroying the locality

of the interactions. A more intelligent coarsening is obtained, if one uses coherent-states representation

of the path-integral (Klauder and Skagerstam, 1985) and performs coarsening by Gaussian averaging in

the combined position-momentum space. For simplicity, this type of situation is ignored in the description

below.

At coarser levels, other types of variables will enter. Before discussing that, however, it is important to

state the effectively local nature of upscaling here. At each level l the description will be given as an integral
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of the form

〈A〉 =

∫

dx
(l)
0

∫

dx
(l)
1 . . .

∫

dx(l)
nl
A(x

(l)
1 , x(l)

nl
) exp

(

nl−1
∑

k=1

S(l)[t
(l)
k ]

)

, (9)

where x(l)
k is the average path at time t(l)k = t

(l)
0 + 2lδk, and the functional S(l) is to be structured and

computed similarly to Hc above. For any time t(l)k , the functional S(l)[t
(l)
k ] depends on x(l)

k and several

neighboring x(l)
j . At the finest level, S(0)[t

(0)
k ] = S(xk, xk−1), as in (2) above.

Due to the locality and universality of the interactions, the construction of S (l) given S(l−1) can be done

in small representative windows, i.e., employing relatively short paths. Even in the case of many particles,

the functional S(l) is essentially a sum of interactions that are local not only in time, but also in space (after

transferring a smooth non-local part directly to the coarse level, as discussed in Sec. 2.3 above). Hence the

representative windows can be local in space too.

At coarser levels, where the spatial scale becomes comparable to the inter-particle distances, new vari-

ables and processes should take place. Whereas at finer levels averages are taken over individual particles,

they should now involve the mutual density of several neighboring particles, the more of them the coarser

the level. Other types of coarse variables will enter, such as averages of moments of interparticle distances.

Eventually, at sufficiently coarse level, variables should emerge that depend only on particle densities (e.g.,

the electronic density, in the Born-Oppenheimer approximation) and their derivatives.

Also, exactly at such time and space scales where particle average locations start to mix, and only around

those scales, particle exchange should be taken into account. At finer scales the exchange is unlikely, while

in the long run exchanges are just the sum result of multiple neighbor exchanges at the mixing scales.

As in other cases of different attraction basins (see Sec. 2.3 above), building at such scales common S (l)

functionals for different permutations of particles is expected to give a very efficient way to incorporate the

required exchanges.

The separation between local and smooth interactions is expected to persist to the level of particle den-

sities, resulting there in multiscale density functionals (effectively incorporating all energy terms, including

the kinetic energy and the exchange correlation). By this we mean functionals that sum interactions between

neighboring average densities (neighboring at the scale of the averaging) over a sequence of scales. In terms

of such functionals, concrete problems can be solved fast by multiscale solvers.

In the research results reported below we limit the discussion to the to the time-step-size multilevel

structure, though in the future we plan to study its combination with the space/permutation averaging de-

scribed above. Also we assume that the number of time steps at level l = 0, . . . , L is 2L−l. Hence l = 0

corresponds to the finest level and l = L to the coarsest one.
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As a next step, one needs to specify the procedure for the fine-to-coarse transformation of the corre-

sponding equations. Recall (see Eq. (5)) that the finest level description is given as an integral in the form

〈A〉 =

∫

dx1

∫

dx2 . . .

∫

dxnA(x1, xn) exp
(

n−1
∑

k=1

S(xk−1, xk)
)

, (10)

where n = 2L + 1, A(x1, xn) is some function of the end-points, and

S(xk−1, xk) =
i

h

(m

2δ
(xk − xk−1)

2 −
δ

2
[V (xk) + V (xk−1)]

)

. (11)

It can be easily verified that the same form also holds for any intermediate levels, that is, for any l:

〈A〉 =

∫

dx1

∫

dx1+2l . . .

∫

dxnA(x1, xn) exp
(

∑

k=1,1+2l,...,n

S(l)(xk−2l , xk)
)

, (12)

that is, the interaction on the intermediate levels remain local. Hence, if we could express S (l) in a closed

form (or, at least, find a good approximation thereof), the calculation of 〈A〉 could be carried out on the level

l, without the need to use the finer (hence, computationally more expensive) levels.

To complete the description of the Path Integral Systematic Upscaling, we need to specify a mechanism

for approximating S(l). Specifically, we approximate S(l) by a finite sum
∑

c
(l)
j S

(l)
j , where {S

(l)
j } belong

to some complete function family, as described in the next section.

3.2 Experimental design & methods

3.2.1 Estimation of coefficients

In section 2.3, we have briefly mentioned the general ideas behind our approximation methodology. In the

following, a more detailed description is given.

Given a set of basis functions {S
(l)
j }, the coefficients c(l)j can be determined using a generalization of

the maximal entropy (ME) method (Jaynes, 1957). For probability distributions parameterized by a vector

c̄, the ME parameter estimate is the one, which maximizes the relative entropy:

〈 log pc̄〉
target = 〈

∑

j

cjS
(l)
j − n(c̄)〉target =

∑

j

cj〈S
(l)
j 〉target − n(c̄), (13)

where 〈〉target denotes expectation with respect to the target distributions and n(c̄) = log
∫

exp(
∑

j′ cj′S
(l)
j′ ).

A common approach for finding the optimal ME parameters is by differentiating the relative entropy with

respect to the parameters and equating the derivatives to zero. This leads to the following system of non-

linear equations:

〈S
(l)
j 〉fine = 〈S

(l)
j 〉coarse (14)
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For example, one may tackle the later problem in an iterative manner using local linearization - a method

known in statistics as Fisher scoring (Rao, 1948). A simplified version of the Fisher scoring was successfully

used in the systematic upscaling of the polymer models (Bai and Brandt, 2000).

While the ME method was originally designed for probability distributions, the idea of using Equa-

tion (14) can be naturally generalized to complex measures that appear in path integral calculations. Specif-

ically, given an integrable complex measure ψ, we define an average with respect to ψ as:

< A >ψ=

∫

Adψ
∫

d|ψ|
. (15)

In the following, we also present the generalized Fisher Scoring method for the complex measures.

As already stated earlier, there is no need to simulate the full system in order to estimate the coefficients.

In fact, for the path integrals problems, the strictly local character of the interactions allows working with a

window consisting of just two fine-level time steps and one coarse level step. In this case,

〈S
(l)
j 〉fine =

∫

S
(l)
j (x, z) exp

(

∑

j′ c
(l−1)
j′ [S

(l−1)
j′ (x, y) + S

(l−1)
j′ (y, z)]

)

dy dµ(x, z)

〈S
(l)
j 〉coarse =

∫

S
(l)
j (x, z) exp

(

∑

j′ c
(l)
j′ S

(l)
j′ (x, z)

)

dµ(x, z)
(16)

where x = x1, y = x1+2l−1 , z = x1+2l .

The measure µ(x, z) specifies the window boundary conditions - as a rule it should be chosen so as to

give more weight to the areas from which the main contribution to the final integral (12) comes, and can be

changed adaptively based on the results of the coarse-level simulation. It is important to note that, once we

consider the more elaborate multiscale structures involving spatial averaging, the measure µ may become

dependent on the location of the window and should incorporate information about the variables outside the

window.

3.2.2 Choice of the basis functions

As we have seen in the introduction, for the finest level, the function S (0)(x, z) is a linear combination of

(x − z)2, V (x) and V (z). Hence it is natural to include these functions in the basis set. Naturally, as we

ascend in the multiscale hierarchy, this restricted basis is not sufficient (apart from the trivial harmonic case)

and should be augmented with additional basis functions, as described next.

Starting from the basis, spanning the space of the quadratic polynomials of x, z together with V (x) and

V (z), we estimate the coefficients as described in the previous section. Next, in addition to the existing basis

functions, we also consider their “refinements”, that is the function multiplied by a tent function T (x, z),

whose support is limited to a square. If the approximation error for the average of the refinement is on

14



the same scale as the errors for the functions already in the basis set, the refinement is also added to the

basis set. As the algorithm proceeds, it considers refinements with increasingly smaller supports, until some

prescribed level of precision is achieved.

A somewhat different approach was employed in (Bai and Brandt, 2000; Bai, 2004), where the candi-

dates for addition to the basis set were chosen from the correlations among the functions already in the basis

as well as single-variable refinements. The advantage of this approach is that the list of candidates is smaller

at each step, especially when x and z are higher dimensional, and the correlations are calculated anyway as

a part of the “information matrix”. However, in this work we did not make use of this alternative approach,

since our examples allow the somewhat more intuitive method described above.

3.2.3 Solving the non-linear equations

For the purposes of present project, we have generalized the well-known Fisher scoring (Rao, 1948) algo-

rithm. For simplicity of presentation the level index l is omitted in the following.

In the Fisher Scoring method, given the current parameters vector {cold}, we seek the change of param-

eters δc that solves the local linearization of Eq. (14):

〈Sj〉
old + I · δc = 〈Sj〉

coarse, (17)

where 〈Sj〉
old is the current vector of statistics averages and I is the covariance matrix with entries

Iij = 〈SjSj〉
old − 〈Sj〉

old〈Sj〉
old. (18)

Note that the equation (17) is equivalent to the following least square optimization problem:

δc = argmin
{

‖〈Sj〉
old + I · δc− 〈Sj〉

coarse‖2
}

= argmin
{

‖I · δc− δ〈Sj〉‖
2
}

, (19)

where δ〈Sj〉 = 〈Sj〉
coarse − 〈Sj〉

old.

Now, in the complex case, the general form remains the same, apart from the form of the matrix I . Let

us recall that we consider complex measures of the exponential form:

dψ = exp(
∑

cjSj)dµ = exp(
∑

cmagj Sj + i
∑

cphj Sj)dµ, (20)

where cmagj and cphj denote the real component, affecting the magnitude of the measure, and the imaginary

component, affecting the phase. Hence, the parameter vector becomes

c =







cmag

cph






(21)
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Using our definition (15) of complex expectation, we obtain

< Sk >ψ=

∫

Sk exp(
∑

cmagj Sj + i
∑

cphj Sj)dµ
∫

exp(
∑

cmagj Sj)dµ
. (22)

When differentiating separately with respect to the magnitude and the phase one obtains the following form

for the “covariance” matrix I:

I =

(

Imag Iph
)

, (23)

where

Imagik =
∂<Si>ψ
∂cmag
k

=< SiSk >ψ − < Si >ψ< Sk >|ψ|

Iphik =
∂<Si>ψ

∂cph
k

= i < SiSk >ψ
(24)

It is important to note that although the “generalized covariance” matrix I is complex in this case, the re-

sulting optimization problem is still real-valued, hence well-defined. This can be verified by substituting

equations (24) into the optimization problem (19), and obtaining, after some routine calculations, an equiv-

alent simplified form:

argmin
{

δcT I∗Iδc− 2Re(δS∗I)δc
}

. (25)

Since the optimization problem (25 is derived by linearization of the original Eq. (14), the “optimal” solution

δcopt of (25) is only approximate solution of the original problem. Consequently, it is a common practice

to employ an interactive update, where at iteration t, the new parameter vector is calculated as ct+1 =

ct + Ct · δc, where 0 < Ct < 1 and typically Ct → 0. We have experimented with different choices

of Ct and found the schedule C(t) = 1√
t

to give the best results. One could potentially construct a more

sophisticated and theoretically sound algorithm with quadratic convergence, which would increase the MC

sample size quadratically with the number of iteration, but this line of research was not pursued yet.

3.3 Results

Before we proceed to present the results of our experiments, it is important to identify four potential sources

of errors in the SU estimates of the coarse-level Hamiltonian:

Representation error - this is the residual error of the best estimate possible, given the functional form of

the coarse-level Hamiltonian. Unlike the parametric estimation, where this error is typically non-zero,

the expandable functional families employed in SU guarantee that this error may be made arbitrary

small, provided enough terms are introduced into the coarse Hamiltonian. The multiscale construction

of the approximation provides an intuitive control of the accuracy/complexity trade-off.
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Optimization error - since in practice the parameters’ value is determined by numerically solving the

optimization problem (25), the optimization process, even using the exact estimates of the fine and

coarse-level averages, may introduce a surplus error over the optimal estimate for the given basis of

coarse-level Hamiltonian terms.

Coarse-level and fine level Monte Carlo errors - the additional errors due to the stochasticity of the MC

estimates used by the optimization algorithm. Since coarse-level and fine-level estimates are calcu-

lated at different stages of the algorithm and with different frequency, it is beneficial to consider them

separately.

3.3.1 Equilibrium calculations

Harmonic oscillator

The first problem we have considered, as a sanity-check for our approach, was the equilibrium distribution

calculation for harmonic oscillator, V (x) = 1
2mω

2x2. For simplicity of notation, in all the experiments to

follow, we have used scaled measurement units, such that m,ω and β reduce to unity.

As a first step, in order to verify the correctness of our code, we have run the algorithm with all the

averages being computed using the well-known Numerical Matrix Multiplication (NMM) algorithm (Thiru-

malai et al., 1983), commonly used as a reference algorithm in PI calculations. In this experiment, the exact

coarse-level Hamiltonian is known to be quadratic, hence the representational error is zero, even when no

refinements of the initial basis set are made. Similarly, because of the accuracy of the NMM algorithm, the

MC approximation error is also taken out of the equation, hence we are testing the optimization error alone.

Every 30 iterations (of a type ct+1 = ct +Ct · δct) the algorithm inspected the errors of the refinements

of the basis functions and expanded the basis set if necessary. The algorithm stopped, when the relative

statistics error dropped below 10−6. The experiment was performed for a variety of values of β and various

coarsening levels - qualitatively the results were all the same.

Figures 1-4 present the results of this experiment for two representative cases: β = 0.1, with 8 slices

and first coarsening level, and β = 10, with 128 slices and sixth coarsening level.

We have used several criteria to monitor the behavior of our algorithm. First, the most obvious crite-

ria is the estimation errors of the average “statistics” - the basis functions used to approximate the coarse

Hamiltonian. However, unless we know a priori that the given basis set is sufficient for approximating the

coarse Hamiltonian, convergence of these errors to zero does not guarantee convergence of the approxima-

tion. Consequently, we have used two additional indicators. The first is the maximal variation error of the
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coarse-level kernel

sup
x,z

|ρcoarse(x, z) − ρ̂coarse(x, z)|,

where ρcoarse(x, z) = exp(−Hcoarse) is the exact coarse-level kernel and ρ̂coarse(x, z) is our numerical

approximation thereof.

Since the object we attempt to approximate in the first place is the equilibrium distribution

d(x) = ρ(x, x) =< x|exp(−βH)|x >,

we have also chosen to monitor the maximal variation error in the estimated equilibrium distribution:

sup
x

|d(x) − d̂(x)|.

It can be seen from these results that, for the harmonic oscillator, our algorithm was able to find approxima-

tion to the coarse level Hamiltonian, which is virtually indistinguishable from the exact one, with respect to

all three measures. This shows that the optimization error of our algorithm is zero.
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Figure 1: Harmonic oscillator - the progress of the algorithm with NMM estimates for the first coarsening

level with 8 slices and β = 0.1: the number of the basis functions (top-left), the mean-squared error of

the statistics in the basis set (top-right), maximal variation error in the coarse-level kernel (bottom-left) and

maximal variation error in the estimated equilibrium distribution (bottom-right).

19



Figure 2: Harmonic oscillator - exact equilibrium distribution d(x) versus its approximation d̂(x) (top)

and exact coarse level kernel ρcoarse(x, z) (bottom) for the first coarsening level with β = 0.1 with NMM

estimates.
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Figure 3: Harmonic oscillator - the progress of the algorithm with NMM estimates for the sixth coarsening

level with 128 slices and β = 10: the number of the basis functions (top-left), the mean-squared error of

the statistics in the basis set (top-right), maximal variation error in the coarse-level kernel (bottom-left) and

maximal variation error in the estimated equilibrium distribution (bottom-right).
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Figure 4: Harmonic oscillator - exact equilibrium distribution d(x) versus its approximation d̂(x) (top) and

exact coarse level kernel ρcoarse(x, z) (bottom) for the sixth coarsening level with β = 10 with NMM

estimates.

Next, we have repeated this experiment with the coarse-level averages being computed using 104 MC

samples per iteration and using NMM for calculating the fine-level averages. In other words, in this experi-

ment we consider the effect of the coarse-level MC approximation error.

The results are shown in Fig. 5-8. It can be seen that, although with MC estimates of the statistics aver-
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ages one could not achieve arbitrary accuracy (as in the “exact averages” case), still the coarse Hamiltonian

approximations obtained in the process are very accurate and adequate for any practical purpose. If one

wished to improve the accuracy even further, one could either simply increase the number of MC samples

per iteration or employ the extended Kalman filtering update (Bertsekas, 1995), which ensures consistency

of the stochastic optimization algorithm.
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Figure 5: Harmonic oscillator - the progress of the algorithm with Monte Carlo coarse-level estimates for

the first coarsening level with 8 slices and β = 0.1: the number of the basis functions (top-left), the mean-

squared error of the statistics in the basis set (top-right), maximal variation error in the coarse-level kernel

(bottom-left) and maximal variation error in the estimated equilibrium distribution (bottom-right).
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Figure 6: Harmonic oscillator - exact equilibrium distribution d(x) versus its approximation d̂(x) (top) and

exact coarse level kernel ρcoarse(x, z) (bottom) for the first coarsening level with β = 0.1 with Monte Carlo

coarse-level estimates.
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Figure 7: Harmonic oscillator - the progress of the algorithm with Monte Carlo coarse-level estimates for

the sixth coarsening level with 128 slices and β = 10: the number of the basis functions (top-left), the

mean-squared error of the statistics in the basis set (top-right), maximal variation error in the coarse-level

kernel (bottom-left) and maximal variation error in the estimated equilibrium distribution (bottom-right).
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Figure 8: Harmonic oscillator - exact equilibrium distribution d(x) versus its approximation d̂(x) (top) and

exact coarse level kernel ρcoarse(x, z) (bottom) for the sixth coarsening level with β = 10 with Monte Carlo

coarse-level estimates.
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Let us conclude by observing that, in the full algorithm, the fine-level sample need only be generated

once, hence the effect of the fine-level MC approximation error is predictable - it introduces a bias in the

estimates, which could be made arbitrary small by increasing the size of the fine-level sample. Consequently,

we have not carried out any experiment aimed at isolating the fine-level MC approximation error effect, and

always calculated the fine-level averages using the NMM method.

Double well

As a next step, we have considered the double well potential:

V (x) =
x4

4
−
x2

2
(26)

As a first step we considered the case β = 0.1 with 8 slices. The results for the second coarsening

level are presented in Figures 9-13 (the lower coarse levels produced similar results). With a relatively small

sample size (104), the stochastic sampling errors forced introduction of some superfluous basis functions.

The situation was improved with a larger sample size, 105, which produced an early stop similarly to the

NMM-based run. At this point we would like to emphasize the major accuracy improvement that our

algorithm produced merely by optimizing the coefficients of the initial basis, V (x), V (z), (x − z)2, x2, z2,

without any refinements.
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Figure 9: Double well - the progress of the algorithm with NMM estimates for the second coarsening level

with 8 slices and β = 0.1: the number of the basis functions (top-left), the mean-squared error of the

statistics in the basis set (top-right), maximal variation error in the coarse-level kernel (bottom-left) and

maximal variation error in the estimated equilibrium distribution (bottom-right).
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Figure 10: Double well - exact equilibrium distribution d(x) versus its approximation d̂(x) (top) and exact

coarse level kernel ρcoarse(x, z) (bottom) for the second coarsening level with β = 0.1 with NMM estimates.
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Figure 11: Double well - the progress of the algorithm with 104 MC samples per iteration with 8 slices and

β = 0.1 for the second coarsening level: the number of the basis functions (top-left), the mean-squared error

of the statistics in the basis set (top-right), maximal variation error in the coarse-level kernel (bottom-left)

and maximal variation error in the estimated equilibrium distribution (bottom-right).
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Figure 12: Double well - exact equilibrium distribution d(x) versus its approximation d̂(x) (top) and exact

coarse level kernel ρcoarse(x, z) (bottom) for the second coarsening level with β = 0.1 with Monte Carlo

(104 samples per iteration) coarse-level estimates.
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Figure 13: Double well - the progress of the algorithm with 105 MC samples per iteration with 8 slices and

β = 0.1 for the second coarsening level: the number of the basis functions (top-left), the mean-squared error

of the statistics in the basis set (top-right), maximal variation error in the coarse-level kernel (bottom-left)

and maximal variation error in the estimated equilibrium distribution (bottom-right).

Next, we have explored the more difficult case of β = 10 with 128 slices. Figures 14,15 show the

results of the NMM-based run for the third coarsening level, which revealed that the statistics error is no

longer a reliable indicator in this case. While the relative statistics error dropped below 10−6, the kernel

32



and, especially, the equilibrium distribution still had some non-negligible errors. Consequently, in the few

experiments to follow, we have removed the early stopping condition and allowed the algorithm to run for a

fixed number of iterations regardless of the statistics error.
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Figure 14: Double well - the progress of the algorithm with early stop and NMM estimates for the third

coarsening level with 128 slices and β = 10: the number of the basis functions (top-left), the mean-squared

error of the statistics in the basis set (top-right), maximal variation error in the coarse-level kernel (bottom-

left) and maximal variation error in the estimated equilibrium distribution (bottom-right).

33



−5

0
5

−5

0

5

0.01

0.02

0.03

0.04

0.05

The exact coarse kernel

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

Approximate and exact distributions

Approx.
Exact

Figure 15: Double well - exact equilibrium distribution d(x) versus its approximation d̂(x) (top) and exact

coarse level kernel ρcoarse(x, z) (bottom) for the first coarsening level with β = 0.1 with NMM estimates

and early stop.

Figures 16-19 illustrate the improved behavior of the algorithm without the stopping condition with

NMM-based and MC-based estimates respectively. It can be seen that the algorithm succeeds to produce

very accurate estimates with relatively small number of basis functions.
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Figure 16: Double well - the progress of the algorithm without early stop and NMM estimates for the third

coarsening level with 128 slices and β = 10: the number of the basis functions (top-left), the mean-squared

error of the statistics in the basis set (top-right), maximal variation error in the coarse-level kernel (bottom-

left) and maximal variation error in the estimated equilibrium distribution (bottom-right).
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Figure 17: Double well - exact equilibrium distribution d(x) versus its approximation d̂(x) (top) and exact

coarse level kernel ρcoarse(x, z) (bottom) for the first coarsening level with β = 0.1 with NMM estimates

and without the early stop.
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Figure 18: Double well - the progress of the algorithm without early stop and MC estimates (105 samples

per iteration) for the third coarsening level with 128 slices and β = 10: the number of the basis functions

(top-left), the mean-squared error of the statistics in the basis set (top-right), maximal variation error in

the coarse-level kernel (bottom-left) and maximal variation error in the estimated equilibrium distribution

(bottom-right).

37



−5

0
5

−5

0

5

0.01

0.02

0.03

0.04

0.05

The exact coarse kernel

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

Approximate and exact distributions

Approx.
Exact

Figure 19: Double well - exact equilibrium distribution d(x) versus its approximation d̂(x) (top) and exact

coarse level kernel ρcoarse(x, z) (bottom) for the first coarsening level with β = 10 with MC estimates (105

samples per iteration) and without the early stop.

Finally, we have examined the limits of our algorithm by considering the sixth coarsening level. As can

be seen from Figures 20-21, when using NMM estimates, the algorithm still managed to produce very ac-

curate approximations. However, this success could not be reproduced when using the MC-based estimates

as can be seen from Figures 22-25. While increasing the size of the MC sample from 105 to as much as
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107 did improve the quality of the approximation, still even when the larger samples there was a noticeable

mismatch between the exact equilibrium distribution and the approximation.
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Figure 20: Double well - the progress of the algorithm with NMM estimates for the sixth coarsening level

with 128 slices and β = 10: the number of the basis functions (top-left), the mean-squared error of the

statistics in the basis set (top-right), maximal variation error in the coarse-level kernel (bottom-left) and

maximal variation error in the estimated equilibrium distribution (bottom-right).
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Figure 21: Double well - exact equilibrium distribution d(x) versus its approximation d̂(x) (top), exact

coarse level kernel ρcoarse(x, z) (middle) and approximate coarse level kernel ρ̂coarse(x, z) (bottom) for the

first coarsening level with β = 10 with NMM estimates.
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Figure 22: Double well - the progress of the algorithm with MC estimates (105 sample per iteration) for

the sixth coarsening level with 128 slices and β = 10: the number of the basis functions (top-left), the

mean-squared error of the statistics in the basis set (top-right), maximal variation error in the coarse-level

kernel (bottom-left) and maximal variation error in the estimated equilibrium distribution (bottom-right).
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Figure 23: Double well - exact equilibrium distribution d(x) versus its approximation d̂(x) (top), exact

coarse level kernel ρcoarse(x, z) (middle) and approximate coarse level kernel ρ̂coarse(x, z) (bottom) for the

sixth coarsening level with β = 10 with MC estimates (105 sample per iteration).
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Figure 24: Double well - the progress of the algorithm with MC estimates (107 sample per iteration) for

the sixth coarsening level with 128 slices and β = 10: the number of the basis functions (top-left), the

mean-squared error of the statistics in the basis set (top-right), maximal variation error in the coarse-level

kernel (bottom-left) and maximal variation error in the estimated equilibrium distribution (bottom-right).
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Figure 25: Double well - exact equilibrium distribution d(x) versus its approximation d̂(x) (top), exact

coarse level kernel ρcoarse(x, z) (middle) and the approximate coarse level kernel ρ̂coarse(x, z) (bottom) for

the sixth coarsening level with β = 10 with MC estimates (107 sample per iteration).
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3.3.2 Complex-time calculations

As already mentioned in Section 1, path integrals can also be used to compute the thermally averaged

quantum time correlation functions (Thirumalai and Bern, 1983) and thus information about dynamical

effects at finite temperature. In the following experiments, we have explored the behavior of our algorithm

for the complex time tc = t − ihβ/2, as employed in the calculations of the symmetrized time correlation

function GAB(t) (Thirumalai and Bern, 1984):

GAB(t) = Tr[A exp(iHt∗c/h)B exp(−iHtc/h)], (27)

where A and B are quantum mechanical operators.

The complex time problems necessitate several important modifications in our algorithm. The first is the

generalization of the basic Fisher scoring algorithm described in Section 3.2.3 above. Another is the utiliza-

tion of the weighting measure µ already mentioned in Section 3.2.1. While for equilibrium calculations the

uniform weighting via the choice of Lebesgue measure µ was adequate, for the complex-time problems such

weighting lead to instabilities of the optimization process. Consequently, in the experiments to follow, we

have used simple standard Gaussian weighting measure, which filtered out the remote phase-space regions,

rendering both fine and coarse level averages calculation more tractable. It is important to note that in the

limit of the zero approximation error the choice of the weighting measure is irrelevant, but it could be critical

in the practical low-but-not-zero-error situations. Finally, it turned out that for complex-time problems, in

the auxiliary quadratic programming problem:

argmin
{

δcT I∗Iδc− 2Re(δS∗I)δc
}

, (28)

the matrix I is close to singular, hence the optimization algorithm was quite sensitive to numerical errors in

its estimation. In order to further stabilize our algorithm we have used the well-known technique of regu-

larization (Bertsekas, 1995), which in our case amounted to adding a penalty term C‖δ‖2 to the quadratic

program (28). The coefficient C was modified adaptively to keep the approximation error and the penalty

term on the same order of magnitude.

Few words are in order regarding the performance measures used in the following experiments. Simi-

larly to equilibrium calculations, we considered the mean-squared statistics error, and, since a penalty term

was added in these experiments, the penalized error was monitored as well. Next, due to the use of the

weighting (damping) measure µ we have monitored the values of both damped and undamped coarse-level

kernel. Finally, as already mentioned above, for the equilibrium calculations one eventually is interested in
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the equilibrium distribution. Similarly, for the diagonal quantum operators, the thermally averaged quantum

time correlation function can be written as:

GAB(t) = Tr[A exp(iHt∗c/h)B exp(−iHtc/h)] =

∫

dx0dxendA(x0)B(xend)K(x0, xend), (29)

where K(x0, xend) is what we henceforth refer to as the “end-points-kernel”, whose estimation error was

monitored as well.

Similarly to the imaginary-time experiments, we have started with the harmonic oscillator. As a first

test, we have considered the first coarsening level with β = 1, t = 1 and 8 slices. Figures 26-29 present

the results of the simulation with NMM and MC coarse-level calculations. Similarly to the equilibrium

case, we observe very high accuracy of approximation with NMM and slightly lower, but still very high,

accuracy with MC estimation. It is interesting to mention that, starting with the basis {x2, z2, (x− z)2, 1},

the algorithm added two refinements of (x−z)2 as it went along - first with the support [−4, 4]× [−4, 4] and

latter with the support [−2, 2] × [−2, 2]. Apparently, this indicates that the main source of approximation

errors was the complex correlative behavior in the central region.
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Figure 26: Harmonic oscillator - the progress of the algorithm with NMM estimates for the first coarsening

level with 8 slices and β = 1, t = 1: the number of the basis functions (top-left), the mean-squared error

of the statistics in the basis set with and without the penalty term (top-right), maximal variation error in the

damped (middle-left) and undamped (middle-right) coarse-level kernel and maximal variation error in the

estimated end-points-kernel (bottom).
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Figure 27: Harmonic oscillator - the real part of the exact and the approximated damped coarse-level kernel

(top), undamped coarse-level kernel (middle) and the end-point-kernel (bottom) for the first coarsening level

with β = 1, t = 1 with NMM estimates.
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Figure 28: Harmonic oscillator - the progress of the algorithm with MC estimates (104 samples per iteration)

for the first coarsening level with 8 slices and β = 1, t = 1: the number of the basis functions (top-left), the

mean-squared error of the statistics in the basis set with and without the penalty term (top-right), maximal

variation error in the damped (middle-left) and undamped (middle-right) coarse-level kernel and maximal

variation error in the estimated end-points-kernel (bottom).
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Figure 29: Harmonic oscillator - the real part of the exact and the approximated damped coarse-level kernel

(top), undamped coarse-level kernel (middle) and the end-point-kernel (bottom) for the first coarsening level

with β = 1, t = 1 with MC estimates (104 samples per iteration).

As a more stringent test we have considered the more difficult case of the third coarsening level with

β = 1, t = 10 and 128 slices, presented in Figures 30-31. While the calculations involving NMM still

produced very accurate results, the MC-based algorithm with as many as 107 samples per iteration failed

to approach the optimal value of the parameters. Moreover, as can be seen from the upper-right chart in
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Figure 31, after initial reduction of the error in the statistics, the algorithm apparently became dominated

by a diffusion-like process, which increased the value of the parameters without significantly affecting the

value of the statistics. This indicates that the algorithm still needs to be improved, in order to produce more

robust results for the more realistic large scale problems.
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Figure 30: Harmonic oscillator - the progress of the algorithm with NMM estimates for the third coarsening

level with 128 slices and β = 1, t = 10: the number of the basis functions (top-left), the mean-squared error

of the statistics in the basis set with and without the penalty term (top-right), maximal variation error in the

damped (middle-left) and undamped (middle-right) coarse-level kernel and maximal variation error in the

estimated end-points-kernel (bottom).
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Figure 31: Harmonic oscillator - the progress of the algorithm with MC estimates (107 samples per iteration)

for the third coarsening level with 128 slices and β = 1, t = 10: the number of the basis functions (top-

left), the mean-squared error of the statistics in the basis set with and without the penalty term (top-right),

maximal variation error in the damped (middle-left) and undamped (middle-right) coarse-level kernel and

maximal variation error in the estimated end-points-kernel (bottom).
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We have also repeated the experiments above for the double-well problem. The results were qual-

itatively the same, hence we do not present a detailed report here.

4 Conclusions and future research

The results presented in this report illustrate the plausibility of using the SU methodology in the context

of Feynman path integrals. Still, there are some limitations of the present algorithm, which need to be

considered in order to be able to tackle realistic PI problems.

First, as the double-well experiment have demonstrated, one needs to develop a more sophisticated

stopping conditions for the optimization algorithm, since the mean-squared statistics error has been found

to be unreliable estimate of the accuracy of the coarse-level Hamiltonian approximations.

Next, the optimization algorithms itself should be improved (i.e. using the extended Kalman filtering

methodology (Bertsekas, 1995)) in order to allow more efficient use of the Monte Carlo sampling.

Finally, while producing some promising results for the simple test problems, it is not clear whether

the present methods for the construction of the basis sets for approximating the coarse-level Hamiltonian

is practical, when one considers more realistic problems. The more general methodology involving space-

averaging and alternative basis construction methods described in Section 3 is expected to produce more

stable and generic results. It is our feeling that one also needs more problem-specific knowledge in order to

construct problem-tailored basis sets, which allow sparse and accurate approximations.

While still a lot of research work is needed in order to turn the SU methodology into practical algorithms,

still the preliminary results presented in this report are promising. In particular, an important by-product of

this research is a simple procedure for improving the accuracy of short-to-medium-time kernels by optimiz-

ing the coefficients of the default basis functions.
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