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Abstract

Following an introduction to nonlinear adaptible-discretization multi-
grid algorithms for steady-state and time-dependent partial differential
equations (PDEs), their many potential benefits for solving inverse PDE
problems are explained, focusing on the problems of atmospheric data
assimilation and feedback optimal control. Using multigrid, the atmo-
spheric flow equations with very stable and adaptable implicit time steps
can be solved at a cost comparable to that of explicit steps. The mul-
tiscale computation allows the data assimilation to account for correla-
tion at all scales, at a cost again comparable to solving the direct PDEs.
Such computations can also provide full (not just initial-condition) control
(which is more sensitive and accurate), yield flexible multiscale represen-
tations and fast inversion of full-matrix covariances, improve regulariza-
tion (e.g., exploiting scale-dependent statistical theories), continuously
fast-assimilate new observations, organize observational data in efficient
hierarchical structures, and facilitate scale-dependent data types. To a
fast multigrid solver of optimal control problems, feedback data can be
incorporated at a cost just comparable to several explicit time steps.

Keywords: multigrid, inverse problems, data assimilation, feedback optimal
control

1 Introduction

A direct partial differential problem involves an interior differential equation
and a set of initial/boundary conditions which stably determines a unique so-
lution. An inverse problem is one in which the differential equation and/or the
initial/boundary conditioned are not fully given and instead the results of a
set of solution observations (measurements) are known. The latter may contain
errors, and even without errors the problem is usually ill-posed: the known data
may be approximated by widely different solutions.
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In this article we use the problems of atmospheric data assimilation and
feedback optimal control to illustrate the many ways in which multiscale com-
putation can benefit the solution of inverse PDE problems.

As will be explained below, the multiscale methods can often solve such
problems for a cost comparable with the cost of solving the corresponding direct
problem. Interestingly, for some ill-posed inverse problems, the overall multi-
scale inverse solver can cost even far less than the solver for the corresponding
well-posed direct problem. This is because, whenever high-frequency solution
components are ill-defined, the multiscale solver can use correspondingly lower
resolution. In other words, an ill-posed problem may be less expensive to solve
than a corresponding well-posed one because there is less meaningful informa-
tion that can be extracted. An example is the impedance tomography multigrid
solver described in [32], [17, §16.2], [33].

To understand the multiscale methods suggested below for inverse problems
requires adequate familiarity with some basic concepts of nonlinear multigrid
methods for direct problems. These concepts are introduced in Sections 2, 3
and 4 below. Section 5 describes the general approach to atmospheric data as-
similation, followed in Section 6 by a detailed list of the many potential benefits
of this approach. In Section 7 multigrid techniques for feedback optimal control
are discussed.

2 Review of nonlinear multigrid solvers

The multigrid solvers for discretized PDE (see [7], [10], [36], [44], [31]) are
based on two processes: (1) classical relaxation schemes, which are generally
slow to converge but fast to smooth the error function; (2) approximating the
smooth error on a coarser grid by solving there equations which are derived
from the PDE and from the fine-grid residuals; the solution of these coarse-grid
equations is obtained by using recursively the same two processes. As a result,
large scale changes are effectively calculated on correspondingly coarse grids,
based on information gathered from finer grids. Such multigrid solvers yield
linear complexity (solution work proportional to the number of unknowns).

In many years of research, the range of applicability of these methods has
steadily grown, to cover most major types of linear and nonlinear large sys-
tems of equations appearing in sciences and engineering. This has been accom-
plished by extending the concept of “smoothness” in various ways, finally to
stand generally for any poorly locally determined solution component, and by
correspondingly diversifying the types of coarse representations, to include for
instance grid-free solvers, called algebraic multigrid (AMG; see [26], [27], [12],
[41], [42]) non-deterministic statistical mechanics problems ([28], [15], [20], [34])
and multiple coarse-level representations ([8, §3.2], [23]).

This section reviews the main concepts of multigrid solvers. The described
solver is typically used for nonlinear steady-state problems, e.g., in computa-
tional fluid dynamics (CFD). The ways of using it for time-dependent problems
will be discussed in the next section.
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Equations. It is assumed in this simplified review that a differential equa-
tion or a system of differential equations in the form

Au(x) = f(x), x ∈ Ω (1)

is given, where Ω is a domain in a low-dimensional (e.g., the physical 3D) space,
u(x) is the unknown function or a vector of unknown functions, f(x) are given
forcing terms, and A is a (generally nonlinear) partial differential operator.
For simplicity of notation we assume that A already includes special equations
describing the boundary and global conditions of the problem.

Discretization. It is further assumed that a discretization of the problem
is given in the form

A0u0(x0) = f0(x0), x0 ∈ Ω0 , (2)

where Ω0 is a grid of points (or finite-element, or finite-volume locations) cov-
ering Ω, u0(x0) are the discrete unknowns (e.g., u0(x0) approximating u(x0)),
and A0 is the discrete operator. For example, in the linear case A0 is a sparse
matrix. Generally, (2) will be a set of finite-difference, finite-element or finite-
volume discrete nonlinear equations, approximating the differential equations
and the boundary and global conditions. This is the set of equations for which
a fast solution is sought.

Multigrid discretization. For the purpose of the multigrid solver, we
assume that (1) is discretized not only on the given grid Ω0, but also on a
set of increasingly coarser grids Ω1, Ω2, . . . , ΩL, where corresponding systems of
equations

A`u`(x`) = f `(x`), x` ∈ Ω`, (1 ≤ ` ≤ L) (3)

have been constructed. Typically, the meshsize of Ω` is twice that of the next
finer grid Ω`−1, but other situations may arise, where, for example, the meshsize
is doubled in some but not all directions.

The coarsest grid ΩL is assumed to be sufficiently coarse (typically including
very few points) to allow very inexpensive direct solution of its equations (e.g.,
by Newton-Raphson iterations).

There are several ways in which the coarser discretizations (3) may be ob-
tained. In many cases, the same computer routine that produces the basic
discretization (2) can be re-used, with different parameters, to generate (3).
Those coarse equations need not be accurate; in fact, they can be very crude,
since they are later corrected (see below). There are also various coarsening
methods, i.e., methods to derive the equations at level ` from those at the next-
finer level `−1. These methods are usually similar to discretization (deriving (2)
from (1)) methods; e.g., Galerkin-type coarsening, which is similar to Galerkin
discretization.

More recently, a new type of coarsening methodology, called Systematic Up-
scaling (SU) has been advanced [18], which is more generally applicable, e.g., to
strongly nonlinear and even non-deterministic problems. The SU coarse-level
variables can often be some simple averages of the next-fine-level variables, but
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in various problems much more sophisticated types of variables must be in-
troduced. SU includes a systematic criterion for choosing these variables, and
procedures to derive the (generally nonlinear) coarse equations.

Multigrid cycle. A multigrid cycle for approximating u`, starting from an
initial approximation u`

0, is defined recursively by the following five steps.

1. If ` = L, solve (3) directly , e.g., by Newton-Raphson iterations. Other-
wise:

2. Starting with u`
0, perform few (typically 1 or 2) relaxation sweeps, produc-

ing a new approximation u`
1 such that the error v` = u` − u`

1 is smooth.
In the case that A` is linear, this error satisfies the “residual equation”

A`v` = r` (4)

where
r` = F ` −A`u`

1 (5)

is the “residual”. More generally, including nonlinear problems, v` satisfies

A`(u`
1 + v`)−A`u`

1 = r` . (6)

3. Approximate the smooth error v` by a coarser-level function v`+1. To
achieve this in the general nonlinear case, v`+1 is required to satisfy, anal-
ogously to (6),

A`+1(↑`+1
` u`

1 + v`+1)−A`+1(↑`+1
` u`

1) = ↑`+1

` r` , (7)

where ↑`+1
` and ↑`+1

` are two fine-to-coarse transfer operators. For ex-

ample, (↑`+1

` r`)(x`+1) is typically an average of r`(x`) over several points
x` in the neighborhood of x`+1. Actually, (7) is not solved exactly: An
approximate solution v`+1

1 is calculated by several (usually one or two)
successive multigrid cycles (for level ` + 1), starting from the initial ap-
proximation v`+1

0 = 0.

4. Let ↑`
`+1 v`+1

1 denote a function on Ω` obtained by interpolating v`+1
1

from Ω`+1. This function approximates the error v`, hence an improved
solution to (3) is

u`
2 = u`

1+ ↑`
`+1 v`+1

1 . (8)

5. Further improve the solution u`
2 by few (typically 1 or 2) relaxation sweeps.

Efficiency. Since the cost of calculation on increasingly coarser levels de-
creases geometrically, the total cost of the above multigrid cycle is just equivalent
to the cost of some 4 to 6 relaxation sweeps at level `. If the relaxation scheme
and the intergrid transfers ↑`+1

` , ↑`+1

` and ↑`
`+1 are properly chosen, each such
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cycle can typically reduce the size of the algebraic error (the error in solving
(3)) by at least an order of magnitude.

Full Approximation Scheme (FAS). To simplify Eq. (7) in nonlinear
problems, instead of v`+1 one introduces

u`+1
∗ =↑`

`+1 u`
1 + v`+1 (9)

to serve as the coarse-level unknown function, yielding the equation

A`+1u`+1
∗ = f `+1

∗ , (10)

where
f `+1
∗ = ↑`+1

` r` + A`+1(↑`+1
` u`

1) (11)

is known. Eq. (10) has the same form as the finer level equation (3), so the
same computer routines can be used at all levels. It is thus Eq. (10) whose
approximate solution is obtained at Step 3 of the algorithm, by several (1 or 2)
level-` + 1 multigrid cycles, starting from the initial approximation u`+1

∗0 =↑`+1
`

u`
1. Having so obtained an improved approximation u`+1

∗1 , one computes v`+1
1 =

u`+1
∗1 − ↑`+1

` u`
1 and proceeds to Step 4 as before.

Note that the new unknown u`+1
∗ represents on the coarse level the sum

of the fine-level current approximation and its intended correction, hence the
name FAS. By (9), at convergence (when v` = 0 and hence r` = 0 and hence
also v`+1 = 0), u`+1

∗ represents the fine-level solution at the coarse level, a fact
that has various applications (see below).

Assuming in (3) that the given forcing terms are discretized so that f `+1 =
↑`+1

` f `, and using (5), one can rewrite (10) in the form

A`+1u`+1
∗ = f `+1 + τ `+1 , (12)

where
τ `+1 = A`+1(↑`+1

` u`
1)− ↑

`+1

` (A`u`
1) . (13)

Note that Eq. (12) is the same as Eq. (3) for u`+1, except for the additional
term τ `+1. Adding this term replaces the original coarse-level solution u`+1 by
u`+1
∗ , which has (at convergence) the accuracy of the finer level `; hence τ `+1 is

called the fine-to-coarse defect correction. Due to such corrections, the coarse
operators need not be very accurate.

The τ `+1 correction has many applications: It approximates the local dis-
cretization error, hence can be used to decide where the discretization is not
fine enough (see Sec. 3 below). In various situations where a problem needs to
be re-solved many times, at all or at many parts of the problem domain τ `+1

need not be updated each time, allowing to avoid re-processing the fine level at
those parts (see Secs. 4 and 7 below).

Full Multigrid (FMG) algorithm is defined recursively as the algorithm
that solves Eq. (3) at level ` by nc multigrid cycles, where the initial approx-
imation is obtained by interpolation from a solution that has been previously
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calculated, by the same FMG algorithm, at the next coarser level (` + 1). Usu-
ally, one cycle (nc = 1) at each level is enough to reach an error (in solving Eq.
(2)) smaller than the discretization error (the difference between the solutions
of (2) and (1)). In the case of high-order discretizations, the number of cycles
required per level to attain the high-order accuracy increases proportionately to
that order, but is always independent of the number of points in Ω0. The total
cost of the algorithm, to attain second-order accuracy for example, is normally
less than the cost of 10 relaxation sweeps at the finest (` = 0) level. Moreover,
for essentially just the same cost, the FMG algorithm can incorporate processes
such as continuation (see Item 5 in Sec. 6 below), inverse-problem solving (see
Item 4 there) and grid adaptation (see Sec. 3 below), avoiding the need to
re-solve a problem many times over.

Denote by u`
f the final level-` solution in the FMG algorithm (before start-

ing the level-(` − 1) cycles). A suitable cycle number nc can inexpensively be
chosen at the coarse FMG levels by checking that increasing it does not signifi-
cantly reduce the differences ‖u`

f− ↑`
`−1 u`−1

f ‖. The rate of decrease of this full
sequence of differences (` = L,L − 1, . . . , 1) gives a practical estimate for the
effective discretization order, from which the discretization error in the target
numerical solution u0

f can also be assessed.

A road map for CFD. Further techniques for efficient multigrid treatment
of flow problems have been summarized in a detailed table called “Barriers to
Achieving Textbook Multigrid Efficiency in CFD” [16]. It lists every foreseen
kind of computational difficulty for achieving that goal, together with the pos-
sible ways for resolving the difficulty, their current state of development, and
references.

Included in the table are staggered and nonstaggered, conservative and non-
conservative discretizations of viscous and inviscid, incompressible and com-
pressible flows at various Mach numbers, as well as a simple (algebraic) turbu-
lence model and comments on chemically reacting flows. The listing of asso-
ciated computational barriers involves: non-alignment of streamlines or sonic
characteristics with the grids; recirculating flows; stagnation points; discretiza-
tion and relaxation on and near shocks and boundaries; far-field artificial bound-
ary conditions; small-scale singularities (meaning important features which are
not visible on some of the coarse grids); large grid aspect ratios; boundary layer
resolution; and grid adaptation.

3 Multigrid solver with grid adaptation

A very substantial saving in the number of degrees of freedom needed by a
discretization of a PDE to attain a given accuracy can be obtained by employing
various forms of local grid adaptation. The multigrid solver, in its nonlinear FAS
form, yields a particularly flexible and efficient framework for that purpose, with
some additional benefits. The general description of this framework has been
given elsewhere [7, §§7–9], [10, §9], [11, §9] or [3], so we only summarize the
main points.
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Local refinements are created by adding local patches of a finer grid over
desired parts of a domain covered by a “parent” coarse grid. The system is
recursive: each of the “child” patches may itself contain smaller subdomains
over which “grandchildren” patches of a further refinement are set. Each fine-
patch solution supplies the fine-to-coarse defect correction τ `+1 to the equations
of its parent (coarse) grid, thereby enforcing the fine-grid accuracy over that
patch. This is a natural part of the FAS multigrid solver which therefore solves
the resulting composite discretization with the same efficiency (per degree of
freedom) as solving uniform-grid equations. This composite structure is very
flexible and can effectively be highly non-uniform, while all its discrete equations
are still written in terms of uniform grids. This makes it simple and inexpensive
to use high-order approximations, while storing only a negligible amount of
geometrical information. Also in this way no unintended grid anisotropy is
introduced (in contrast to some grid generation or grid transformation methods,
in which such anisotropies do enter, causing considerable complications for the
multigrid solver).

The fine-to-coarse defect correction τ `+1 also yields, as a byproduct, pre-
cise adaptation criteria: a defect correction larger than a natural threshold
indicates that a further local refinement is needed. Moreover, an automatic
self-adaptation process can be integrated into the FMG solver: as the latter
proceeds to increasingly finer levels, it can also decides (using these adapta-
tion criteria) where those finer levels should be set, thereby yielding a one-shot
solver/adaptor .

It is also possible for each of the local grid patches to have its own local
coordinate system. For example, in flow problems, the coordinate system may fit
wall boundaries (or more generally: stream lines), facilitating the introduction
of highly anisotropic grids in boundary layers (particularly fine cross-stream
meshsizes). In geophysical calculation, while the overall coordinate system over
the entire globe will necessarily harbor polar singularities, the local patches can
each entertain its own nearly flat system.

An important feature of this adaptation is that often the calculation within
the local-refinement patch can be done once for all : Although the solution
in the patch changes when the parent-grid solution changes, the fine-to-coarse
defect corrections usually change very little. At most one more brief “visit”
to the patch (e.g., one more relaxation sweep at the finer level) toward the
end of the calculation will normally be needed to update the defect corrections.
Alternatively, one can calculate apriori the approximately linear dependence of
the defect corrections on the local parent-grid values.

PDE solvers on unbounded domains. As pointed out in [7, §7.1], prob-
lems in unbounded domains can be solved by a multigrid structure employing
increasingly coarser grids on increasingly larger domains, using an FAS multi-
grid solver. The structure is essentially the same as in the grid adaptation
described above. Using general grid optimization equations (see [7, §8.1] or [10,
§9.5] or [11, §9.5]), one can calculate how far out one must use a certain mesh-
size to maintain a certain accuracy. Employing a suitable version of the λ-FMG
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algorithm [11, §9.6], it has been shown for various problems that the accuracy-
to-work relation typical to multigrid solvers of the bounded -domain problem can
in this way be obtained for the unbounded domain, where accuracy is in terms
of approaching the differential solution.

4 Time-Dependent Problems

In the numerical solution of time-dependent problems, to allow large time steps
and/or fully adaptable discretization, implicit time steps must be used, hence a
system of equations must be solved at each time step. Multigrid solvers for such
systems are usually similar to but simpler than their steady-state counterparts,
because these systems are easier than the steady-state equations, in various
ways: they have better ellipticity measures (due to the time term); they do not
involve the difficulties associated with recirculation (in flow problems); and they
each come with a good first approximation (from the previous time step). A
simple “F cycle” at each time step (effectively an FAS-FMG algorithm for the
solution increment , i.e., its departure from the previous-time solution) should
solve the equations much below the incremental discretization errors (the errors
added in the current time step). Hence, the errors accumulated over time due to
the solver are generally much below the accumulated discretization errors [22].

It is generally true that fully efficient multigrid methods for the steady-state
equations directly yield also at-least-as-efficient methods for time-accurate inte-
grations, where the work per implicit time step is just comparable to the work of
an explicit time step. Moreover, in various cases (e.g., parabolic equations with
steady or smoothly-varying-in-time forcing terms), the work can be substan-
tially smaller than that of an explicit time step. This is due to the smoothness
of solution increments (solution changes from a previous time or solution depar-
tures from a simple convection). Such smoothness is typically established away
from the immediate neighborhood of oscillatory initial or boundary conditions.
It implies that the high-frequency part of the solution changes slowly. Hence
the multigrid solver applied at each time step needs to actually visit the finest
levels only once per many time steps, provided that the fine-to-coarse correction
τ `+1 is carried from each such visit to subsequent time steps [35], [37].

Parallel processing in space-time. A unique feature of multigrid solvers
is the possibility to apply parallel processing across space and time, i.e., to
process simultaneously earlier and later time steps, whereas single-level solvers
must proceed sequentially in time. (This unique feature is discussed in [9, §3.10],
[13, §11] and [45]).

To achieve that, time is treated just as another space coordinate, and the
whole problem is solved by the FMG algorithm, starting with a grid which is
coarse in both space and time, proceeding to finer levels, with one to two cycles
at each level. At fine levels, where most of the computational work is spent, all
the processes (relaxation and inter-grid transfers) can employ many processors
in parallel, each one working in its own space-time subdomain.
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This of course makes it possible to use efficiently (i.e., at a given arithmetic
to communication ratio) a larger number of parallel processors than can be used
when parallelization is done only across space (marching sequentially in time).

Depending on the number of processors, available storage, etc., the above
algorithm will often be applied not to the entire time evolution, but to one
(large) time interval at a time. (A more sophisticated multilevel time windowing
is described in Sec. 5 below).

Grid adaptation in space-time. Simultaneous space-time multigridding
also yields a very efficient way for general space-time grid adaptation, where both
the spatial meshsize and the time step can be adapted — locally in both space
and time. Just as in the case of pure spatial (i.e., steady-state) problems, the
multigrid environment can provide convenient flexible structures, where discrete
equations need be derived only for uniform grids (facilitating economic high-
order discretizations and parallelizable and vectorizable processing), while only
negligible geometric information need be stored. The multigrid algorithm also
provides local refinement criteria and one-shot self-adaptive solvers; see Sec. 3.

5 Atmospheric data assimilation

A major difficulty in weather prediction is the need to assimilate into the so-
lution of the atmospheric flow equations a continuously incoming stream of
data from measurements carried out around the globe by a variety of devices,
with highly varying accuracy, frequency, and resolution. Current assimilation
methods require much more computer resources than the direct solution of the
atmospheric equations. The reason is the full 4-D coupling: Any measurement,
at any place and time, should in principle affect the solution at any other place
and time, thus creating a dense NsNt ×NsNt matrix of influence, where Ns is
the huge number of gridpoints representing the 3-D atmosphere and Nt is the
large number of time steps spanning the full period over which large-scale at-
mospheric patterns are correlated. As a result, not only are current assimilation
methods very slow, but they are also based on highly questionable compromises,
such as: ignoring the all-important spatially or temporally remote correlations
of large-scale averages; limiting control to only the initial value of the flow at
some arbitrarily chosen initial time, instead of controlling the numerical equa-
tions at all times; and assimilating only the data from one time interval at a
time, without fully correlating with other intervals.

Multiscale methods can potentially avoid all these compromises, and assim-
ilate the observational data at a cost just comparable to that of a fast multigrid
solver of the direct flow equations.

This is considered in principle possible because: (1) The processes of data
assimilation can be incorporated, level by level, into the multigrid solver of the
direct problem. (2) Large scale averages can inexpensively be assimilated on the
correspondingly coarse levels of the multigrid solver (coarse in both space and
time). (3) Deviations from any large-scale average must be assimilated on some
finer scale, but their correlation on that scale is local. (4) The measurements
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(with their representativeness errors) are generally less accurate and in most
regions less resolved than the numerical flow itself, hence their assimilation
need not be done at the finest numerical level.

Multiscale 4D assimilation. Since the atmospheric data assimilation
problem involves full 4D couplings, both forward and backward in time, it
is proposed to use one full-multigrid (FMG) algorithm for the entire 4D in-
verse problem (but possibly with the storage-saving windowing described be-
low). This algorithm is like a usual FMG solver for the direct 4D atmospheric
equations, except that at each stage, on each level, the relaxation of the solution
(the flow) variables u(x) is accompanied by a relaxation of the control variables
σ(x) at that level (for an example of the nature of σ(x), see Sec. 6 below). The
FAS representation (see Sec. 2) of both the solution and the control allows
relaxing each of them at any desired level. As a result, in essence, large-scale
averages of the solution are controlled on correspondingly coarse grids (coarse
in both space and time), while a distributive relaxation scheme for the control
(see below) ensures at each level local assimilation of local deviations.

For this purpose the observational data should be transferred to all levels of
the algorithm. Using the FAS interpolation formulae, each observational relation
at each level can directly be expressed at the next coarser level. Wherever
there are too many such relations per coarse flow variable, their number can
be reduced by suitable averaging. Note that this simple procedure would not
exactly yield the “best” assimilation in any pre-defined norm, but such exact
definitions of “best” are arbitrary anyway, and typically counterproductive (cf.
[29, §13]).

Localized relaxation of the control variables σ(x) (such as those de-
scribed in Sec. 6 below) is obtained by distributive relaxation, i.e., each relax-
ation step simultaneously changes several neighboring values of σ. Namely, the
k-th step has the form

σ(x) ← σ(x) + ρk(x) · δk , (14)

where the support of each ρk(x) is a small neighborhood that shifts from step
to step. The shape ρk(x) is designed so that the effect of the control change
(14) is essentially local, i.e., it entails a solution change of the form

u(x) ← u(x) + vk(x) · δk , (15)

where to a good approximation vk(x) has also a local support, and can therefore
be calculated by several local relaxation steps. Such approximate localness of
the effect is usually obtained simply by designing each ρk(x) to have several
vanishing moments, e.g.,

∑
x

ρk(x) = 0 and
∑

x

x · ρk(x) = 0 . (16)

The amplitude δk of the control change (14) can then be calculated by requiring
that the local solution change (15) best fits the observational data.
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Note that due to restrictions like (15), the changes (14) do not span the
entire space of possible changes; however, they are exactly complemented by
changes to the control made at coarser levels. It is this kind of localized nature
of relaxation at each level that allows good assessment of correction amplitudes
and hence fast convergence of the multilevel inverse-problem solver.

The levels at which the control should be adjusted depends on the local
density of the measurements, their accuracy and their distance from regions
where details of the solution are of interest.

Time windowing. Should the 4D solution require too much storage, it
is possible to reorganize it in multiscale windows, marching in time, without
much loss of efficiency. Using FAS, the structure for this is similar to the local
refinement techniques (see Sec. 3), but successively shifted in time. That is,
only a certain window (time slice) of the finest grid need be kept in memory at
a time. Having relaxed over it, residuals are then transferred from this window
to the coarser grids. On returning from the coarser grids more relaxation is
made on the finest grid, now in a more advanced window (shifted forward in
time, but partly overlapping its predecessor) and so on. At the coarser levels,
increasingly wider (in real time, but poorer in gridpoints) windows are kept and
advanced in a similar manner. The domain covered by each coarse-grid window
always strictly contains all the current finer ones. The coarsest windows extend
very far in time, especially into the past; as far indeed as there exist data whose
large-scale averages are still correlated to the solution at the time of the current
finest window. At times where a coarse window exists while the next finer one
has already been removed, the coarse-level equations can still retain the FAS
fine-to-coarse (τ) corrections, thus still maintaining the fine-level accuracy of
coarse-level features (see Sec. 2).

Spatial refinements. Some of the finest windows may be local not only
in time but also in space, effecting local refinements at regions of greater hu-
man interest and/or regions requiring higher resolution for mathematical and
physical reasons (sea straits, islands, mountains, etc.).

6 Multiple benefits of multiscale techniques

There are many different ways in which multiscale computational methods can
contribute to data assimilation problems (and similarly to other inverse prob-
lems). The following list of benefits may serve as an example of what a “full
multiscaling” of a problem may involve.

1. Implicit nonlinear time steps. At the level of the underlying direct
CFD equations, fast nonlinear multigrid solvers make it possible to use implicit-
time-step discretizations at full efficiency (see the general approach to time
dependent problems in Sec. 4 above, and multigrid methods for shallow water
and three-dimensional atmospheric models in [6], [5], [4], [46], [47], [38], [39] and
[40]). This entails not only unconditional linear stability, but also avoidance
of bad effects associated with linearized time steps (in which one would use
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fully implicit equations, but based on linearization around the previous-time-
step solution) [4]. The unconditional stability is particularly important for the
multiscale data assimilation processes, enabling work on various temporal and
spatial scales, unconstrained by various Courant numbers.

2. Local refinements are well known to be greatly facilitated by the multi-
grid algorithm. The multiscale environment simultaneously provides convenient
flexible structures, refinement criteria and one-shot self-adaptive solvers; cf.
Secs. 3 and 4.

3. Space + time parallel processing. Still at the level of the direct
CFD equations (but similarly also at the level of the inverse (data assimilation)
problem), multiscaling is a necessary vehicle to obtain parallel processing not
only across space at each time step, but also across time (see Sec. 4 above).

4. One-shot solution of inverse problems. Normally, inverse problems
are solved by a sequence of direct solutions (e.g., direct multigrid solutions),
through which an iterative adjustment is made to the control parameters (the
inverse-problem unknowns). For example, in the adjoint method for atmospheric
data assimilation, a direct solver of the flow equations (marching forward in
time) is followed by an adjoint solution (backward in time) that gauges the first
derivatives of the data-fitness functional with respect to the initial values (the
flow variables at the initial time). These derivatives then drive some adjustments
of the initial values, from which another direct flow solution is next calculated,
and so on. Many iterations are needed for this process to converge, the reason
being that, while the first derivatives of the data fitness are calculated, the sec-
ond derivatives (the Jacobian) are not, hence the size of the needed corrections
cannot be calculated. In multigrid solvers, by contrast, one can integrate the
adjustment of the inverse parameters (the control) into the appropriate stages
of only one direct-problem solver. This solver converges fast, since, due to the
appropriate scale separation obtained by the distributive relaxation (see Sec. 5
above), a good approximate amplitude (δk) of the local correction can be cal-
culated, locally at each scale. (This general approach has been described in [10,
§13], with more details in [13, §8.2] and full development in [43], [1], [2], [32],
[33]).

5. One-shot continuation. The assimilation problem is highly nonlinear,
hence a good starting guess for the solution is important. A general way to ob-
tain such an initial guess is by continuation (embedding), in which the problem
is embedded in a sequence of problems, each requiring another application of the
solver (using the previous-problem solution as the initial guess). In multigrid
solvers, however, the continuation can often be integrated into just one FMG
solver [10, §8.3.2]. For example, at the coarser stages of the FMG algorithm
more artificial viscosity (and/or more regularization, and/or a smaller coeffi-
cient of Dt in the continuity equation) can be used, then gradually be taken out
as the algorithm proceeds to finer levels. This makes the solution much easier
in the first stages, from which it is then continuously dragged into the desired
neighborhood. Such FMG continuation devices are often natural. For example,
larger artificial viscosity would quite naturally be introduced on coarse grids,
even without aiming at continuation. A natural continuation is also supplied by
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the inverse covariance matrix S (see below), which would be smaller on coarser
FMG levels due to larger discretization-error estimates.

6. Full flow control. In most data assimilation approaches (such as the
adjoint method described above), the control parameters (the parameters that
can be changed to obtain fitness of solution to observations) are only the initial
values of the solution. This makes it impossible to benefit from the details
(the oscillating components) of the observations at times far removed from the
initial time, because those details at those times are ill-determined by the initial
values. Instead of controlling just initial values, one should really control the
entire numerical solution. Namely, the control parameters σ(x, t) is a vector-
valued grid function that at each point x and time t gives the deviations in
satisfying the set of flow equations. The objective function (the error functional
that should be minimized) has the general form

E = σT Sσ + dT Wd, (17)

where σ = σ(x, t) is the vector of all control parameters, d =
(
d(y)

)
is the

vector of deviations of the solution u from the observation u0 (i.e., d(y) =
(P 0u)(y)− u0(y), where P 0 is a projection from the solution space (x, t) to the
observation space (y)), and S and W are (positive-definite) weight matrices. In a
crude approximation, one can take these matrices to be diagonal, where at each
time the diagonal inverse S(x, x)−1 is (a very rough estimate of) the expected
square error in the equation at x, which is the sum of the local discretization
error (conveniently estimated by the “τ correction” of the FAS multigrid solver;
see above) and the local modeling errors (errors in the physical assumptions
embodied in the equations). The diagonal inverse W (y, y)−1 is (a very rough
estimate of) the expected square error in the measurement u0(y), including in
particular the “representativeness error” (accidental deviation at the point of
measurement from the relevant local average). More precisely, S and W should
be corresponding general (not necessarily diagonal) inverse covariance matrices
(in which case the discussion at Item 8 below is relevant).

A detailed Fourier analysis by Rima Gandlin, comparing full-flow control
with initial-value control in a model case of 1D + time wave equations, has
demonstrated the great advantage of the former [32], [21].

So extensive control parameters can only be handled by a multiscale treat-
ment, like the one described above. Moreover, using the described methods,
the solution is expected not to be very expensive, especially since the control
parameters σ(x, t) need not be controlled at the finest computational levels; on
such levels σ(x, t) can simply be interpolated from the coarser levels and kept
unchanged during the relaxation (cf. Item 9 below).

7. Unlimited correlation range. In conventional assimilation methods,
each control value interacts with a limited range of measurements: measure-
ments at a restricted (e.g., 6 hours) time interval and sometimes only at con-
fined distances. However, it is clear that large-scale averages of the dynamic
variables interact at much larger ranges. Multiscale data assimilation makes it
inexpensive to correlate solution and measurements at any desired distance in
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space and time, since correlations at increasingly larger distances are calculated
on increasingly coarser grids.

8. Efficient representation of direct and inverse covariance. There
are a number of ways to derive or estimate covariance matrices and various
simplification assumptions are made. However, the real covariance matrices
(especially the model error covariance) are actually dense (not sparse), and
thus involve huge (N2

s N2
t , in principle) amount of information. Even when the

matrix is sparse, its inverse, used in (17), is certainly dense. The only efficient
way of representing, let alone computing, such huge dense matrices and their
inverses is a multiscale representation, based on their asymptotic smoothness.
This would be similar to the methods described in [24], [14], [17, §10 and §14.3]
and in [30] for calculating integral transforms, many-body interactions, solutions
to integro-differential equations, and Kalmen filtering, all involving n×n dense
matrices whose complexity (the amount of computer operations required to
perform a multiplication by either the matrix or its inverse) is reduced to O(n)
by multiscale techniques.

To achieve such a low complexity it is of course necessary to assume the co-
variance matrices to be reasonably smooth. Namely, if the errors at two points,
x and y, remote from each other, are correlated at all, their correlation is as-
sumed to vary like g1(x)g2(y)G(x, y), where G(x, y) is asymptotically smooth
(meaning that some p-order derivatives of G(x, y) decay with the distance from
y to x). Such assumptions seem very reasonable in practice, and are certainly
more accurate than neglecting distant error correlation altogether. They can
also be weakened in various ways, for example, it may be enough to assume
smoothness for variations in only some directions.

9. Improved regularization. First, the multiscale solver described above
is likely to require much less regularization than conventional solvers since the
main ill-posedness in the problem is the long term and long range influence of
fine-scale oscillations, while the multiscale large-scale interactions are mediated
by coarse grids, omitting these oscillations. Secondly, attractive regularization
devices are offered by the multiscale processing. For example, statistical theories
of the atmospheric equations yield the relative expected energy at different
scales. In a multiscale processing this can be used to properly penalize any
excessive local energy at every scale, yielding an excellent regularization scheme
(which could not even be formulated in uniscale processing). Generally, the
multiscale data assimilation need not be governed by one all-embracing objective
function, but can employ a collection of different directives at different scales.
(Cf. Item 12 below).

10. Fast assimilation of new data. Normally, new observation data keep
arriving and need to be assimilated into an already partly existing approximate
solution; i.e., the new data should usually both modify the previous solution
and extend it into a new time interval. The multiscale solver is particularly
suitable for the task: The new data normally does not affect the high frequency
details of the solution in much older times; also, these details are normally no
longer of interest. Hence, increasingly older times can participate in the new
processing on increasingly coarser levels (still maintaining the fine-to-coarse τ
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corrections previously computed for them). This exactly fits into the window-
ing algorithm above (Sec. 5). The resulting ease of assimilating new pieces of
data may well facilitate a continuous assimilation policy , with new data being
assimilated much more often than today.

11. Multiscale organization of observation data. Either for the pur-
poses of the multiscale assimilation procedure, or for a variety of other reasons,
it is very useful to organize the observation data in a multiscale structure. This
may simply mean pointers from a multiscale hierarchy of uniform grids into the
set of data, with finer uniform levels introduced only where there are still more
than a couple of observations per grid cell. Such data structures, called quad-
trees in 2D or oct-trees in 3D, are commonly used to facilitate regional compu-
tations of all kinds. Beyond this, it is possible to replace many observations by
their average at some larger scale, serving as a kind of macro-observation, its
associated error estimate being of course reduced by standard rules of statistics.
This can be repeated, to obtain still-larger-scale representations. Such struc-
tures may save much storage, and provide directly the needs of the multiscale
assimilation algorithms.

12. Scale-dependent data types. Instead of simple averaging, the macro-
observations just mentioned can be formed from the fine-scale data in a variety
of other, often more meaningful, ways. In particular, fine-scale waves should be
represented on coarse scales by their slowly-varying amplitude. Indeed, at large
distances the wave phase is ill-posed, while its amplitude is still meaningful.
(Cf. the multigrid methods for wave equations in [23] and [17, §7].)

7 Feedback Optimal Control

We consider a dynamical system that involves a vector x of state functions and
a vector u of control functions, both being functions of time (and possibly also
of space), governed by the initial-value ODE (or PDE)

dx

dt
= F (x, u) , B0x(t = 0) = b0 ,

where F and B0 are vectors of known functions (or spatial operators). The
optimal control problem is to find the control u for which this dynamical system
minimizes a given objective functional J(x, u) under various constraints, such
as target-time (T ) conditions of the type B1x(t = T ) = b1. In the feedback
optimal control problem it is assumed that new initial conditions Box(t) are
continuously fed from the controlled device at all times 0 ≤ t < T , requiring
for optimality continuous updating of the control u. Fast numerical updates are
required for real-time control.

In a usual approach to the feedback problem, the dynamical system is ap-
proximated by a linear-quadratic regulator (LQR), in which F (x, u) = Ax + u
and J(x, u) =

∫
(|Cx(t)|2 + |u(t)|2)dt, where A and C are linear operators on a

suitable Hilbert space H, x ∈ H and u ∈ U ⊂ H. Provided the system is sta-
bilizable and C renders it detectable, there exists a unique nonnegative solution
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K to the Ricatti equation

(A∗K +KA−K2 + C∗C)x = 0 , ∀x ∈ H ,

and u(t) = −Kx(t) yields the desired feedback. In most cases this approach is
very inefficient, either because the LQR approximation should be iterated many
times, and/or because of the non-sparseness of the (discretized) operator K, and
the resulting high dimensionality of the Ricatti equation.

Our multiscale approach, by contrast, is based on a fast multigrid solver
for the open-loop (i.e., not feedback) optimal control problem, installed in a
multiscale way that allows super-fast (essentially local) updates upon feedbacks.

The multigrid open-loop solver is very efficient by itself, a one-shot FAS-
FMG solver for the nonlinear (non-LQR) problem. In fact, for various actual
problems, it can share many of the potential benefits listed in Sec. 6 above.
The super-fast updates are based on the observation that, upon changing the
initial conditions, the change in the solution is increasingly smoother at times
increasingly far from the initial. (In various actual problems, the sense of this
smoothness, or the sense of non-localness, has to be carefully understood.) This
makes it possible for the multigrid re-solving algorithm to re-process its fine
grids only at the very early times, while at later times only coarse levels are
re-processed, with FAS fine-to-coarse defect (τ) corrections being frozen there
(cf. [10, §15].) More precisely, at increasingly later times, any given multigrid
level (a given timestep and, when relevant, spatial meshsize) needs to be re-
processed increasingly more rarely. As a result, the computational cost of re-
resolving is equivalent to only local re-processing (essentially just few steps near
the currently initial time) of the full solver. This will usually be far less expensive
than applying K (even just once, and even assuming the Riccati equations has
already been solved).

Tests. We have tested this approach on several toy F-16 maneuvering prob-
lems (given to us by Dr. Meir Pachter of the Air Force Institute of Technology
at Wright Patterson Air Force Base.) The linear dynamics includes three state
and one control functions. Both quadratic and non-quadratic objectives were
tested, including the L∞ norm (the maximum absolute value) of one of the state
functions.

The open-loop optimal control problem, which in this case is a two-point
boundary value ODE system with 7 unknown functions, has been discretized
by second-order finite differences on a staggered grid and solved by an FMG
algorithm. Just two V (1, 1) multigrid cycles per grid (nc = 2) proved enough to
produce a solution with algebraic errors much smaller than (only few percent of)
the discretization errors. In the case of the L∞ objective, a continuation process
has been integrated into this FMG solver, approaching L∞ by Lp, with p = 2m

at the m-th FMG level. Each of the relaxation sweeps included one red/black
pass for each of the 7 ODEs, some of the passes being of the Gauss-Seidel type,
the others — Kacmarz type. For some of the toy problems the principal part of
the ODE system was scale dependent, producing boundary layers and requiring
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two different discretization schemes, one at fine levels the other at coarse levels,
each with its own corresponding relaxation scheme.

The feasibility of the super-fast solution updates upon feedbacks has been
established in our tests by monitoring the fine-to-coarse (τ) corrections. When
τ is appropriately scaled (divided by proper solution values available to the
coarse-level re-solver) its values (excluding a couple of them near the initial
time) turn out to change very little upon changing the initial conditions. This
shows that τ can indeed be frozen, so that re-solving can be restricted to coarse
levels, as expected.
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[42] Stüben, K., Algebraic multigrid (AMG): An introduction with applica-
tions, Guest appendix in Trottenberg, U., Oosterlee, C. W. and Schüller,
A., Multigrid , Academic Press, London, 2000. A review of algebraic multi-
grid, J. Comp. Appl. Math. 128(1–2), 2001.

[43] Ta’asan, S., One-shot methods for optimal control of distributed parame-
ter systems, I. Finite dimensional control, ICASE Report 91–2, 1991.

[44] Trottenberg, U., Oosterlee, C. W. and Schüller, A., Multigrid , Academic
Press, London, 2000.

[45] Vandewalle, S. and Horton, G., Fourier mode analysis of the waveform
relaxation and time-parallel multigrid methods, SIAM J. Sci. Comput.
(1995).

[46] Yavneh, I. and McWilliams, J. C., Breakdown of the slow manifold in the
shallow-water equations, Geo. Astr. Fluid Dyn. 75 (1994) 131–161.

[47] Yavneh, I. and McWilliams, J. C., Robust multigrid solution of the
shallow-water balance equations, J. Comput. Phys. 119 (1995) 1–25.

20


