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Abstract

Systematic Upscaling (SU)is a new multiscale computational method-
ology for the accurate derivation of equations (or statistical relations) that
govern a given physical system at increasingly larger scales. Starting at
a fine (e.g., atomistic) scale where first-principle laws (e.g., differential
equations) are known, SU advances, scale after scale, to obtain suitable
variables and operational rules for simulating the system at any large
scale of interest. SU combines the complementary advantages of two mul-
tilevel computational paradigms that have emerged over the last 35 years:
multigrid in applied mathematics and renormalization group in theoret-
ical physics. It includes systematic procedures to iterate back and forth
between all the scales of the physical problem, with a general criterion
for choosing appropriate variables that operate at each level, and general
techniques to derive their governing relations. Indefinitely large systems
can in this way be simulated, with computation at each level being needed
only within limited representative windows. No scale separation is as-
sumed; unlike conventional ad-hoc multiscale modeling, SU is in principle
quite generally applicable, free of slowdowns and bears fully-controlled
accuracy.

Fields that can be greatly impacted by SU range from elementary par-
ticle physics and quantum chemistry to molecular and macromolecular
dynamics, material science, nano-technology, bio-technology, and others.
Cutting across such diverse fields, the present article does not focus on any
specific application but on the generic principles of upscaling various types
of systems, such as: problems defined on grids on one hand, and mov-
ing particles on the other hand; from ensembles of single-atom molecules
to macromolecules in solution; local interactions as well as long-range
ones; dynamical systems, both deterministic and stochastic; equilibrium
calculations, including special procedures for low temperatures; energy
minimization, particularly for functionals afflicted with multiscale nested
attraction basins; etc. A suite of related upscaling techniques connects all
these cases into one unified body of study.
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1 Introduction

Despite their dizzying speed, modern supercomputers are still incapable of han-
dling many most vital scientific problems. This is primarily due to the scale gap,
which exists between the microscopic scale at which physical laws are given and
the much larger scale of phenomena we wish to understand.

This gap implies, first of all, a huge number of variables (e.g., atoms or
gridpoints or pixels), and possibly even a much larger number of interactions
(e.g., one force between every pair of atoms). Moreover, computers simulate
physical systems by moving few variables at a time; each such move must be
very small, since a larger move would have to take into account all the motions
that should in parallel be performed by all other variables. Such a computer
simulation is therefore extremely slow in changing large-scale features of the
system, and is particularly incapable of moving the system across large-scale
energy barriers, which can each be crossed only by a large, coherent motion of
very many variables.

This type of computational obstacles makes it impossible, for example, to
calculate the properties of nature’s building blocks (elementary particles, atomic
nuclei, etc.), or to computerize chemistry and materials science, so as to enable
the design of materials, drugs and processes, with enormous potential bene-
fits for medicine, biotechnology, nanotechnology, agriculture, materials science,
industrial processing, and so on. With current common methods the amount
of computer processing often increases so steeply with problem size, that even
much faster computers will not do.

Past studies have demonstrated that scale-born slownesses can often be over-
come by multiscale algorithms. Such algorithms have first been developed in
the form of fast multigrid solvers for discretized PDEs [2], [3], [5], [6], [27], [22],
[38]. These solvers are based on two processes: (1) classical relaxation schemes,
which are generally slow to converge but fast to smooth the error function; (2)
approximating the smooth error on a coarser grid (typically having twice the
meshsize), by solving there equations which are derived from the PDE and from
the fine-grid residuals; the solution of these coarse-grid equations is obtained
by using recursively the same two processes. As a result, large scale changes
are effectively calculated on correspondingly coarse grids, based on information
gathered from finer grids. Such multigrid solvers yield linear complexity , i.e.,
the solution cost is just proportional to the number of variables in the system.

In many years of research, the range of applicability of these methods has
steadily grown, to cover most major types of linear and nonlinear large systems
of equations appearing in sciences and engineering. This has been accomplished
by extending the concept of “smoothness” in various ways, finally to stand gen-
erally for any poorly locally determined solution component, and by correspond-
ingly diversifying the types of coarse representations, to include for instance grid-
free solvers (algebraic multigrid [12], [13], [7], [32]), non-deterministic problems
([14], [29], [24], [9], [15]) and multiple coarse-level representations [16].

It has been shown (see the general survey [11]) that the inter-scale inter-
actions can indeed eliminate all kinds of scale-associated difficulties, such as:
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slow convergence (in minimization processes, PDE solvers, etc.); critical slow-
ing down (in statistical physics); ill-posedness (e.g., of inverse problems); con-
flicts between small-scale and large-scale representations (e.g., in wave problems,
bridging the gap between wave equations and geometrical optics); numerousness
of long-range interactions (in many body problems or integral equations); the
need to produce many fine-level solutions (e.g., in optimal control, design and
data assimilation problems), many eigenfunctions (in electronic structure calcu-
lation, for example) or very many fine-level independent samples (in statistical
physics); and more. Since the local processing (relaxation, for example) in each
scale can be done in parallel at all parts of the domain, the multiscale algo-
rithms, based on such processing, proved ideal for implementation on massively
parallel computers.

To obtain even further generality, there emerge however two basic reasons
to go beyond these multigrid methods. First, they cannot perform well for
highly nonlinear cases, where configurations cannot be decomposed into weakly-
interacting local and non-local parts. Second, for many systems even the linear
complexity is not good enough, since the number of variables is huge. Such
systems on the other hand are typically highly repetitive, in the sense that the
same small set of governing equations (or Hamiltonian terms) keep repeating
itself throughout the physical domain. This opens the way to the possibility of
having, at the coarse level too, a small set of governing equations that are valid
everywhere, and that can be derived from fine-level processing conducted only
in some small representative “windows” (as defined below).

These two basic reasons point in fact in the same direction. Instead of
relaxing the given system of equations so as to obtain a smooth error that can
be approximated on a coarse level, one should use coarse level variables that are
little sensitive to relaxation (e.g., representing chosen averages, rather than a
subset of individual fine-level values) and that represent the full solution rather
than the correction to any given current approximation. Such coarse variables
can be chosen (as described below) so that the coarse-level equations can be
derived just by local processing. We use the term “upscaling” for this type
of direct (full-solution) transition from a fine level to a coarser one. Such a
transition is valid even in those highly nonlinear cases where all scales interact
with each other so strongly that correction-based multileveling is inapplicable.

In fact, upscaling, under the name “renormalization”, was first introduced
into exactly such systems where all scales interact most strongly: the highly non-
linear systems of statistical mechanics at the critical temperature of phase tran-
sition. The renormalization group (RG) method (see, e.g., [39], [36], [37]) was
developed contemporaneously with, but independently of the multigrid method,
its chief purpose having been to investigate the behavior of such critical systems
at the limit of very large scales. The RG method has thus focused on analyz-
ing, theoretically and computationally, the fixed point of the group of successive
renormalization steps, and various universal asymptotic power laws associated
with it. Little has been done on the other hand to upscale systems without a
fixed point, which is the prevalent situation in many practical problems. Also,
the RG computational efficiency remained very limited, due to the lack of a
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systematic coarse-to-fine transition, which is needed either for accelerating sim-
ulations at all levels (as in multigrid solvers) and/or for confining them to small
representative windows (as described below).

This article reviews the principles and typical tools of a new computational
methodology, called Systematic Upscaling (SU). Building on the complementary
advantages of multigrid and RG described above, SU is a methodical derivation
of numerical equations (or statistical rules) that govern a given physical system
at increasingly larger scales, starting at a microscopic scale where first-principle
laws are known, and advancing, scale after scale, to obtain suitable variables
and operational rules for processing the system at much larger scales. No scale
separation is assumed; in fact, small ratio (typically 1:2 to 1:4) between succes-
sive scales is essential: it ensures slowdown-free computations that at each scale
can be confined to certain representative “windows” (subdomains selected by
the coarser scale, each containing relatively few variables).

The development of SU aims at providing necessary tools for surmounting
extreme computational bottlenecks in many areas of science and engineering,
such as: statistical mechanics, especially at phase transition; elementary-particle
physics; electronic structure of molecular system (for deriving the inter-atomic
force fields); molecular dynamics of fluids, condensed matter, nano structures
and macromolecules, including proteins and nucleic acids; turbulent fluid dy-
namics; and global optimization of systems with multiple-scale energy barriers.

The SU approach should not be confused with various methods of multiscale
modelling (MSM, also called “multiscale simulation”) being developed in sev-
eral fields (e.g., materials science). Those methods study a physical system by
employing several different ad-hoc models, each describing a very different scale
of the system. Their basic approach is the fine-to-coarse parameter passing , in
which data obtained from simulating a finer scale model, often coupled with
experimental observations, are used to determine certain parameters of a larger
scale model, regarding the latter as a coarse graining of the former. Except for
the values of those parameters, the larger-scale model is assumed to be known,
including its degrees of freedom and the general form of its equations — while in
SU they are all systematically derived. In particular, a basic feature missing in
MSM (as in RG) is the accurate transition from coarse levels back to finer ones,
and the use of this transition as a systematic vehicle for choosing an adequate
set of coarse variables and for supplying boundary values for the finer-levels
windows. Successful as MSM methods are in various cases, they lack general-
ity, are often inapplicable (requiring wide scale separation) or inaccurate (based
on questionable large-scale models), and involve much slowdown due to large
scale gaps. SU, by contrast, is built to inherit from multigrid and RG general
and methodical procedures to construct and iteratively employ all intermediate
scales, with slowness-free efficiency and fully-controlled coarse-level accuracy.

Unlike MSM and classical macroscopic phyiscal models, the SU coarse-level
operational rules are not closed-form equations; they are typically more like
open-ended numerical tables, that can always be extended to achieve ever higher
accuracy.
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2 Example: Simple macromolecule

Various examples of systematic upscaling will be surveyed below. To give a
very concrete idea, an example of particular relevance to biomolecules will be
discussed in more details. This is a simple polymer model, whose systematic
upscaling has been studied in [1], and described also in Sec. 14.6 in [11].

Simulation of long polymers (and generally all macromolecules) is one of the
most computationally intensive tasks. This is due mostly to the large variation
in time scales (10−15 seconds to several hours) and length scales (1Å–1000Å)
involved in each problem and the many energy barriers and attraction basins
found at all scales. While much of the interesting behavior occurs at longer
time (or length) scales, the shorter scales, where the basic equations are given,
constrain the size of steps in simulations. By applying systematic upscaling these
constraints can hopefully be removed, as different physical scales are resolved
on corresponding computational levels.

The model. The simple polymer is a non-branching long chain of n repeat
units of CH2 called monomers; see the comprehensive survey [23]. We use
the united-atom model of [30], where each monomer is considered as a single
unit (“atom”) and details of its internal structure and interactions are ignored,
so mathematically the polymer is represented as a chain of n points in R3,
located at positions uj = (xj , yj , zj). The internal coordinates employed to
describe interactions are the distances ri,j = |ui − uj |, the angles θi (angle
between the lines ui−1ui and uiui+1) and the dihedral (or torsion) angles φi+1/2

(angle between the planes ui−1uiui+1 and uiui+1ui+2). The overall Hamiltonian
(energy) functional is

H(u) =
n−1∑
i=1

Kr(ri,i+1 − r0)2 bond-length potentials

+
n−1∑
i=2

Kθ(cos θi − cos θ0)2 bond-angle potentials

+
n−2∑
i=2

Fφ(φi+1/2) bond-dihedral (torsion) potentials

+
∑

|i−j|≥4

ε

[(
σ

rij

)12

−
(

σ

rij

)6
]

Lennard-Jones potentials

(2.1)
where r0 = 1.52 Å, Kr = 250 Kcal/mol/Å2, θ0 = 110◦, Kθ = 60 Kcal/mol,
ε = 0.09344 Kcal/mol, σ = 4.5 Å and

F (φ) =
1
2

[
K1

φ(1− cos φ) + K2
φ(1− cos 2φ) + K3

φ(1− cos 3φ)
]

,

with K1
φ = 1.6Kcal/mol, K2

φ = −0.867Kcal/mol, K3
φ = 3.24Kcal/mol. It

is easy to see that Fφ is a function featuring three local minima with 1.5 to
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2 Kcal/mol energy barriers between them. Also observe that the bond-length
potentials are much stronger than the bond-angle potentials which in turn are
much stronger than the torsion potentials. Therefore the latter are the main
active degrees of freedom: large-scale changes in the shape (folding) of the
polymer depend mainly on dihedral changes.

Equilibrium statistics. Before studying the polymer dynamics (i.e., its
evolution in time), our first interest is its equilibrium statistics, i.e., its probable
features after a sufficient long time, which are usually the most important fea-
tures. We remark that, more generally, the multiscale study of the dynamics of
a system should normally follow the development of a multiscale description of
its equilibria, because, at any large time interval, fine-scale details of the system
cannot be calculated deterministically; they are effectively in a local equilibrium
slave to larger-scale degrees of freedom (see Sec. 5.2).

In the long run, according to the theory of statistical mechanics, the prob-
ability density P (u) to find the polymer in a particular configuration u =
(u1, u2, . . . , un) is proportional to exp(−H(u)/kBT ), where T is the absolute
temperature and kB is the Boltzmann constant. Properties of interest are typi-
cally averages and variances of all kinds of observables O(u), such as, for exam-
ple, the end-to-end observable O(u) = |u1 − un|. The average of any observable
O is defined by

〈O〉 =
∫

P (u)O(u)du ,

and its variance is
〈O2〉 − 〈O〉2 .

Monte-Carlo methods at equilibrium. To calculate equilibrium statis-
tics, an atom-by-atom Monte-Carlo (MC) process is usually performed. In this
process, each atom in its turn changes position stochastically, according to the
probability density distribution P (u). Making repeated sweeps of this process,
one can calculate the desired statistics on the sequence of produced configura-
tions.

To calculate accurate averages of some observable in any extensive system,
however, an extremely long sequence of configurations should be generated.
There are two general causes for this complexity: (1) Due to the local nature of
the Monte-Carlo process, only very slowly it affects large-scale conformational
features, hence extremely many Monte-Carlo sweeps are needed to produce each
new, statistically independent configuration. (2) Many such independent sam-
ples are needed to average out the deviation observed at each of them.

In addition, in the case of macromolecules like our polymer, such MC sim-
ulations are particularly slow, because in sampling the main active degrees of
freedom, the dihedrals, the simulation stepsizes are constrained by the stronger
bond-length and angle potentials. More important, each MC switch of the local
minimum around which one dihedral lives is only probable provided suitable
(but unknown) similar switches are simultaneously performed at a substantial
number of neighboring dihedrals.
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For short chains (n ≤ 30, say), very efficient Monte Carlo simulations can
be performed by changing at each step one internal degree of freedom (such as
ri,i+1, θi or φi+1/2), keeping all other internal degrees of freedom fixed, instead
of changing the position of one atom at a time; indeed, each such move changes
the positions of many atoms. Sampling the different attraction basins of each
dihedral is easily accomplished this way. For longer chains, however, these moves
are highly inefficient: Each dihedral move corresponds to a global folding of the
chain that most probably at some place or another brings far atoms to be too
close to each other, increasing substantially the Lennard-Jones potentials, hence
having very low MC acceptance probability.

The challenge, then, is to devise a Monte-Carlo process that will calculate
the equilibrium statistics of long polymers. As we will see, systematic upscaling
not only dramatically reduce the number of degrees of freedom to be simulated,
but also eliminate the slowness associated with the dihedral attraction basins.

3 Systematic Upscaling (SU): An outline

Local equations and interactions. Computationally we will always deal with
a discrete system, whose n variables (or unknowns) u1, u2, . . . , un will typically
be either discrete values of functions (grid values, or finite elements, etc.), or
locations of particles. An equation in the d-dimensional physical space (usually
1 ≤ d ≤ 4) is called local if it involves only O(1) neighboring unknowns. A
discretized partial differential equation, for example, is a system of local equa-
tions. Similarly, an “interaction”, i.e., an additive term in an energy functional
or Hamiltonian H, is called local interaction if it involves only O(1) neighbor-
ing variables. (The Lennard Jones potentials in (2.1) can be considered local,
since they become negligible for far particles — unlike electrostatic interactions,
for example.) In equilibrium calculations we will assume below that H already
includes the (kBT )−1 factor, so that the probability density P (u) of each con-
figuration u = (u1, u2, . . . , un) is proportional to exp(−H(u)).

For simplicity of discussion we describe SU first for deterministic systems
of local equations (including energy minimization with local interactions) or
stochastic systems of local interactions at equilibrium. We will point out later
natural extensions to long-range equations or interactions, and to dynamic and
non-equilibrium systems.

Coarsening. Similar to multigrid, SU is based on two processes: The usual
local processing (relaxation in deterministic problems, Monte Carlo (MC) in
stochastic ones) and repeated coarsening , creating increasingly coarser descrip-
tions of the same physical system. At each coarsening stage, one constructs
from a current level of description (the fine level) a coarser level, employing the
following general principles.

To each fine-level configuration u = (u1, . . . , un) one defines (using the gen-
eral coarsening criterion described below) a unique coarse-level configuration
uc = (uc

1, . . . , u
c
m), which is a vector with a reduced number of variables; typi-

cally .1n < m < .6n. Different fine level configurations u and û may well give
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rise to the same coarse level configuration uc = ûc.

Examples of such fine-to-coarse transformations:
(i) For discretized continuous (e.g., PDE) problems — each coarse variable

is an average of several neighboring fine variables.
(ii) For the above-described simple polymer, which consists of a chain of n

atoms at the three-dimensional locations (u1, u2, . . . , un) — each coarse-level
“atom” location uc

j is at the average location of q, say, consecutive real atoms:

uc
j =

1
q
(uqj−q+1 + uqj−q+2 + · · ·+ uqj) , (j = 1, . . . ,m; m =

n

q
) . (3.1)

(iii) For a simple atomistic fluid, described by the positions u in space of its n
molecules — the coarse level variables are defined at the points of a lattice placed
over the flow domain, with each variable uc

j summarizing a property of the set
of molecules around that lattice point (e.g., their total mass, or density, total
dipole moment, etc.). Or each uc

j may be a vector which summarizes several
such properties. Indeed, at lower temperatures, as the fluid starts to solidify,
additional types of coarse variables must enter (i.e., uc

j must be a longer vector),
accounting for an increasing number of larger-scale order parameters (see Sec.
5.6).

(iv) For a lattice of Ising spins — each coarse variable is again an Ising
spin, standing for the sign of the sum of fine-level spins over a certain block
(coarsening by “majority rule” [37]).

Interpolation. To any given coarse configuration U = (U1, . . . , Um), there
are generally many fine-level configurations u compatible with U (i.e., such that
coarsening u gives uc = U). The interpolation (transition from U to one specific
fine configuration u) is created by compatible Monte Carlo (CMC) (or compati-
ble relaxation, in the deterministic case), i.e., by the local processing, restricted
to configurations compatible with U . The interpolation is completed once the
CMC has practically reached its equilibrium (or the compatible relaxation has
converged). (CMC was first introduced in [18].)

For instance, in the case of polymer (Example (ii) above), if the coarse
variables are defined by (3.1), each step in a CMC would offer a simultaneous
change of two consecutive atomic positions, uk and uk+1, such that uk + uk+1

is kept unchanged (qj − q + 1 ≤ k ≤ qj − 1; 1 ≤ j ≤ m).

The general coarsening criterion. The fine-to-coarse transformation
is said to be adequate if (and to the extent that) the compatible Monte Carlo
equilibrates fast (or the compatible relaxation converges fast).

In our polymer example, for instance, with the Hamiltonian (2.1), it exper-
imentally turns out that the coarsening (3.1) is adequate for q = 2 or 3, but a
larger q yields much slower CMC equilibration. (The reason is that, at coars-
ening ratio q ≤ 3, the fixed coarse values uc

j implicitly nearly fix the dihedral
values.)

Such a coarsening criterion, based on the convergence rate of compatible
relaxation, was first introduced, and is already widely used, in the framework
of solving linear systems by algebraic multigrid (AMG); see Sec. 3 in [10].

8



A major problem in coarsening any system is to find a suitable set of coarse
variables. The above criterion gives a general and very effective tool for devel-
oping such a set. The adequacy of that set implies practically local dependence
of every fine variable on neighboring coarse variables, and hence the feasibil-
ity to construct, just by local processing, a set of “equations” (in the form of
numerical tables) that will govern correct simulations at the coarse level.

In highly repetitive systems (defined above), this local processing need not
be done everywhere: the coarse-level equations can iteratively be derived by
comparing coarse-level with fine level simulations, where the latter need be per-
formed only in some relatively small representative regions. To start, these
regions are independent pieces of fine-level domains, such as a small grid with
periodic boundary conditions (e.g., in Examples (i) or (iv)), or a small piece of
the chain (in Example (ii)), or a flow domain with a given number of molecules
and periodic boundary conditions (in Example (iii)). Later, once approximate
equations have already been derived for the next coarser level, the representa-
tive regions are chosen to be windows, i.e., relatively small subdomains, on the
boundaries of which the fine level is kept compatible with the coarse level. Sim-
ulations inside these windows supply corrections to the coarse-level equations.
The coarse level chooses where and when to establish a new window; normally
this is done wherever coarse-level neighborhoods have surfaced for which no
previous fine-level simulations have supplied enough statistics (see Sec. 4 below
for details.)

Thus, fine level simulations supply (or correct) the governing equations (or
operation tables) for the next coarser level. On the other hand, the coarse level
selects the windows where these fine-level simulations should take place. Iter-
ating back and forth between all the levels quickly settles into a self-consistent
multilevel equilibrium and compatibility; as in multigrid, if the coarsening ra-
tion n/m is not large, no slowdown should occur. More important, at each level
the computations need extend only over a collection of small windows, whose
number depends on the diversity of local situations, not on the size of the entire
domain.

Preliminary experiments with the four simple examples mentioned above
have already revealed the very high potential of the SU approach. For instance,
in Example (ii), in which conventional simulations run into extreme slowdowns,
even the single coarsening level (2.1), with q = 3, already accelerates the sim-
ulation by at least two orders of magnitude, while accurately reproducing all
the relevant statistics (using the coarse Hamiltonian described in Sec. 4 below).
This is due to the fact that the dihedral attraction basins, the main reason for
slowness of fine-level simulations, are already averaged over at the coarse level.

4 Derivation of coarse equations/interactions

Basic hypothesis: localness of coarsening. The solution to a system of
local equations cannot be determined locally: it depends on all equations, near
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and far. However, what can essentially be determined just from local informa-
tion are the coarser-level equations (or interactions). More precisely: provided
the coarse set of variables is adequate (satisfying the above general coarsening
criterion), a coarse system of local equations (or interactions) equivalent to the
fine-level system (in the sense that a coarse solution/equilibrium would yield the
fine solution/equilibrium by a brief compatible local processing) is iteratively
obtainable locally (i.e., by iteratively processing only a fine-level neighborhood
comparable in size to the typical distance between coarse variables), with an
error that decreases exponentially as a function of the total work. (This work
grows with enlarging the number of variables involved in each coarse equation,
extending the size of the fine-level neighborhood and increasing the number of
iterations invested in the local processing.) This hypothesis has emerged from
the long and diverse experience with both RG and multigrid solvers.

The actual derivation of the coarse equations, incorporating RG techniques
or their RMG (renormalization multigrid) modification [18], is based on fine-
level simulations in relatively small representative regions. The simulations pro-
duce a sequence of fine-level configurations u(1), u(2), . . ., which is readily trans-
lated into a sequence of the corresponding coarse configurations u(1)c, u(2)c, . . .
There exist several approaches as to how and in what form to derive govern-
ing coarse-level rules from this latter sequence. We briefly describe two basic
approaches with which experience has already been gained.

1. Dependence table. In this approach, the sequence of coarse config-
urations calculated by fine-level simulations is used to accumulate statistics of
the dependence of each coarse variable (called, each in its turn, the “pivot”) on
a certain set of ν neighboring coarse variables (the “neighborhood”). For this
purpose the set of possible values of the neighborhood (each being a point in
Rν) is partitioned into bins. In fully deterministic problems, the average value
of the pivot in each bin is accumulated and then tabulated. From such a table,
the pivot value for each individual neighborhood can be interpolated, which is
all one needs in order to operate (e.g., perform relaxation) at the coarse level.
In stochastic problems, additional statistics (such as variation and higher mo-
ments) of the pivot over each neighborhood bin are tabulated, enough to enable
accurate Monte Carlo simulations at the coarse level. Successful experience with
simple versions of this approach, including the cases of Examples (iii) and (iv)
above, are reported in [18], [19], [20] and [34].

2. Coarse Hamiltonian. In this approach the sequence of coarse con-
figurations {u(j)c}j is used to calculate averages of quite many coarse-level ob-
servables O1, O2, . . . , Oµ. Denote the average of Oi by 〈Oi〉f , (i = 1, . . . , µ),
the subscript f indicating that this average of a coarse observable has been ex-
tracted from the fine-level simulations (u(j)c extracted from u(j)). The coarse
level itself is intended to be governed by a (yet to be calculated) Hamiltonian-
like functional Hc(uc), that is, the probability of a coarse configuration uc will
be proportional to exp(−Hc(uc)). For any given approximate Hc, one can run
simulations at the coarse level during which 〈Oi〉c, the average of Oi according
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to Hc, can be calculated. The aim is to construct Hc such that

〈Oi〉c = 〈Oi〉f , (i = 1, . . . , µ) . (4.0)

For this purpose Hc is written in the general form

Hc(uc) =
K∑

k=1

akHk(uc) , (4.1)

where each Hk is a known functional of uc (see example below) and {ak} is a set
of coefficients that need to be found. A crude approximation to Hc, possibly
with a reduced number of terms (reduced K), can inexpensively be obtained
from small-scale fine-level calculations, by assuming independence of various
quantities (as in the example below). The approximation is then improved in
few Newton-like iterations, during which K may increase. Specifically, in each
iteration Hc is changed by adding to it δHc =

∑
k δakHk. Using the first-order

relation (used for example by K.G. Wilson and R.H. Swendsen; cf., e.g., [26])

δ〈O〉 = 〈O〉〈δHc〉 − 〈O · δHc〉 , (4.2)

one gets a system of µ equations∑
k

(〈Oi〉〈Hk〉 − 〈OiHk〉)δak = 〈Oi〉f − 〈Oi〉c , (i = 1, . . . , µ) (4.3)

from which δak can be calculated by least squares. (Usually the sequence of
observables will include H1,H2, . . . ,HK and possibly some others.)

An observable O for which the discrepancy 〈O〉f − 〈O〉c remains particu-
larly large can be added to the list of Hamiltonian terms (thus increasing K) to
facilitate decrease of that discrepancy in the next iterations. This may in partic-
ular apply to some of the “second moment” observables OiHk, whose averages,
needed in (4.3), are anyway being calculated. Adding to the Hamiltonian the
observables with largest discrepancies usually cause the discrepancies to sharply
decrease in other observables as well, including still-higher-moment observables.

4.1 Example.

A test of the coarse Hamiltonian approach has been carried out with the polymer
case (Example (ii) in Sec. 3, employing the united-atom model of Sec. 2), using
the coarsening (3.1) with q = 3. (A preliminary description, but with q = 4,
has appeared in [1].) The first approximation to Hc is chosen in a general form
similar to the fine-level Hamiltonian (2.1),

Hc(uc) =
∑

i

F1(|rc
i − rc

r+1|) +
∑

i

F2(θc
i ) +

∑
i

F3(τ c
i ) +

∑
|i−j|>2

F4(|rc
i − rc

j |) ,

(4.4)
where rc

i = uc
i is the location of the i-th coarse “atom”, |rc

i −rc
i+1| is the distance

between two successive coarse “atoms”, θc
i is the angle (rc

i−1, r
c
i , r

c
i+1), τi is the

11



torsion (rc
i−1, r

c
i , r

c
i+1, r

c
i+2) and F4 is a Lennard-Jones-like interaction. Each of

the initially-unknown functions F` can be expanded in the form

F`(ξ) =
∑

j

a`,jwj(ξ) , (` = 1, 2, 3, 4) (4.5)

with unknown coefficients a`,j and known basis function wj(ξ); e.g., local basis
functions (finite elements). Upon collecting (over the relevant

∑
i in (4.4)) all

terms that include the same unknown a`,j , the coarse Hamiltonian (4.4) obtains
the general from (4.1). A reasonable first approximation to F4 is the given
Lennard-Jones interactions (see (2.1), with |rc

i − rc
j | replacing rij), multiplied

by q2. A first approximation to F1 (similarly: F2, F3) can be calculated with a
short polymer chain (e.g., n = 24 and m = 8) from the bare distribution of the
distances {|rc

i − rc
i+1|}

m−2
i=2 , omitting (or calculating separately) the exceptional

distances at the ends (i = 1 and i = m − 1), and ignoring all correlations.
The iterations described above will then automatically correct for those correla-
tions, introducing on the way some new explicit correlation terms into Hc (with
increasing K).

Note that these corrections are first still being done with the short polymer
chain, where very efficient fine-level Monte-Carlo simulations can be performed
(as explained in Sec. 2). By the basic hypothesis above (and confirmed in
this case by test calculations), the shortness of the chain used initially only
marginally affects the accuracy of the coarse interactions located sufficiently
deep inside (several atomic distances from the ends) of the chain. Then, with
the improved Hc one can already make simulations at the coarse level, with
much longer chains (e.g., n = 120). One can now further improve Hc by making
additional iterations, now making the fine-level simulations in windows within
that longer chain. Then Hc can be similarly used to derive Hamiltonians at still
coarser levels, whose simulations will be performed on still longer chains. The
longer chains may produce new situations (e.g., contact points due to folding)
that require some new, window-within-window calculations at all finer levels
to further correct Hc (including for example new terms that correspond to
the contact points). The formulation is very flexible, allowing introducing new
Hamiltonian terms to account for new situations.

In the case of more complicated macromolecules (not made of one single
repeat unit) there should of course be employed more windows, one window
per each local molecular structure. But since many of these structures typically
have many intra-molecular and inter-molecular repetitions, a limited number of
windows may represent many long chains. (No less important for efficiency is
of course the result, mentioned at the end of Sec. 3 above, that the coarse-level
simulations are much faster than the fine-level ones, even when the latter are
being done with the full macromolecule.)
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5 Extensions

Many important extensions of the upscaling techniques described above, to di-
verse physical situations, can be developed. The following is a survey of some
principal directions that have already been explored to some extent.

5.1 Long range interactions

Long-range (e.g., electrostatic) interactions can each be decomposed into the
sum of a smooth interaction and a local one (“smooth” and “local” being meant
on the scale of the next coarse level). All familiar physical interactions, even
with oscillatory kernels, can be decomposed this way (see [8] and examples in
[17], [35] and [31]). To any desired accuracy, the smooth part can directly be
represented at the coarse level, e.g., by aggregated charges and dipoles moving
with the coarse level “atoms” (in Example (ii) above) or by adjoint interpo-
lation of charges to the coarse-level lattice (in Example (iii)). The local part
is essentially transferred, together with all other local interactions, using the
fine/coarse iterations described in Sec. 4 above. Effectively, the amount of
work invested per charge involves only calculating its local interactions, and,
even more importantly, only charges within selected windows need be treated.
It can be shown that this is possible due to the smoothness of the non-local
interactions, which makes them little sensitive to the (properly designed) local
MC moves. (This, incidentally, is not true with the type of decompositions
used by the Fast Multipole Method [25], which therefore cannot be used in the
framework of multiscale particle movements.)

5.2 Dynamical systems

For time-dependent systems, the general coarsening criterion of Sec. 3 is re-
placed by the analogous requirement that differences between the fine-scale
statistics of two evolving configurations, that are suitably adjusted to be com-
patible at the coarse scale, practically disappear within few time steps. Depen-
dence tables (e.g., in kinetic Monte Carlo computations) have been derived in
the form of flux dependence on both current-time and previous-time neighbor-
ing coarse variables [33]. A computational criterion has as well been formulated
for the size of the time steps to increase with the spatial coarsening level, so
as to maintain full efficiency. A Hamiltonian-like functional that governs every
time step can also be developed analogously to the one described in Sec. 4.

For Hamiltonian systems (e.g., corresponding to Examples (ii) and (iii) in
Sec. 3), the multiscale structure allows a natural combination of temperature-
accurate statistical simulation at small scales with time-accurate dynamics at
large scales. Assuming that after any given time interval the fine-scale degrees of
freedom settle into a local equilibrium slave to the coarse-level averages (where
that scale and that level increase with the size of the time interval), the general
criterion for choosing the coarse variables can directly be applied as in Sec.
3, using the equilibrium CMC, for appropriate temperatures. (Note that the
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local temperature may well serve as a local coarse-level variable, corresponding
to a local averaging of kinetic energy.) Large time steps, based on implicit
discretization of Newton law, can then be made, using a multigrid-like solver
where the relaxation at fine levels is replaced by CMC (cf. [11, §14.8]). This
approach yields two benefits in performing very large time steps: firstly, it allows
much easier handling of local minima. Secondly, it avoids the killing of highly-
oscillatory modes (those vibrations that are not resolved by the time step),
which would occur if the implicit equations of a large time step were imposed
at all scales. Instead, these modes assume stochastic amplitudes according to
their equilibrium probability distribution. The desired temperature, and, in
particular, regional temperature variations when relevant, are introduced very
directly in this way, avoiding the need for fabricating Langevin stochastic forces.

Another possible approach is to first develop at equilibrium a coarse-level
Hamiltonian Hc(uc) such that the relation (deviating here from the above no-
tation) Probability(uc) ∼ exp(−Hc(uc)/kBT ) will simultaneously hold for a
full range of temperatures T . (This can be achieved by adding several moments
(Hc)m to the list of observables (Oi) used in (4), and constructing a joint Hamil-
tonian (see Sec. 5.4 below) for different temperatures in the range of interest).
Then use this Hc in Newtonian dynamics at the coarse level, where effective
coarse-level masses (and their possible dependence on the coarse coordinates)
are determined by comparing (in windows of fine-level dynamic simulations)
coarse-level accelerations with the gradient of Hc.

Still another approach, relevant for fluids, is a Boltzmann-type upscaling in
the 6D space of positions and velocities. Starting with dynamic simulations
at the individual-particle level, increasingly coarser spatial levels will describe
velocity distributions at progressively higher resolutions.

5.3 Stochastic coarsening

Our studies (e.g., [33]) have shown that averaging upon coarsening should often
better be stochastic. The added stochasticity is important to create smoother
coarse dynamics, hence simpler dependence table or easier Hc, especially for a
fine level with discrete-state (e.g., integer-valued) variables or highly oscillating
Hamiltonian (as in real-time Feynman path integrals). One general way is to
modify a deterministic averaging (or anterpolation — the adjoint of interpola-
tion) by adding to each coarse variable a small stochastic increment, where the
field of increments is in equilibrium governed by a Hamiltonian-like functional
Hp. A corresponding CMC process has been developed, and the general coars-
ening criterion then effectively checks that Hp has been properly designed, i.e.,
it prohibits increment fields that correspond to averaging long-range fine-level
moves.

5.4 Joint Hc

The same coarse functional Hc should sometimes simultaneously satisfy (4.0) for
several different MC situations, such as: (a) under different external fields; (b) at
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different temperatures (cf. Sec. 5.2); (c) in different energy basins (cf. Sec. 5.6).
Generally, this can be achieved by adding in (4.1) terms Hk that are particularly
sensitive to the differences between the different simulated situations.

5.5 Complex fluids

More elaborate coarse Hamiltonians are needed for fluids with more complex
molecules of one or several species, such as water with methanol, or glycerol, etc.
A gradual construction plan is due, starting for example with Hc constructed
for atomistic equilibrium in a periodic domain containing only two molecules.
Adding then to the simulation one molecule at a time, the coefficients of Hc are
updated by (4.3), with additional terms Hk that correspond at each iteration
to correlation observables that are still ill approximated.

5.6 Low temperatures

At high temperatures, the coarse variables for a simple fluid in equilibrium are
gridpoint values, each standing for some local averaging of m(x), the masses m
of particles at various positions x = (x1, x2, x3) near the gridpoint. Suppose
that at lower temperatures the fluid starts to crystallize, roughly with periods
u(`) = (u(`)

1 , u
(`)
2 , u

(`)
3 ), (` = 1, 2, 3), say. Three new coarse-level fields should

then enter, standing for local averaging of exp(2πiw(`)x) ∗ m(x), (` = 1, 2, 3),
where w(`) · u(`) ' δk`. If the crystal is perfect and w(`) are exactly known,
these coarse variables will turn out constant. When w(`) are only approximate,
these variables will oscillate smoothly. Similar averaging at the next coarser
levels will then describe these oscillations, effectively correcting the erroneous
w(`). If the crystal is not perfect, meaningful averaging of this type will persist
only up to a certain scale; usually, the lower the temperature the larger the scale
[11, §14.7.3].

Also upon lowering the temperature, energy barriers emerge at increasingly
larger scales. By insisting on constructing, level after level, joint Hc (see Sec.
5.4), statistically correct transitions between different energy basins can effi-
ciently be simulated.

5.7 Multiscale annealing

Quite generally, as in the above example (Sec. 5.6), as a system is gradu-
ally cooled, increasingly larger-scale degrees of freedom are identified. This
identification of increasingly larger collective moves makes such a computation
extremely more effective than simple simulated annealing [28] for minimizing
the energy (the limit T → 0), especially in the physically common situation of
multiscale nested attraction basins. The multiscale annealing can provide an
efficient solver to very difficult global optimization problems. (See much more
in [11, §18.2], [21].)
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5.8 Coarse-level transparency of fine observables

Often, an observable of interest is not directly expressed in terms of the coarse-
level variables. Similar to the procedures for deriving coarse-level Hamiltonian
(see Sec. 4), a general procedure can be developed for computing a functional
dependence of a quantity of interest upon the coarse variables, based on suitable
statistics accumulated during the fine-level simulations.

5.9 Determinism and stochasticity

Much of the discussion above is written in terms of stochastic systems, but can
be extended to deterministic ones. Moreover, a stochastic system at the fine
level often yields a deterministic system at large enough scales. The opposite
exists too: A deterministic fluid flow at the small viscous scale can acquire
stochastic features at the large scales reigned by turbulence. The coarsening
approaches described above can accommodate such transitions.
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