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Abstract

Linear ordering problems are combinatorial optimization problems which
deal with the minimization of different functionals in which the graph vertices
are mapped onto (1, 2, ..., n). These problems are widely used and studied in
many practical and theoretical applications. In this paper we present a variety
of linear-time algorithms for these problems inspired by the Algebraic Multi-
grid approach which is based on weighted edge contraction. The experimental
result for four such problems turned out to be better than every known result
in almost all cases, while the short running time of the algorithms enables
testing very large graphs.

1 Introduction

The objective of the class of linear ordering problems is to minimize different func-
tionals that map the set of the graph vertices onto (1, 2, ..., n). This class contains
many graph (or matrix) layout problems such as : the minimum p-sum, the work-
bound reduction, the wavefront, the envelope size, etc. Some problems, such as
finding the minimum linear arrangement [35] or the bandwidth [27], appear in many
applications for solving problems in the large sparse matrix computation. Some
other are closely related to the problem of calculating the envelope size of a sym-
metric matrix or, more precisely, to the amount of work needed in the Cholesky
factorization of such a matrix [21]. Linear ordering problems may also be motivated
as a model used in VLSI design [13] and may be used in several biological applica-
tions, graph drawing and other fields (see [18, 27, 22, 37]). Commonly for general
graphs (or matrices) these problems are NP-hard and their decision versions are
NP-complete [20].

∗Corresponding author : ilya.safro@weizmann.ac.il

1



Since these problems have a practical significance, many heuristic algorithms
were developed in order to achieve near optimal solution. Among the most successful
are spectral sequencing [24], optimally oriented decomposition tree [1], multilevel
based [26, 23], simulated annealing [29] and others. Some of these algorithms have
proven themselves superior in solution quality while others in execution time.

One of the most popular and exploitable methods designed to achieve a suitable
linear ordering for different problems is the spectral sequencing (SS) [24]. This
approach consists of ordering the graph vertices according to the sorted coordinates
of the second eigenvector of the graph Laplacian. The heuristic argumentation of
SS is based on the fact that the continuous version of the minimum 2-sum problem
can be solved by this method to the optimum [24]. In practice, for the (discrete)
minimum 2-sum it was shown in [36] that the direct application of SS (without
additional reinforcement postprocessing) on ”real world instances” does not achieve
good enough results, while the lower bounds based on SS are very far from the best
known ordering costs. Rather poor results of the exact SS were presented in [14]
for the minimum bandwidth problem. Better results were shown there by using
different approximated SS, i.e., by calculating the second eigenvector less precisely.
In fact, they have tested 19 algorithms (17 of which are different versions of SS) and
presented the best achieved results among all. In Section 4 we show the significant
improvement achieved by our algorithm over all those algorithms, on the average
our results were better by 34%.

In this paper we present a general framework of multilevel algorithms espe-
cially designed for linear ordering problems. Our strategy is based on the Algebraic
MultiGrid scheme (AMG) [6, 7, 3, 10, 33, 39, 40]. While in previous works we have
developed and tested special multilevel algorithms for solving the minimum linear
arrangement problem [35] and the minimum 2-sum problem [36], in this article we
demonstrate how the building blocks of the general multilevel approach can be used
in various ways to make it suitable for solving more involved functionals. In par-
ticular, we present two algorithms : we show how the bandwidth of a graph can
be approximated by a continuation approach in which a sequence of increasingly
p-sum problems are involved until p is large enough to be considered infinite for
practical purposes; in addition, we use the minimum 2-sum problem result as a first
approximation for the workbound reduction problem, which is then improved by a
postprocessing of local minimizations with actual use of the workbound functional.
In fact, we propose to use the ordering obtained by the minimum 2-sum problem
as a first approximation for other linear ordering problems, as demonstrated for the
wavefront reduction problem.

The main objective of a multilevel based algorithm is to create a hierarchy of
problems, each representing the original problem, but with fewer degrees of freedom.
General multilevel techniques have been successfully applied to various areas of sci-
ence (e.g. physics, chemistry, engineering, etc.) [5, 8]. AMG methods were originally
developed for solving linear systems of equations resulting from the discretization of
partial differential equations. Lately they have been applied to various other fields,
yielding for example novel methods for image segmentation [38] and for the linear
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arrangement problem [35]. In the context of graphs it is the Laplacian matrix that
represents the related set of equations. The main difference between our approach
to most other multilevel approaches (related to various graph optimization prob-
lems) is the coarsening scheme. While the previous approaches may be viewed as
strict aggregation process, the AMG coarsening is actually a weighted aggregation
: each node may be divided into fractions, and different fractions belong to differ-
ent aggregates. This enables more freedom in solving the coarser levels and avoids
making hardened local decisions, such as edge contractions, before accumulating the
relevant global information.

One of the important achievements of our work is the general coarsening that
turns to be suitable for all the different functionals we have tested. This fact can be
explained by the way the hierarchy of problems is constructed: variables are elimi-
nated within the coarsening phase only and exactly when they show strong dominant
connections to the remaining (non-eliminated) variables, this in turn guarantees that
the solution of the eliminated variables is naturally obtained once the non-eliminated
variables are solved. The various algorithms thus differ in the disaggregation pro-
cess which follows by projecting to a finer level the final arrangement obtained on
a coarser level. This initial fine level arrangement is being further improved by
applying different local reordering methods. We have developed a simultaneous
minimization of several vertices called Window Minimization. In its basic applica-
tion (for the 2-sum problem [36]) it involves the minimization of a quadratic form.
Here we show how to quadratize other functionals. Also, we suggest the use of
numerical calculation rather than analytic, for instance, in calculating derivatives.
Finally, our postprocessing is intensified by Simulated Annealing (SA) [25] which is
a general method to escape local minima. In the multilevel framework SA is aimed
at searching only for local changes that guarantee the preservation of large-scale
solution features inherited from coarser levels.

We will not discuss here theoretical complexity issues, such as lower and up-
per bounds for the solution cost. We are not interested in worst possible scenarios
nor in random instances. Our focus is on practical high-performance and low com-
putational cost algorithms that will outperform existing algorithms by providing
better results in less running time. For that purpose we used a known benchmark
[17] from which we took graphs of various origins and sizes including very large in-
stances. Our multilevel algorithm exhibit linear complexity, i.e., the computational
cost is proportional to |V |+ |E|.

We compared the results obtained by our multilevel algorithms with many pre-
viously described algorithms. In this paper we present the results of the bandwidth
problem and the workbound problem and show that our results are on the average
better than previous ones by about 30%, while the running time for graphs with
about 104 nodes and 105 edges is less than one minute. In general, our experimental
results show that the AMG framework can be used for linear ordering problems to
obtain high quality results in linear time while using the exact same set of parame-
ters. The implemented algorithm can be downloaded from [34].

The various functionals and their generalizations are described in Sec. 2. The
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multilevel algorithm along with additional optimization techniques are presented in
Sec. 3. A comparison of our results with other works is finally summarized in Sec.
4.

2 Definitions and generalizations

Given a weighted graph G = (V, E), where V = {1, 2, ..., n}, denote by wij the
non-negative weight of the edge ij between nodes i and j; if ij /∈ E then wij = 0.
Let π be a bijection

π : V −→ (1, 2, ..., n) .

The purpose of linear ordering problems is to minimize some functional over all
possible permutations π. The following functional should be minimized for the
minimum p-sum problem1 :

σp(G, π) =
∑
ij

wij|π(i)− π(j)|p . (1)

In the generalized form of the problem that emerges during the multilevel solver,
each vertex i is assigned with a volume (or length), denoted vi. The task now is
to minimize the cost σp(G, x) =

∑
ij wij|xi − xj|p, where xi = vi

2
+

∑
k,π(k)<π(i) vk,

i.e., each vertex is positioned at its center of mass capturing a segment on the
real axis which equals its length. The original form of the problem is the special
case where all the volumes are equal. In particular, we would like to concentrate
on the minimum bandwidth problem which seeks a linear layout that minimizes the
maximal stretched edge, i.e., bw(G) = minπ maxij wij|π(i)−π(j)|. The minimization
functional of the bandwidth problem can be formulated in term of σp(G, π) :

bw(G, π) = lim
p→∞

(σp(G, π))1/p . (2)

The minimization functional of the workbound reduction problem is defined as

wb(G, π) =
∑

i

max
j

π(j)<π(i)

wij(π(i)− π(j))2 . (3)

The generalized form of this problem is similar to the above derivation, and the max
function may be approximated by

wb(G, x) =
∑

i

max
j:xj<xi

wij(xi − xj)
2 ≈

∑
i

( ∑
j:xj<xi

wij(xi − xj)
p
)2/p

. (4)

1We use this definition for simplicity, while the usual definition of the functional is σp(G, π) =
(
∑

ij wij |π(i)− π(j)|p)1/p, which yields of course the same minimization problem.
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3 The algorithm

In the multilevel framework a hierarchy of decreasing size graphs : G0, G1, ..., Gk is
constructed. Starting from the given graph, G0 = G, create by recursive coarsening
the sequence G1, ..., Gk, then solve the coarsest level Gk directly, and finally un-
coarsen the solution back to G. This entire process is called a V -cycle. As in the
general AMG setting, the choice of the coarse variables (aggregates), the derivation
of the coarse problem which approximates the fine one and the design of the coarse-
to-fine disaggregation (uncoarsening) process are all determined automatically, as
described below.

3.1 Coarsening: Weighted Aggregation

The coarsening used here is similar to the process we have used in solving the
minimum linear arrangement and the minimum 2-sum problems [35, 36]. For com-
pleteness we briefly repeat its description. The coarsening is interpreted as a process
of weighted aggregation of the graph nodes to define the nodes of the next coarser
graph. In a strict aggregation process (also called edge contraction or matching of
vertices) the nodes are blocked in small disjoint subsets, called aggregates. Two
nodes i and j would usually be blocked together (put in the same aggregate) if their
coupling is strong, meaning that wij is comparable to min{maxkwik, maxkwkj}. In
weighted aggregation, each node can be divided into fractions, and different frac-
tions belong to different aggregates. In both cases, these aggregates will form the
nodes of the coarser level, where they will be blocked into larger aggregates, forming
the nodes of a still coarser level, and so on. As AMG solvers have shown, weighted,
instead of strict, aggregation is important in order to express the likelihood of nodes
to belong together; these likelihoods will then accumulate at the coarser levels of
the process, indicating tendencies of larger scale aggregates to be associated to each
other (see [40] for a deep explanation). Strict aggregation, by contrast, may run
into a conflict between the local blocking decision and the larger-scale picture.

The construction of a coarse graph from a given one is divided into three stages:
first a subset of the fine nodes is chosen to serve as the seeds of the aggregates
(which become the nodes of the coarse graph), then the rules for interpolation are
determined, thereby establishing the fraction of each non-seed node belonging to
each aggregate, and finally the strength (or weight) of the connections (or edges)
between the coarse nodes is calculated.

Coarse Nodes. The construction of the set of seeds C and its complement,
denoted by F , is guided by the principle that each F -node should be “strongly
coupled” to C. Also, we will include in C nodes with exceptionally large volume,
or nodes expected (if used as seeds) to aggregate around them exceptionally large
volumes of F -nodes. To achieve these objectives, we start with an empty set C,
hence F = V , and then sequentially transfer nodes from F to C until all remaining
i ∈ F satisfy ∑

j∈C

wij/
∑
j∈V

wij ≥ Q ,
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where Q is a parameter; Q = 0.4 is used in the reported experiments.
Note that it is thus guaranteed that every F -node has strong dominant connec-

tions to the C-nodes which are uniquely associated to the coarse aggregates. This
in turn means that once an order of the desired functional is obtained among the
aggregates, an initial order of a finer level naturally follows (see Section 3.3.1). This
reasoning explains why the same coarsening is successful for the various functionals.

The Coarse Problem. Each node in the chosen set C becomes the seed of an
aggregate that will constitute one coarse level node. Define for each i ∈ F a coarse
neighborhood Ni = {j ∈ C, wij ≥ αi}, where αi is determined by the demand
that |Ni| does not exceed the allowed coarse neighborhood size r chosen to control
complexity. (For typical values of r consider the Appendix). The classical AMG
interpolation matrix P (of size |V | × |C|) is defined by

Pij =


wij/

∑
k∈Ni

wik for i ∈ F, j ∈ Ni

1 for i ∈ C, j = i
0 otherwise .

(5)

Pij thus represents the likelihood of i to belong to the j-th aggregate. Let I(k) be
the ordinal number in the coarse graph of the node that represents the aggregate
around a seed whose ordinal number at the fine level is k. Following the weighted
aggregation scheme used in [38], the edge connecting two coarse aggregates, p = I(i)

and q = I(j), is assigned with the weight w
(coarse)
pq =

∑
k 6=l PkiwklPlj. The volume

of the i-th coarse aggregate is
∑

j vjPji. Note that during the process of coarsening
the total volume of all vertices is conserved.

3.2 The coarsest level

Minimizing the appropriate functional at the coarsest level, which consists of no
more than 8 nodes (otherwise a still coarser level would be introduced for efficiency)
is performed directly by simply trying all possible arrangements. Since the amount
of work invested at the coarsest levels is small compared with that of the finest level,
many solutions can in fact be kept at each level whose graph is small relative to G.
In principle, this number depends on the amount of work associated with the graph
parameters of that level. In particular, a large number of solutions is chosen at the
coarsest level; they are chosen so that they all enjoy a relatively low energy cost and
are mutually significantly different from each other. Each is then propagated to the
next finer level and being optimized there. The best solutions are chosen using the
same criteria, and so on. This variety of solutions enlarges the range of the search
by either extracting different best solutions or combining them using LCC [35].

Since we wanted to measure the standard deviation for our algorithm, we have
run it a few times for each of the given graphs by starting with a different permu-
tation of the nodes of G (see Section 4.2). Experiments show that the variety of
solutions generated thus is similar to those obtained by a single run with multitude
of solutions at the coarsest levels, thus it became less important to also use the later.
Still this approach has proven to work well for [32].
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3.3 Disaggregation (uncoarsening)

While the same identical coarsening procedure was used for the minimization of all
our functionals, the uncoarsening only shares the same basic structure, but the ac-
tual implementation varies from one functional to another. Having solved a coarse
problem, the solution to the next-finer-level problem is initialized by first placing
the seeds according to the coarse order and then adjusting all other F -nodes while
aiming at the minimization of the arrangement cost. This first approximation is
subsequently improved by several relaxation sweeps, first compatible, then regu-
lar (explained below). Then, the arrangement is improved by strict minimization,
possibly with added stochasticity. These are the local reordering processes which
either accept only changes that decrease the arrangement cost (strict minimization)
or might also accept steps which increase the cost (with some probability) in order
to escape false local minima (simulated annealing). The entire scheme is explained
below and summarized in Algorithm 2.

Before we turn to the details of these common stages of the disaggregation pro-
cess, let us describe the particular structure we have used for the minimum p-sum
problem. The disaggregation scheme for the minimization of σp(G, x) is based on
continuation in the parameter p, such that p = 2 is used to exactly solve the coars-
est level, and then, at each subsequent finer level, p is increased (e.g. by two).
Thus, every level l (other than the coarsest) minimizes σp(Gl, x) by initialization
from σp−2(Gl+1, x). Except that in cases where the desired p is already reached on
one of the coarse levels, no further continuation is employed beyond that level. Our
experiments show that the results are not sensitive to small changes in the contin-
uation of p, e.g., solving the coarsest level with p = 4, or increasing p by four. In
case where p should tend to infinity (as for the bandwidth (2)), the increase of p is
continued also at the end of the V-cycle in a postprocessing procedure.

3.3.1 Initialization of the next finer level

Given is the arrangement of the coarse level aggregates in its generalized form,
where the center of mass of each aggregate j ∈ C is positioned at xI(j) along the
real axis. We begin the initialization of the fine level arrangement by letting each
seed j ∈ C inherit the position of its respective aggregate: yj = xI(j). At each stage
of the initialization procedure, define V ′ ⊂ V to be the subset of nodes that have
already been placed, so we start with V ′ = C. Then proceed by positioning each
fine node i ∈ V \ V ′ at the coordinate yi in which the cost of the arrangement, at
that moment when i is being placed, is minimized. The sequence in which the nodes
are placed is roughly in decreasing order of their relative connection to V ′, that is,
the nodes which have strong connections to V ′ compared with their connections to
V are placed first. To be precise, for the minimum p-sum problem the coordinate yi

is located at its minimum (volumes are not taken into account)

• if p = 1 then yi ∈ {y : |
∑

yj<y, j∈V ′ wij −
∑

yj>y, j∈V ′ wij| is minimal}, i.e.,
yi is within the median segment,
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• if p = 2 then yi =
∑

j∈V ′ yjwij∑
j∈V ′ wij

, i.e., yi is placed at the weighted average position

of yj, j ∈ V ′, to which yi is connected,

• for a general (even) p the location of yi has to minimize
∑

j∈V ′ wij(yi − yj)
p.

This is achieved numerically by several steps of Newton-Rhapson method start-
ing at the p = 2 solution.

Then V ′ ← V ′ ∪ {i} and the process continues until V ′ = V . Finally each
position yi is changed to

xi =
vi

2
+

∑
yk<yi

vk , (6)

thus retaining order while taking volume (length) into account.

3.3.2 Relaxation

The arrangement obtained after the initialization is a first feasible solution for the
minimum p-sum problem which is then improved by employing several sweeps of
relaxation, first compatible then Gauss-Seidel-like. These two types of relaxation
are very similar to the above initialization: The compatible relaxation, motivated in
[4], improves the positions of the F -nodes one by one according to the minimization
criteria above (where V ′ = V ) while keeping the positions of the seeds (C-nodes)
unchanged. The Gauss-Seidel-like relaxation is similarly performed, but for all nodes
(including C). Each such sweep is again followed by (6).

3.3.3 Window Minimization

The cost of the arrangement can be further reduced by strict minimization, i.e., a
sequence of rearrangement that accepts only changes which decrease the arrange-
ment cost. Since done in the multilevel framework, it can be restricted at each
level to just local changes, i.e., reordering small sets of neighboring nodes, which are
adjacent (or relatively close) to each other at the current arrangement. It is easy
to see that switching positions between several adjacent nodes is inexpensive, since
the resulting new arrangement cost can be calculated only at the vicinity of the
adjustment and not elsewhere. Such a node by node minimization was applied in
our algorithm for the Minimum Linear Arrangement problem (1-sum problem, see
[35]). This method may also be used for any functional. However, for the minimum
2-sum problem we have introduced a more advanced method of local minimization,
called Window Minimization (WM), which is suitable not only for the multilevel
framework but can also be used as local postprocessing relaxation in other frame-
works (like the spectral approach). The difference between WM and simple node by
node minimization is that WM simultaneously minimizes the arrangement cost of
a small number of nodes (e.g., 5 to 20).

We first describe the basic WM involving the quadratic form for p = 2 [36],
then possible generalizations are presented. Given a current approximation x̃ to
the arrangement of the graph, denote by δi a correction to x̃i. Let W = {i1 =
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π−1(s+1), ..., iq = π−1(s+ q)} be a window, i.e., q successive vertices in the current
arrangement, positioned at x̃i1 , ..., x̃iq . The local minimization problem of the p = 2
functional associated with a given window W can be formulated as follows :

minimize σ2(W, x̃, δ) =
∑

i,j∈W

wij(x̃i + δi − x̃j − δj)
2 +

∑
i∈W
j 6∈W

wij(x̃i + δi − x̃j)
2. (7)

To prevent the possible convergence of many coordinates to one point, and, more
precisely, to express the aim of having {xi + δi}i∈W an approximate permutation of
{xi}i∈W one should add constraints of the form∑

i∈W

(x̃i + δi)
mvi =

∑
i∈W

x̃i
mvi , m = 1, 2 (8)

where for m = 2 we have neglected the quadratic term in δi. Note that the sums∑
i∈W x̃i

mvi for m = 1, 2 are invariant under permutations. Using Lagrange multi-
pliers, the final formulation of the WM for p = 2 is :

minimize σ2(W, x̃, δ, λ1, λ2) = σ2(W, x̃, δ) + λ1

∑
i∈W

δivi + λ2

∑
i∈W

δivix̃i , (9)

under the second and third constraints of (10) below, yielding the following system
of equations:

∑
j∈W wij(δi − δj) + δi

∑
j 6∈W wij + λ1vi + λ2vix̃i =

∑
j wij(x̃j − x̃i) for i = 1, ..., q∑

i δivi = 0∑
i δivix̃i = 0 .

(10)
Usually in a correct multilevel framework, the changes δi are supposed to be

relatively small since the global approximation for the arrangement is inherited
from the coarser levels. Their smallness is effected by the very restriction of the
minimization to one window at a time. After solving the system (10), every vertex
i ∈W is thus positioned at yi = x̃i + δi. Feasibility with respect to the volumes of
the nodes is retained by applying (6). Since the size and location of W are quiet
arbitrary, the energy cost of the new sub-arrangement can be further improved by
Gauss-Seidel-like relaxation sweeps applied to an enlarged window W, where, say
5% of the window’s size at each end (if possible) are added to W. As usual, each
sweep is followed by (6). The final obtained energy cost is then compared with the
one prior to all the window changes, the minimum of the two is accepted, updating
x̃.

A sweep of WM with a given window size q consists of a sequence of overlapping
windows, starting from the first node in the current arrangement and stepping by
b q

2
c for each additional window. One such sweep is employed for every given q, while

a small number of different q’s is used (for actual values see Sections 4.2, 4.3 and
the Appendix). Our experiments show that the algorithm is robust to changes in
the chosen q’s. Note that due to the multiscale framework, only bounded values of
q need be used, which guarantees linear execution time of the entire algorithm. The
WM is summarized in Algorithm 1.
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Algorithm 1: WindowMinimization(graph G, current order x̃, window length q)
Parameter: k1 (see the Appendix)
For i = 1 To |V | − q + 1 Step i = i + b q

2
c

W = {π−1(i), ..., π−1(i + q − 1)}
Solve the system of equations (10)
Apply k1 sweeps of Gauss-Seidel-like relaxation on the enlarged W with x̃ + δ
x̃← x̃ + δ if the cost of the arrangement was decreased

Return x̃

The use of WM for non-quadratic functional is achieved by quadratization. For
p > 2, define ŵij = wij(x̃i − x̃j)

p−2 and the WM follows by substituting wij with
ŵij in (7) and (10). For the bandwidth problem, where p should tend to infinity,
additional WM sweeps with further increasing of p are employed at the end of the
V-cycle as a postprocessing procedure. More details are provided in Section 4.2.

A more involved example is the workbound reduction problem. Using (4), the
respective functional for W can be approximated by

wb(W, x̃, δ) ≈∑
i∈W

( ∑
j∈W
x̃j<x̃i

wij(x̃i + δi − x̃j − δj)
p +

∑
j 6∈W
x̃j<x̃i

wij(x̃i + δi − x̃j)
p
)2/p

= wbp(W, x̃, δ),

(11)

where p should tend to infinity so that the longest edges become dominant as desired.
The quadratization of (11) is achieved by Taylor expansion up to the third term as
follows

wbp(W, x̃, δ) ≈ wbp(W, x̃, 0)+
∑
i∈W

∂wbp

∂δi

(W, x̃, 0)δi +
∑

i,j∈W

∂2wbp

∂δi∂δj

(W, x̃, 0)δiδj. (12)

Thus, the system of equations to be solved is composed of q equations of the form
∂wbp

∂δi
= 0 and constraints (8). In our experiments, this minimization was applied only

as a postprocessing procedure right after completing the V -cycle for σ2(G). Each
i-th iteration of WM was done with sequentially growing even power parameter p.
Since the involved analytic derivatives of (12) are rather lengthy, it is easier and
more efficient to use numerical derivatives.

3.3.4 Simulated Annealing

A general method to escape false local minima and advance to lower costs is to
replace the strict minimization by a process that still accepts each candidate change
which lowers the cost, but also assigns a positive probability for accepting a can-
didate step which increases the cost of the arrangement. The probability assigned
to a candidate step is equal to exp(−∆/T ), where ∆ > 0 measures the increase
in the arrangement cost and T > 0 is a temperature-like control parameter which
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is gradually decreased toward zero. This process, known as Simulated Annealing
(SA) [25], in large problems would usually need to apply very gradual cooling (de-
crease of temperatures), making it extremely slow and inefficient for approaching
the global optimum.

In the multilevel framework, however, the role of SA is somewhat different. At
each level it is assumed that the global arrangement of aggregates has been inherited
from the coarser levels, and thus only local, small-scale changes are needed. For
that purpose, we have started at relatively high T , lowered it substantially at each
subsequent sweep, until window minimization is employed.

Repeated heating and cooling is successively employed for better search over the
local landscape. This search is further enhanced by the introduction of a “memory”-
like tool consisting of an additional permutation which stores the Best-So-Far (BSF)
observed arrangement, which is being occasionally updated by a procedure called
Lowest Common Configuration (LCC) [9]. LCC enables the systematic accumulation
of sub-permutations over a sequence of different arrangements, such that each BSF
sub-permutation exhibits the best (minimal) sub-order encountered so far. The
complete description of the SA and LCC algorithms is given in [35].

The entire disaggregation procedure for the minimum p-sum problem is summa-
rized below in Algorithm 2.

Algorithm 2: Disaggregation(coarse level C, fine level F)
Parameters: k2, k3 (see the Appendix)

Decide on the appropriate power p
Initialize F from C
Apply k2 sweeps of compatible relaxation on F
Apply k3 sweeps of Gauss-Seidel-like relaxation on F
Apply Window Minimization on F
Apply SA on F
If F is the finest level add postprocessing of minimization

Return the linear order of F

4 Results and Related Work

We have implemented and tested the algorithm using standard C++, LAPACK++
[31] and LEDA libraries [28] on Linux machine. The implementation is non-parallel
and not fully optimized.

4.1 Previous work

The Minimum linear arrangement [35]. We have tested our algorithm on the
benchmarks provided by Petit [29] and Koren [26]. Most successful competitive
heuristics were : Spectral Sequencing, Optimally Oriented Decomposition Tree,
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Multilevel based, Simulated Annealing, Genetic Hillclimbing and some of their com-
binations. The test suite provided in [29] contains rather small graphs for which our
algorithm gave the best costs (in almost all cases) in comparison to all previously
listed heuristics. The running time was so negligible, that comparison was mean-
ingless. The most interesting result was the comparison of our AMG-like algorithm
with the combination of spectral and multilevel approaches [26] on very large graphs
(introduced there). The fast version of our algorithm which run only a fifth of the
time of [26] exhibited an average improvement of 7%. Our slower but more evolved
version improved the costs of [26] by 12%. Other heuristics were not tested on this
suite, because of their higher than linear complexity. For complete list of results see
[35].
The Minimum 2-sum [36]. We have found only one article [21] with an im-
plemented algorithm and numerical results for the minimum 2-sum problem. The
algorithm is based on the spectral approach. Since their test suite is relatively small
to provide enough information regarding the problem, we have launched a new, much
larger test suite and compared our results to the spectral approach. Our multilevel
algorithm without any minimization at the finest level provided much better results
(better by an average of 31.4%) than the spectral one. Finally, the minimization
process applied after both strategies has proven itself to be good enough for both
of the approaches and almost equalized the results. For complete list of results see
[36].

4.2 Bandwidth

There are many different theoretical and practical results for the bandwidth problem,
e.g., [11, 30, 12, 19], to mention just a few. However, only a small number allow
tests on large inputs within a reasonable execution time, e.g., [2, 15, 14]. Since we
believe that a fair comparison of two heuristics should include final results as well
as running times, and since our algorithm is able to deal with very large instances,
we have thus chosen to test it on the test suites of [2, 15, 14] which include large
enough graphs to make the picture complete. These graphs are presented at the
leftmost three columns of Table 1.

We compare our results to the best results achieved in [2, 15, 14], presented at
column “bk∞” of Table 1. These results are the best obtained by testing many (e.g.,
19 in [14]) different algorithms, most of which are versions of the spectral approach.
That is, ordering the graph vertices according to the sorted coordinates of the second
eigenvector of the graph’s Laplacian A (a |V |×|V | matrix), whose terms are defined
by

Aij =


−wij for ij ∈ E, i 6= j
0 for ij 6∈ E, i 6= j∑

k 6=i wik for i = j .
(13)

Our results (columns “M5”, “M10” and “M200”) are given as ratios to theirs, i.e.,
to column “bk∞”. “M5” introduces the results obtained by one V-cycle with five
WM at all levels (with q = 5, 10, 15, 20, 25, see Algorithm 1). Note that on the finest
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level p is increased by two from one window size to another. We run the algorithm
one hundred times, each starts from a different permutation of the nodes. The best
obtained results show an improvement of about 23% over “bk∞”. The means of
the one hundred runs are worse than the corresponding “M5”-values by an average
of 7%, while the standard deviation (around the means) is 4.7% on the average.
We have next tested the outcome of our algorithm with enlarged number of WM.
The V-cycle corresponding to “M10” uses ten WM at all levels (with window sizes
5 to 50 and increased p only at the finest level) and results with an improvement of
26%, while “M200” has the same ten WM at each coarse level and 200 iterations at
the finest, where p is increased by two every four iterations of window sizes 5, 10,
20 and 40. (In fact, even though p in (2) should tend to infinity, in practice, the
minimization process has almost not progressed after p ≈ 100.) The “M200” shows
improvement of 34% on the average over “bk∞”. In these two versions, the means
of the hundred runs are worse than the corresponding “M10”(“M200”)-values by an
average of 6(4)%, while the standard deviation (around the means) is 3.6(2.3)% on
the average.

We have finally tested our algorithm on the five random graphs appearing in the
benchmark [29]. We compare a single run of our V-cycles with the results of the
exact spectral method and with those of the Cuthill-McKee permutation [16] which
was checked also in [14]. The results are summarized in Table 2 showing a clear
advantage to our multilevel approach even for those obviously unstructured random
graphs.

4.3 Workbound reduction

Continuing the comparison of multilevel and spectral frameworks started in [36],
we present our results for the workbound reduction problem compared to the best
known values from [15, 14]. The test suite graphs are the same as in the bandwidth
problem. In the second part of Table 1 we present the results we have obtained for
these graphs. In column “bkwb” we have extracted the best results reported in [15,
14]. These results were obtained by several modifications of the spectral sequencing
method. Then the results for two types of V-cycles (ten executions for each V-cycle)
are presented: the ”σ2(G)” V-cycle which is aimed at achieving fast performance
and thus somewhat compromising the quality of the arrangement cost by simply
approximating the workbound only with the σ2(G) solution; and the ”σ2(G)+WM”
V-cycle which starts with the σ2(G) solution and then applies a postprocessing
of 20 additional iterations with increased p of WM (of sizes 5,10,15,20,25,5,10,...)
using (4) and then ten sweeps of node by node minimization using (3). The latter
version runs longer but succeeds in finding lower cost arrangements. Our results
are presented in the form of ratio between our cost and the best known values
from [15, 14]. On the average they exhibit 18% improvement for σ2(G) and 31%
when the postprocessing is added. The means of the ten runs are worse than the
corresponding “σ2(G)”(“σ2(G)+WM”)-values by an average of 2.5(1.5)%, while the
standard deviation (around the means) is 1(0.5)% on the average.
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Finally, we have also tried to add stochasticity by implementing the SA process.
Here as well as for the bandwidth problem we obtained no significant improvement,
i.e., no more than the observed variance. Still, as was shown in [35], SA can be
extremely important in other problems.

4.4 Additional experiments

We have tried to use the minimum 2-sum as a first approximation also for the band-
width as it was done for the workbound. However, this attempt was unsuccessful.
The nature of the bandwidth functional is somewhat different than other p-sum
problems or the workbound. It deals with the minimization of only several concrete
edges, those which are the longest, while in the p-sum and workbound it is necessary
to minimize many edges, at least one per node.

As an additional preliminary experiment aimed at checking whether the mini-
mum 2-sum may indeed provide a good first approximation for another functional,
we tested it for the wavefront reduction problem defined by

wf(G, π) =
(∑

i |fi|2

n

)1/2
, (14)

where fi = adj({π−1(1), ..., π−1(i)})
⋃
{π−1(i)} and adj(X) =

⋃
j∈X{k : kj ∈ E}\X.

We have compared our results with those of [23] obtained by a multilevel algorithm.
We have just evaluated for 15 graphs the wavefront functional on the arrangement
produced by the V-cycle with p = 2 and obtained similar results to those presented
in [23]. We emphasize that these results are prior to any postprocessing which would
involve minimization with the particular wavefront functional.

5 Conclusions

We have presented a variety of multilevel algorithms for the class of linear ordering
problems for general graphs. These algorithms are based on the general principle
that during coarsening each vertex may be associated to more than just one ag-
gregate according to some “likelihood” measure. The uncoarsening initialization,
which produces the first arrangement of the fine graph nodes, strongly relies on
energy considerations (unlike usual interpolation in classical AMG). This initial or-
der is further improved by Gauss-Seidel-like relaxation, window minimization and
possibly by employing stochasticity, i.e., simulated annealing. The running time of
the algorithms is linear, thus it can be applied to very large graphs. In addition,
we have proposed two general principles that can be used for different functionals
: (1) a first approximation can be obtained from the arrangement produced by one
V-cycle of the minimum 2-sum problem instead of using the very popular spectral
approach; (2) the continuation approach in which functionals that contain an eval-
uation of power p are successively approximated by a sequence of similar but with
lower power functionals.

14



Table 1: Results.
Graph |V | |E| bk∞ M5 TM5 M10 M200 bkwb σ2 σ2+WM
3dtube 4.5E+04 1.6E+06 2334 0.89 11.00 0.87 0.81 1.48E+11 1.04 0.99
add20 2.4E+03 5.4E+03 711 0.60 0.03 0.55 0.50 9.78E+07 0.39 0.20
add32 5.0E+03 7.4E+03 669 0.03 0.05 0.03 0.03 1.67E+07 0.02 0.01
barth 6.7E+03 2.0E+04 200 0.76 0.12 0.72 0.64 4.09E+07 0.99 0.88
barth4 6.0E+03 1.7E+04 213 0.60 0.10 0.58 0.55 3.23E+07 0.76 0.71
barth5 1.6E+04 4.6E+04 370 0.65 0.30 0.63 0.57 1.89E+08 0.93 0.88
bcspwr08 1.6E+03 2.2E+03 131 0.63 0.03 0.63 0.53 1.10E+06 0.76 0.64
bcspwr09 1.7E+03 2.4E+03 123 0.68 0.07 0.65 0.57 1.18E+06 0.76 0.63
bcspwr10 5.3E+03 8.3E+03 288 0.68 0.18 0.63 0.52 1.43E+07 0.85 0.71
bcsstk12 1.4E+03 1.6E+04 109 0.61 0.10 0.61 0.57 4.29E+06 0.87 0.83
bcsstk13 2.0E+03 4.1E+04 546 0.69 0.20 0.64 0.60 1.63E+08 0.80 0.58
bcsstk24 3.6E+03 7.8E+04 227 0.79 0.29 0.80 0.79 7.10E+07 1.01 1.00
bcsstk29 1.4E+04 3.0E+05 838 0.68 1.48 0.67 0.63 1.09E+09 0.85 0.78
bcsstk30 2.9E+04 1.0E+06 2512 0.50 3.15 0.48 0.43 4.32E+09 0.91 0.67
bcsstk31 3.6E+04 5.7E+05 1104 1.14 3.50 1.03 0.78 1.97E+10 0.60 0.51
bcsstk32 4.5E+04 9.9E+05 2339 0.97 4.50 0.87 0.71 2.83E+10 0.61 0.47
bcsstk33 8.7E+03 2.9E+05 519 1.12 1.55 1.03 0.99 1.93E+09 0.98 0.87
bcsstk35 3.0E+04 7.1E+05 1764 0.69 3.16 0.66 0.55 1.00E+10 0.74 0.62
bcsstk36 2.3E+04 5.6E+05 1474 0.70 2.71 0.67 0.57 8.52E+09 0.74 0.66
bcsstk37 2.6E+04 5.6E+05 1373 0.75 3.06 0.70 0.59 1.45E+10 0.49 0.44
bcsstk38 8.0E+03 1.7E+05 669 0.64 0.60 0.58 0.55 4.52E+08 0.84 0.69
bcsstm13 6.5E+02 9.9E+03 171 0.62 0.06 0.62 0.60 6.50E+06 0.89 0.78
blckhole 2.1E+03 6.4E+03 105 1.15 0.13 1.11 0.96 8.91E+06 0.98 0.85
bus1138 1.1E+03 1.5E+03 106 0.61 0.06 0.59 0.51 5.52E+05 0.85 0.69
bus685 6.9E+02 1.3E+03 83 0.47 0.05 0.46 0.42 2.28E+05 0.82 0.70
can1054 1.1E+03 5.6E+03 121 0.74 0.06 0.73 0.67 2.59E+06 1.00 0.67
can1072 1.1E+03 5.7E+03 159 0.81 0.06 0.78 0.74 4.08E+06 0.90 0.55
can445 4.5E+02 1.7E+03 78 0.76 0.02 0.74 0.71 9.12E+05 0.93 0.80
can838 8.4E+02 4.6E+03 126 0.77 0.03 0.75 0.71 2.80E+06 0.98 0.66
ct20stif 5.2E+04 1.3E+06 3187 1.30 6.40 1.26 0.80 1.94E+11 0.38 0.29
dwt1007 1.0E+03 3.8E+03 38 0.76 0.07 0.76 0.74 4.63E+05 0.98 0.94
dwt2680 2.7E+03 1.1E+04 65 0.97 0.16 0.95 0.86 3.74E+06 1.00 0.94
dwt918 9.2E+02 3.2E+03 50 0.72 0.06 0.70 0.68 4.55E+05 0.92 0.85
ex27 9.7E+02 2.0E+04 128 0.96 0.05 0.96 0.95 5.81E+06 1.01 0.77
finan512 7.5E+04 2.6E+05 1331 0.91 2.65 0.87 0.84 6.19E+09 0.87 0.64
gearbox 1.5E+05 4.5E+06 6271 0.68 26.00 0.86 0.65 1.36E+12 0.57 0.42
gupta3 1.7E+04 4.7E+06 12535 0.70 68.00 0.70 0.66 3.26E+11 1.11 0.99
jagmesh1 9.4E+02 2.7E+03 27 1.19 0.04 1.19 1.11 5.38E+05 1.04 1.00
jagmesh9 1.3E+03 3.9E+03 40 0.98 0.08 0.98 0.98 9.82E+05 0.90 0.87
memplus 1.8E+04 4.2E+04 5747 0.85 0.16 0.81 0.59 7.48E+10 0.57 0.15
msc10848 1.1E+04 6.1E+05 1349 0.78 1.50 0.73 0.64 3.08E+09 0.96 0.62
msc23052 2.3E+04 5.6E+05 1524 0.70 2.14 0.64 0.56 8.00E+09 0.78 0.69
nasa1824 1.8E+03 1.9E+04 205 0.80 0.14 0.77 0.73 2.68E+07 1.03 0.93
nasa4704 4.7E+03 5.0E+04 348 0.67 0.39 0.64 0.60 1.36E+08 0.96 0.91
pwt 3.7E+04 1.4E+05 339 0.92 1.20 0.88 0.76 7.51E+08 0.93 0.89
pwtk 2.2E+05 5.7E+06 2190 0.89 31.00 0.86 0.77 2.27E+11 0.67 0.66
shuttleeddy 1.0E+04 4.7E+04 177 0.72 0.56 0.70 0.67 6.46E+07 0.83 0.74
skirt1 1.3E+04 9.2E+04 309 0.60 0.50 0.57 0.50 1.73E+08 0.31 0.26
sstmodel 2.7E+03 9.7E+03 83 0.92 0.13 0.90 0.81 4.72E+06 0.82 0.74
twotone 1.2E+05 9.4E+05 19538 0.77 16.00 0.74 0.67 4.43E+12 0.76 0.65
vibrobox 1.2E+04 1.7E+05 3961 0.60 1.80 0.56 0.46 2.70E+10 0.90 0.58
AVERAGE 0.77 0.74 0.66 0.82 0.69
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Table 2: Results for random graphs.
Graph |V | |E| Spectral Cuthill-McKee M5 M10 M200

randomA1 1.0E+03 5.0E+03 828 0.80 0.65 0.59 0.55
randomA2 1.0E+03 2.5E+04 969 0.92 0.91 0.88 0.84
randomA3 1.0E+03 5.0E+04 985 0.95 0.95 0.94 0.90
randomA4 1.0E+03 8.2E+03 855 0.89 0.83 0.75 0.69
randomG4 1.0E+03 8.2E+03 143 0.71 0.54 0.51 0.50

Since our algorithms were developed for practical purposes we compared them to
many different heuristics : Spectral Sequencing, Optimally Oriented Decomposition
Tree, Multilevel based, Simulated Annealing, Genetic Hillclimbing and other. In
almost all cases we observed significant improvement of the results by tens and
sometimes by hundreds percents. Our algorithms have proven themselves to be
very stable (i.e., small standard deviations) and of high quality both as a first
approximation (using “light” V-cycles) and as more aggressive energy minimizers
(with more “heavy” postprocessing).

We recommend our multilevel algorithms as a general practical method for solv-
ing linear ordering problems and as a fast and high-quality method for obtaining
first approximation for them. The implemented algorithm can be obtained at [34].

Appendix: Parameters

In order to control the running time of the algorithm it is important to decrease
the total number of edges of the constructed coarse graphs. This is achieved by the
following two parameters: the maximum allowed coarse neighborhood size r, which
restricts the allowed size |Ni| of the coarse neighborhood of a vertex i ∈ F by deleting
the weakest wij, j ∈ C; and the edge filtering threshold ε, which deletes every
relatively weak edge ij (from the created coarse graph) for which both wij < ε · si

and wij < ε · sj, where si =
∑

k wik.
The specific values of r and ε along with those of the three parameters controlling

Algorithms 1 and 2 are presented in Table 3. Note that these parameters are the ones
used only for the finest levels. As the coarse graphs become much smaller they are
accordingly increased. This hardly affects the entire running time of the algorithm
but systematically improves the obtained results. In the last column of Table 3 we
specifically describe the increase introduced for each parameter as a function of level
L, which usually depends on the ratio R = max(1, |E0|/|EL|) measuring the relative
decrease of the number of edges at level L compared with the original graph.

We tested many options for the window sizes in Algorithm 1. Usually these sizes
were relatively small and very robust to changes. In our implementation we used
WinSizes = {5, 10, 15, 20, 25, 30}, however similar results were obtained with other
sets of windows, for example, WinSizes = {5, 9, 17, 23, 29}.
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Table 3: The parameters used in the V-cycle.
Parameter “Value” The increase

for level L
The coarse neighborhood size (r) 10 +log(R)

The edge filtering threshold (ε) 0.001 ·0.9log(R)

k1 used in the WM 5 +log(
√

R)
The number of sweeps of Compatible relaxation (k2) 10 +2 · L
The number of sweeps of Gauss-Seidel relaxation (k3) 10 +2 · L
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